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Abstract. In this work, the tasks of improving positioning efficiency
and minimization of space requirements in image-based navigation are
explored. We proved the assumption that it is possible to reduce image-
matching time and to increase storage capacities by removing outliers
from 3D models used for localization, by applying three outlier removal
methods to our datasets and observing the localization associated with
the resulting models.

1 Introduction

Nowadays, medical imaging processing is not limited to radiography or MRI but
novel imaging modalities are presented including optical imaging technologies.
For instance, photography is a prominent modality in wound documentation and
skin lesion quantization. Furthermore, photography has been applied in other
fields supporting patient. For instance, we are developing a guidance system for
visually impaired and blind people that is based on optical imaging [1]. The aim
is to locate a blind or visually impaired user in outdoor environments. Using
structure from motion (SfM), 3D reconstructions of given tracks are created and
stored in a database in the form of sparse point clouds. With a client-side App,
query images are acquired and matched with the model to retrieve the precise
location and orientation of the camera. High computational costs of the match-
ing process and limited storage capacity cause the necessity of compressing 3D
point clouds without loss of localization performance. It is likely that positioning
accuracy can be maintained after removing outliers from 3D data.

According to the definition of Grubbs [2], an outlying observation, or outlier,
is “one that appears to deviate markedly from other members of the sample in
which it occurs”. Outliers in a 3D point cloud may be of different nature. Firstly,
they may result from errors occurring during the reconstruction process, such as
inherent inaccuracies in feature detection, false matching, and errors in estima-
tion of fundamental and projection matrices. Second, non-static environment
objects (e.g., cars, chairs and tables of street cafes, advertisings, market stalls)
create reconstruction noise.

In this paper, we analyse outlier removal in generated 3D point clouds for
pedestrian navigation. Our hypothesis states that it is possible to maintain
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positioning accuracy while reducing the number of outliers in a reconstructed
3D model.

2 Materials and methods

2.1 Outlier removal

We implemented outlier removal approaches of Sotoodeh [3] and Wang et al. [4].
The density-based approach of Sotoodeh [3] is outlier detection algorithm

based on local outlier factor (LOF) [5] applied to laser point clouds. LOF is
depending on the local density of the neighborhood of an object being observed.
The neighborhood is defined by the distance to the k-th nearest neighbor.

The connectivity-based method of Wang et al. [4] is a 2-step pipeline for out-
lier filtering. The authors detect sparse outliers applying a scheme based on the
relative density deviation of the local neighborhood and the average local neigh-
borhood, providing a scoring strategy that includes a normalization to become
independent from the specific data distribution. To remove further small dense
outliers, a clustering method is used. While the density-based method runs in
a linear time, the second part of the connectivity-based approach, performed by
agglomerative hierarchical clustering, has the run-time complexity of O(n3).

To asses the potential of computational speedup, a distance-based method of
outlier detection in 3D point clouds was proposed. Our approach is based on
the assumption that points belonging to building wall structures are normally
distributed. Thus, we apply a double-threshold scheme: firstly, we reduce the
impact of infrequent points in the model, the relative distances from which to
the other points in the model are comparatively big. After eliminating such
points, we estimate the second filtering factor based on the global mean over
mean distances of each point’s neighborhood.

2.2 Dataset

Evaluation was performed on a dataset recorded at the downtown of Maas-
tricht, the Netherlands. The dataset results from 7 walks with a recording
device (iPhone 5 with acquisition application running on it) attached with a
chest mount utility to the body of the person acquiring images. Within a walk
an image was sequentially acquired every second. A total of 3291 images were
recorded. All recordings differ in date, time and weather condition.

The route passes by several landmarks. The main characteristics of the
location are a large number of pedestrians, high vehicle traffic, narrow streets
and houses located close to the road.

Processing with VisualSFM [6] resulted in a dataset consisting of 17 separate
models. Each model represents a reconstructed set of building walls or a single
wall as a sparse 3D point cloud. The models contain from 200 to 12792 points.
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2.3 Preparation of test models

To evaluate our initial hypothesis, we selected as a reference a model from our
dataset allowing for the best automatic alignment to the real world coordinates.
We aligned all models to the OpenStreetMap [7] inspired by the approaches of
Strecha et al. [8] and Untzelmann et al. [9]. The selected model contains 11650
points and 374 cameras.

This model was then reconstructed again by 10-fold cross-validation: all
images used in the reference model were randomly partitioned into 10 subsamples
of equal size. For each new reconstruction, a newly selected single subsample
containing 10% of original images was used as test data, the remaining 90% of
images were used to reconstruct a model.

2.4 Testing process

To test the hypothesis, the following sequence of steps was applied to 8 test
reconstructions:

1. Align each model to the map to estimate their scaling factors relatively to
the real world coordinate system.

2. Align the test reconstruction to the reference reconstruction. For that, we
apply the estimated scaling parameters to the test and the reference mod-
els. Roughly estimate translation between the models by calculating the
difference between the models’ centroids.

3. Refine translation and rotation by applying the Iterative Closest Point (ICP)
algorithm [10].

4. Estimate a position of each test image not used for the reconstruction like
it was described in [1].

5. Use the corresponding positions of the reconstructed images from the ref-
erence model to estimate the localization error of each image. The error is
calculated as the distance between the estimated position and the reference
position in 2D (as we localize the user in 2D, the z-component is omitted).

6. Apply the three outlier removal methods to the aligned test reconstruction.
Repeat the two previous steps with the resulting models.

2.5 Performance measures

We evaluate the performance of localization distinguishing between efficiency
and quality indicators.

Efficiency indicators refer to performance in terms of time and space and esti-
mate matching time Tm (in seconds) and model size Sm (in KB) accordingly. In
order to show the changes in performance caused by the application of a certain
outlier removal method, we introduce the parameters for changes in matching
time ΔTm0j and space requirements ΔSm0j, defined as

ΔTm0j =
Tm0 − Tmj

Tm0
× 100% (1)
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ΔSm0j =
Sm0 − Smj

Sm0
× 100% (2)

where j = 1, ..., 4 corresponds to a model in a test case. A test case contains
four models: one model before outlier removal and three after different outlier
removal methods applied.

Quality indicators, i.e. matching rate R and matching error E, describe
localisation performance associated with a certain model.

Let n be a total number of test images associated with a certain tested model.
Given a test image contained in the reference model, an image is considered
as matched if it is possible to reconstruct its position p in the tested model.
Accordingly, nm is the total number of matched images in the model. A match
is considered as a correct match if the positioning error, estimated as a distance
between a reconstructed position p and its corresponding position p0 in the
reference model, is less than a threshold τ

‖p0 − p‖ < τ (3)

where we set τ = 1.6 m (2-3 human steps).
The number of correct matches nc is estimated as

nc =

nm∑

i=1

[‖p0i − pi‖ < τ ] (4)

The matching rate R is then calculated as the ratio of the number of correct
matches nc and the total number of images n

R =
nc
n
× 100% (5)

The matching error E is the average value of all positioning errors of the
correct matches

E =

nm∑
i=1

‖p0i − pi‖
( ‖p0i − pi‖ < τ

)

nc
(6)

Finally, we estimate the weighted error Ew as

Ew = wE (7)

where w is the corresponding weighting coefficient of a certain model. For each
j-th model in a test case, where j = 1, ..., 4, the coefficient wj is calculated as
follows

wj = 1− Rj −min{R1, ..., R4}
100%

(8)

The ICP alignment of a test model to the reference model might contain an
error up to 1 m. Thus, the absolute values of localization measurements might
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Table 1. Results.

Outliers Benefit in Benefit in Loss in the
removed computational storage accuracy of

time requirments localization

Pr ΔTm0j ΔSm0j ΔEw0j (cm)

Density-based 33.3% 31.1% 28.97% 8

Connectivity-based 20.4% 17.6% 19.24% 4

Distance-based 10.2% 8.8% 10.1% 1

not be precise. However, as we always use the same alignment within a test case,
estimation of relative errors is possible. Thus, our final quality indicator is

ΔEw0j = Ew0 − Ewj (9)

where Ew0 is the weighed localization error associated with the reference model,
and Ewj (j = 1, ..., 3) are the corresponding weighed errors in localization using
the models after the outlier removal methods applied.

We apply Student’s t-test to the entire sample of positioning errors to see
whether the changes in positioning performance are significant or not.

3 Results

We achieved the following performance: on average, the density-based method
classified the biggest number of points (33.3% of the initial number) as outliers,
while the smallest result was obtained by the distance-based method (10.2%)
(Tab. 1).

In all cases the reduction of outliers leads to significant improvement in
matching time Tm and has a positive impact on model’s size Sm, comparing
to the performance associated with a model before outlier removal. The benefits
in matching time ΔTm0j and storage requirements ΔSm0j are proportional to the
number of points Pr removed from the model (Tab. 1).

In the worst case, the probability to locate an image with a precision up
to 1.6 m was 70%. The absolute error values were below 0.56 m for all of the
cases. The average localization error resulted as the lowest (0.51 m) for our
outlier removal method. At the same time, the relative weighted localization
error tended to increase for the methods classifying a greater number of points as
outliers. The Student’s t-test resulted in the probabilities of 0.28, 0.2, 0.39 for the
distance-based, the connectivity-based, and for the density-based approaches,
respectively.

4 Discussion

The results have shown that image-based localization achieves a significantly
higher positioning precision than the one reached by modern consumer-level
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GPS sensors (34 m [11]). Average error of localization is 0.56 m including the
biggest detected loss in quality of 8 cm after outlier removal. Furthermore, this
value additionally accumulates an error gained in the process of alignment to the
reference model, which we are unable to extract from the final result. Comparing
our results to the average GPS error of 34 m, we consider the loss in quality of
8 cm as reliable and acceptable. The Student’s t-test confirms our conjecture
classifying those losses as insignificant. Together with the fact that the conducted
experiment has shown obvious benefits of outlier removal in terms of matching
time and space requirements, it makes us believe that our initial hypothesis
holds.
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