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Abstract. Orientation and navigation in a world dominated by visual
signs is still a major problem for blind and visually impaired people. The
Global Positioning System is of limited use due to its inaccuracy partic-
ularly in urban environments. Therefore, we propose a novel approach
of precise localization on predefined routes with the help of smartphones
and image processing techniques. From an initial acquisition of a given
route, a three-dimensional reconstruction is created. A query image is
submitted to the database and the location and direction of the camera
are calculated. Here, we demonstrate our approach on a evaluation-
dataset with a mean positioning error of 5.51 meters.

1 Introduction

According to global estimates, 15.5 million people in Europe are visually im-
paired [1]. The same study concludes that further growth is expected due to
the increase of diabetes and its effect on elder people. This emphasises the need
for reducing the impact or burden of sight loss by delivering improved support
through technology and innovation. Foremost, independency and mobility of
the blind and visually impaired has to be improved supporting free navigation
through unknown terrain. However, only very few technical advances towards
mobility, navigation and independence have been made since the introduction of
the white cane in the early 20th century.

New technological developments like the Global Positioning System (GPS) [2],
accelerometers and digital compassess provided novel opportunities to assist vi-
sually impaired blind people in the interpretation of environment and navigation
tasks. Moreover, satellite-based GPS positioning is not sufficiently accurate to
guide pedestrians through traffic, especially in urban environments. In par-
ticular, larger cities have tall buildings, which block or reflect satellite signals
reducing the accuracy to 34 meters [3].

Another approach uses the number of steps detected by an accelerometer,
reference-points and a mobile compass for navigation assistance. Fallah et al. [4]
presented a successful example of this method also with combining probabilistic
algorithms with natural capabilities of visual impaired persons to detect land-
marks like corners with touch. However, this system is designed for indoor
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environments, where maps are precisely defined by landmarks like corners and
doors.

There is also supporting research that exploits stereo vision cameras or depth
cameras like the Microsoft Kinect to navigate around obstacles [5]. However,
the range of these devices is only a few meters and they are not fit for general
navigation tasks that require localization.

Technologies that can be used in navigation systems today either have poor
reliability in different conditions because of inaccuracies in measurement devices
or are too expensive or too large to be integrated into mobile devices. Our
system aims at using previously calculated 3D reconstruction and real time image
processing on mobile phones to solve the accuracy problem while keeping the
system affordable and easy to carry.

2 Materials and methods

Current three-dimensional (3D) reconstruction methods like structure from mo-
tion [6] can be used to generate city-scale models of real world scenes using
unordered sets of 2D images. These reconstructions provide compact 3D models
in the form of sparse point clouds (Fig. 1). The construction of these models is
computationally expensive but it can be done off-line and incrementally.

Modern mobile devices like smartphones have sophisticated cameras and
enough computational capacity to perform image processing tasks like feature
extraction and detection. Free and open source libraries with implementations
of the algorithms performing these tasks are readily available, for example MAT-
LAB (The Mathworks!) and OpenCV2.

! www.mathworks.com
2 www.opencv.org

(a) Sample image (b) Sample 3D point cloud

Fig. 1. Example 3D reconstruction of Aachen central market. The 3D reconstruction
was created from a large dataset acquired for visualization reasons, not the evaluation
dataset.
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2.1 Reference acquistion

The images for the reference model are acquired while walking a route with
a specialized smartphone application. The application records about one image
per second along with other sensory data like GPS, accelerometer, magnetometer
and gyroscope. The images and embedded metadata are buffered on the device
and transferred to the server via the Internet connected by third (3G) or fourth
(4G) generation mobile communication standards.

2.2 Model reconstruction

Image acquisition and processing for the 3D model construction is performed by
first extracting image features with the scale invariant feature transform (SIFT)
using MATLAB and OpenCV. Then, a 3D point cloud model is constructed
using VisualSFM [7, 8]. This structure from motion methods also estimates the
locations of the cameras in the initial set, which then can be used to construct
navigation routes. The 3D model can be stored in a database of possible routes
and used for localization of users identified by query images. Existing models
can also be augmented by acquiring a route multiple times.

2.3 Query image localization

To estimate the location of the user, SIFT features are extracted from the image
taken at the user’s current position. Correspondences to the features of the
points in the 3D point cloud are determined by calculating the distances between
all features of the image against the point cloud and applying a threshold. The
obtained matches are used to estimate the camera pose of the initial image with
the following process. First, the camera matrix P is reconstructed. The camera
matrix P maps the 3D world points X to their 2D image coordinates x within
an unknown scaling factor A

PX =Xz (1)

In (1) P can be estimated from a set of corrspondences using the pseudoinverse.
PXXT = xaXxT (2)

P=ax" (xx7)7" (3)

A more sophisticated and numerically stable method to estimate the matrix
exists [9]. At least six correspondences are needed for the estimation of the
camera matrix P. Howerver, noise caused by errors in the reconstruction and
outlier matches can lead to errors in the estimation of the projection matrix.
To make the process more robust, random sample concensus (RANSAC) 9,
10] is used to discard outliers. RANSAC chooses a random sample from our
set of correspondences, reconstruct the matrix and checks for consensus with
the rest of the matches. Once a large enough set of inliers is found, the final
camera matrix is computed. If no concensus is reached, the best model so far
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is returned. The camera position and orientation can be extracted from the
camera projection matrix

P = K[RI] (4)

which is a composition of the projection matrix K and the camera motion matrix
[R|t] with R being a rotation matrix and ¢ a translation vector. Because K is
upper triangular matrix and R is orthogonal, QR decomposition can be used to
compute the K and R from P. Thereby, the camera intrinsic parameters K and
the relative camera position and orientation (R and t) are obtained [9]. After
estimating a relative coordinates in the model, a real world position is computed
by using real world locations of the cameras or keypoints in the initial dataset
(e.g., GPS coordinates from a large number of cameras).

2.4 Evaluation

For ground truth data acquisition, an imaging protocol was set up. The protocol
differs from the regular reference acquisitions by using a tripod to account for
changes in height and making accurate measures of each camera location towards
a reference point. This allows for easy reproduction of the set under differenct
environmental conditions. The central marketplace of the city of Aachen was
chosen as test location as it features both high buildings as well as pedestrians
and other moving objects partly occluding the visual landmarks surrounding
the buildings. Images at seven different locations and with three different angels
were acquired with our acquisition app resulting in a total of 21 images (Fig. 2).
In addition, a spreadsheets with the exact location of each camera towards a
reference-point was created.
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Fig. 2. Evaluation set 3D reconstruction and acquisition protocol of Aachen central
market based on the complete evaluation set of 21 images. In the ground truth data,
each camera position contains three shots in different direction (angulation of 30 de-
gree).
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Using a position-based leaving-one-out approach, six 3D models of the scene
were created, each containing only 18 images from 6 locations. The remaining
three images — all from the same position — were tested against the correspond-
ing dataset. Since the 3D reconstructions itself can already contain errors, the
distances of each query image towards the closest two positions, one in X and
one in Y direction are used (Fig. 2(b)). Based on the ratio of these two distances
and the supposed ratio, the positioning error was computed.

3 Results

Out of the 21 images used for the evaluation, one outlier localization was re-
moved, which was more than 10 meters off. The average localization error of our
system was 5.51 m (stdev 4.39m).

4 Discussion

This work demonstrates that image guided localization is 2-5 times more precise
than GPS-based localization which has an cummulated localization error of more
than 30 m when relying to GPS only and more than 10 m with map-based
correction [3]. Previous research suggest that from image base localization alone
we can obtain localizations with error below 3 m with probabilty 0.75 and and
below 18 m with probability 0.9 [10] which is compareable to our results. An
increasing number of reference-images should furhter decrease the positioning
error.

Another limitation of our evaluation is the quality of the reference images,
as our evaluation images are acquired with a stable tripod while reference and
query images are acquired while walking. Nonetheless, our results give a good in-
dication of the potential of image-guided localization with smartphone cameras.
further limitations of this approach are, of course, possible occlusions, changes
in weather and lighting.

We aplied SIFT features and the RANSAC algorithm. Another approach
that is often used in robotics is simultaneous localization and mapping
(SLAM) [11]. However, the mapping would require additional computational
power while our localization method can run on a minimal hardware setup.

Our smart camera-based positioning can then be used to navigate blind or
visually impaired people on a predefined route. Next steps will focus on mak-
ing the method more robust towards these influences and faster for realtime
applications and a navigation prototype. Further improvements by using addi-
tional sensory data like GPS, accelerometer, magnetometer and gyroscope are
currently investigated. The position accuracy can be increased by taking into
account previous positions, current walking direction, and actual speed. Other
benefits of image guided navigation, like depth calculation for the detection and
warning of steps, gaps and other obstacles, will also be part of our future work.
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