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Ferdinand Hahmann1, Gordon Böer1, Thomas M. Deserno2, Hauke Schramm1

1Institute of Applied Computer Science, University of Applied Sciences Kiel
2Department of Medical Informatics, Uniklinik RWTH Aachen

ferdinand.hahmann@fh-kiel.de

Abstract. This paper presents the Discriminative Generalized Hough
Transform (DGHT) as a robust and accurate method for the localization
of epiphyseal regions in radiographs of the left hand. The technique
utilizes a discriminative training approach to generate shape models with
individual positive and negative model point weights for the Generalized
Hough Transform. The framework incorporates a multi-level approach
which reduces the searched region in two zooming steps, using specifically
trained DGHT shape models. In addition to the standard method, a
novel landmark combination approach is presented. Here, the N-best
lists of individual landmark localizations are combined with anatomical
constraints to achieve a globally optimal localization result for all 12
considered epiphyseal regions of interest. The technique has been applied
to extract 12 epiphyseal regions of interest for a subsequent automatic
bone age assessment. It achieved a localization success rate of 98.1% on
a corpus with 412 left hand radiographs covering the age range from 3
to 19 years.

1 Introduction

Bone Age Assessment (BAA) is an important method in diagnostic radiology
which is used for evaluating the skeletal maturity to diagnose growth disorders
in children and adolescents. Since manual BAA techniques (e.g. Tanner &White-
house (TW) [1]), are time consuming, subjective and require expert opinion from
a physician a number of automatic methods have been developed in recent years.
Many of these approaches follow the basic concept of TW to classify only cer-
tain extracts from the radiograph since this substantially reduces the complexity
of the classification problem. However, an important prerequisite for all these
techniques is the availability of a reliable and robust object detection method to
enable the extraction of the required region-of-interest.

Object detection problems in medical image analysis are often solved by in-
dividually adjusted methods, which make heavy use of expert knowledge about
the shape and neighborhood of the searched object. [2], for example, analyzes
image lines to assign the maxima in the vertical stripe pattern of a hand radio-
graph to the individual phalanges. The localization approach in [3] is based on
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the same idea using an arc scanning procedure to generate a gray value matrix
whose maximal column sums refer to the phalanges. A more general approach
has been presented in [4] where an active appearance model is used for bone
reconstruction. This method can also be used for epiphysis localization but re-
quires a high number of manually defined shaped points for the training process.
[5] presents another segmentation approach used for epiphysis localization. Here,
a graph-based structural prototype, representing the phalanges and metacarpal
bones, is registered to the image and successfully provides the epiphyseal regions
on 77% of 137 images.

There are only a few general object detection techniques which have shown a
good performance in the field of medical image analysis. Marginal space learn-
ing [6] trains probabilistic boosting trees and gradually estimates the translation,
rotation and scaling parameters of the searched object. The technique has suc-
cessfully been applied to a number of anatomical objects but requires a large
number of training images which are difficult to obtain in the field of medical
imaging. Another general object detection approach is described in [7] where
random forests are used to map image patches to Hough space votes for possible
target point location. The work of [8] is based on the same idea but utilizes so
called regression forests.

In this paper, the Discriminative Generalized Hough Transform (DGHT) is
introduced as a robust method for the detection of epiphyseal regions of interest
(eROI), located around the finger joints (Fig. 2.2a), in hand radiographs. The
DGHT is a general object localization approach, which has been successfully
applied to the localization of anatomical structures in medical images and several
non-medical tasks [9]. To assure a reasonable combination of the localization
results for all visible eROIs the technique is applied in conjunction with some
simple geometrical constraints taken from the hand anatomy.

2 Materials and methods

In this contribution, the DGHT is used in the first step to generate a ranked list
of localization candidates for each searched landmark (Sect. 2.1). The obtained
set of lists is searched for an optimal combined solution for all eROI positions.
This solution must meet a number of predefined constraints derived from the
hand anatomy (Sect. 2.2).

2.1 Discriminative generalized Hough transform

The technique extends the well-known Generalized Hough Transform (GHT) by
an iterative and discriminative training approach for the generation of optimal
shape models with individually weighted model points [9]. The availability of
models compensating moderate target object variability is crucial due to the ex-
pected anatomical variability. Apart from the object’s translation no additional
GHT transformation parameters are considered in this work, since we follow the
idea of learning medium variability into the model.
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The DGHT training procedure starts with the generation of an initial shape
model which is extracted from a set of training images by overlaying their edge
features inside a predefined region-of-interest with respect to a target point. The
individual contributions of each initial model point to the Hough space are com-
bined in a Maximum Entropy Distribution. This step introduces model point
specific weights which are optimized in the next step using a Minimum Clas-
sification Error (MCE) training approach [10]. The optimized weights reflect
the importance of each individual model point for supporting the correct local-
ization and suppressing votes at similar but false structures. The latter aspect
is possible since model point weights may also have negative values. After the
model point weights in the initial shape model have been optimized with the
described procedure, points with low absolute weights may be eliminated since
their influence on the localization result is negligible.

The optimized and thinned initial model is further enhanced by an itera-
tive procedure. This technique evaluates the model on the training images and
extends it with image features from the target region and confusable areas in
training images with high localization error. The procedure is repeated until the
localization error on all training images is below some given threshold.

In addition to the model optimization procedure the applied framework uses
a coarse-to-fine localization strategy to split different levels of anatomical detail
into different localization models. This technique may also speed-up the pro-
cessing in case of high resolution images. In this work, only two zooming steps
are applied since the confusability of individual fingers in intermediate levels is
quite high. In zoom level 0, showing the whole hand, the resolution is reduced
to one-eight and a specifically trained DGHT model is used to obtain a coarse
localization result. An image extract of size 192×256 with the original resolution
is cut around the localized point and used for a precise eROI detection in zoom
level 1 with a specific and more detailed DGHT model.

2.2 Constrained localization

To avoid the confusion of eROIs, which is a frequent source of error, the indi-
vidual eROI localization results are combined with 133 simple anatomical con-
straints obtained from the hand anatomy. These describe (1) the minimum
distance of eROIs (50 pixels), (2) the positioning of the fingers with respect to
other fingers (e.g. index finger is right to middle finger), and (3) the positioning
of eROIs inside a single finger with respect to the other eROIs in this finger (e.g.
metacarpophalangeal is below proximal interphalangeal).

To derive a confidence measure from these requirements, each of the 12 con-
sidered eROI localization hypotheses (Fig. 2.2a) is assigned an individual error
score which is determined by the number of unmet conditions. With this score
the localization hypotheses are corrected in the following iterative manner: First,
the eROI localization hypothesis with the highest error score is identified. Sec-
ond, the hypothesis is rejected and replaced by a concurrent one from the 10-best
list. The replacement is selected to have at least 95% of the GHT votes of the
best hypothesis and the smallest error score of all remaining 10-best entries.
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Third, the error score is recalculated using the replacement hypothesis and the
next iteration is started. The iteration stops if the error scores of all eROIs are
zero or if all landmarks have been changed. If it is not possible to fulfill all
constraints, the system may ask the user for manual correction.

2.3 Experimental setup

The aim of this contribution is to set up a framework for localizing the 12 eROIs
labelled in Fig. 2.2a. Since these regions are extracted for later usage in an
automatic BAA system [11] it is necessary that the complete epiphysis is visible
inside the identified image fragment. Due to the anatomy of the epiphyseal region
the image extract chosen here is a narrow upright rectangle. Consequently, the
applied error distance for measuring the success of the localization is asymmetric
and tolerates a larger deviation from the target point in vertical direction than
in horizontal direction. Thus, the localization is defined as being successful if the
localized point differs less than 50 / 100 pixels in horizontal / vertical direction
from the given target point. This assures the containment of the eROI inside the
resulting image extract and therefore allows for a subsequent BAA classification
step. An alternative error measure for eROI detection has been given in [5].
Here, it was stated that a human observer may accept a localization error of 6
pixel for hand radiographs with a height of 256 pixel. Below we will also refer
to this error mesasure as “Fischers measure” for better comparability with the
literature.

For training and test of the described framework an inhouse corpus from the
University Hospital Aachen, consisting of 812 unnormalized hand radiographs
with an average size of 1185 × 2066 pixel ranging from 3 to 19 years, has been
used. Note that radiographs of children younger than 3 years were not considered
since only little data with low image quality, especially with respect to contrast

(b) (c)
model point 

weights

Fig. 1. Location and ID of eROIs (a) and examples of the global DGHT localization
model of zoom level 0 (b) and zoom level 1 (c) with color-coded weights of the model
points.
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Table 1. Success rates in % for eROI localization using (1) the standard DGHT, (2)
the method of constrained localization (Const.), and (3) two zooming-levels (Zoom).
Results are provided for the considered 12 eROIs defined in Fig. 2.2a. The average
error is given in pixels.

eROI 1 2 3 5 6 7 9 10 11 13 14 15 All Error

DGHT 94.9 94.9 96.6 98.1 96.1 96.8 95.4 98.3 98.8 93.9 96.6 97.8 96.3 23.2

Const. 96.4 98.1 97.6 98.8 98.5 98.5 96.4 99.0 99.8 95.4 98.6 98.1 97.8 20.1

Zoom 96.6 98.3 98.5 98.8 98.5 98.8 96.8 99.0 99.8 95.4 98.1 98.5 98.1 11.4

and hand positioning, was available. The corpus, which contained target point
annotations for all eROIs, was split into 400 randomly selected training and 412
evaluation images. For each eROI a single DGHT localization model was trained
for both genders and the complete age range from 3 to 19 years.

3 Results

With the standard procedure using a global DGHT model (Fig. 2.2b) an overall
localization success rate of 96.3% was obtained for all eROIs (Tab. 1). The
average localization error for this experiment was 23 pixel corresponding to about
1% of the image height. This result could be significantly improved to an overall
success rate of 97.8% by applying the constrained localization method (Sect. 2.2).
The technique also improved the average localization error to about 20 pixel.
A much more exact localization with an average error of only 11 pixel could
be achieved with a second zooming step utilizing a refined model, specifically
trained on small image extracts around the eROI. This model has been optimized
to represent fine details instead of global characteristics and is therefore much
more exact than the global model (Fig. 2.2c). An additional gain of the success
rate of 0.3% was achieved and led to an overall rate of 98.1%. This value is only
slightly decreased to 97.6% when using the stricter Fischers measure.

4 Discussion and conclusion

The experimental results show that the DGHT can be used as a robust and accu-
rate method for the localization of epiphyseal regions of interest in radiographs
of the left hand. The high localization rates of the basic technology can be sub-
stantially improved by the introduced novel landmark combination approach. It
utilizes a set of simple anatomical constraints and successfully identifies glob-
ally optimal eROI localization results from the N-best lists of the individual
DGHT-based localizations. In order to further improve the localization accu-
racy a zoom-in strategy with a specialized high-detail DGHT model was applied
which nearly halved the average localization error to about 11 pixel.

Considering the few remaining errors of the system nearly two-thirds can be
identified by unfulfilled anatomical conditions (2.2) which allows for eliminating
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those results in a subsequent BAA classification step. Since the applied BAA
framework requires only a subset of eROIs, the elimination of single regions
from the combined decision is probably not critical for the overall classification
success. It is additionally expected that the influence of isolated undetected
localization errors on the BAA result is low since several eROIs are utilized for
the final decision.

The experiments were performed on radiographs of the complete age range
from 3 to 19 years and both genders. The achieved high localization rates demon-
strate that most of the resulting large object variability could be successfully
trained into a single weighted DGHT shape model. An important source of vari-
ability for this task is, however, the spreading of fingers which lead to a clear
error rate increase in the upper eROIs (especially No. 1, 9, and 13 in Fig. 2.2a).
Although this specific kind of shape variability might in general be learned by
the training process it is not sufficiently represented in the used training corpus
and therefore lead to a substantial amount of the remaining errors.

For the addressed BAA task, the achieved localization accuracy is sufficient.
A combination of the presented DGHT based localization framework with the
Classifying GHT for bone age assessment [11] will be addressed in the next step
of the investigations.
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