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Abstract: The World Health Organization recognizes physical activity as an influencing domain
on quality of life. Monitoring, evaluating, and supervising it by wearable devices can contribute
to the early detection and progress assessment of diseases such as Alzheimer’s, rehabilitation, and
exercises in telehealth, as well as abrupt events such as a fall. In this work, we use a non-invasive
and non-intrusive flexible wearable device for 3D spine pose measurement to monitor and classify
physical activity. We develop a comprehensive protocol that consists of 10 indoor, 4 outdoor, and 8
transition states activities in three categories of static, dynamic, and transition in order to evaluate
the applicability of the flexible wearable device in human activity recognition. We implement and
compare the performance of three neural networks: long short-term memory (LSTM), convolutional
neural network (CNN), and a hybrid model (CNN-LSTM). For ground truth, we use an accelerometer
and strips data. LSTM reached an overall classification accuracy of 98% for all activities. The
CNN model with accelerometer data delivered better performance in lying down (100%), static
(standing = 82%, sitting = 75%), and dynamic (walking = 100%, running = 100%) positions. Data
fusion improved the outputs in standing (92%) and sitting (94%), while LSTM with the strips
data yielded a better performance in bending-related activities (bending forward = 49%, bending
backward = 88%, bending right = 92%, and bending left = 100%), the combination of data fusion and
principle components analysis further strengthened the output (bending forward = 100%, bending
backward = 89%, bending right = 100%, and bending left = 100%). Moreover, the LSTM model
detected the first transition state that is similar to fall with the accuracy of 84%. The results show that
the wearable device can be used in a daily routine for activity monitoring, recognition, and exercise
supervision, but still needs further improvement for fall detection.

Keywords: wearable device; neural network; human activity recognition; activity of daily living;
quality of life

1. Introduction

Alzheimer’s disease and other types of dementia are among the ten top non-
communicable causes of death worldwide [1]. The World Health Organization (WHO)
recognizes the domain of physical activities as one of six for quality of life (QoL). Tracking
physical activities during the daily routine contributes to diagnostics and management of
diseases such as Alzheimer’s, dementia, Parkinson’s, and depression [2–4]. Low back pain
(LBP) is a common problem with many possible causes correlated with physical activity,
including risky spinal postures and movements [5]. It can significantly limit daily activities.
Monitoring the spine movement helps to understand LBP development as it indicates the
activity of daily living (ADL) [6].
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Middle-adulthood and elderly individuals have the highest prevalence rates of chronic
LBP [7]. According to the United Nations (UN), the number of elderly above 60 years will
exceed 16% of the world’s population by 2030 [8]. Despite the evident difficulties of living
alone, 90% of the elderly prefer to live independently in their private spaces rather than
in nursing homes and to maintain their independence, comfort, and privacy [9]. Recently,
smart homes monitor parameters from several QoL domains such as (i) environmental,
e.g., indoor air quality, (ii) behavioral, e.g., physical activity, (iii) physiological, e.g., vital
signs, and (iv) psychological, e.g., emotion and stress. They utilize touch, interaction, and
non-contact sensors to turn the home from a private space into a diagnostic space [10–13].

To this end, a key concern of elderly care in smart homes is the automatic evaluation of
health-related parameters, in particular, ADL [14]. Thus, human activity recognition (HAR)
during ADL needs to be developed. A variety of HAR implementations may enhance the
QoL of the elderly. An efficient HAR system, for instance, ensures medication compliance,
measures physical activities, and recognizes pathological conditions through continuous
monitoring [15]. Wearable devices are recognized in home-based health monitoring for
physiological measurements, gait analysis, and physical activity tracking [16]. Furthermore,
they can track the posture of the lumbar spine whilst performing ADL [17].

The development of spinal movement analysis using the stationary devices has primar-
ily revolved around the use of 3D motion tracking systems in a living labs setting. These
systems create artificial environments for movement assessment, have limited capture
volumes, are constrained by camera positioning, and provide complex descriptions of body
segment movement. Hence, despite the thorough information that can be collected, these
systems do not accurately represent real-world scenarios, are intrusive, violate privacy, and
consequently, many of the elderly do not feel comfortable to live in the spaces in which
such systems have been deployed [6,18].

In contrast, wearable devices are lightweight, compact, low-cost, energy efficient,
portable, unobtrusive, and non-intrusive, which turns them into an appropriate choice for
a broad range of indoor/outdoor applications from simple activity to more complex body
segment kinematics estimation, particularly for lower limbs [19], gait analysis [20], and
balance assessment [21]; additionally, it is also applicable for sleep evaluation [22], posture
analysis [23], and fall detection [6,16,24].

Having said that, several approaches and wearables have been proposed for mon-
itoring the physical activities using electrogoniometers [25], piezoresistive [26], micro-
electromechanical sensors (MEMSs) [27], strain gauge [28], accelerometers [29], inertial
measurement units (IMUs) [30], force-sensitive resistors (FSRs), pressure sensors [31], and
non wearables such as thermal infrared sensors [32], ultrasonic distance sensors [33], RGB
and depth cameras [34], and capacitive sensors [35].

E. Papi et al. identified 22 wearable devices using technologies such as electrogoniome-
ter, strain gauge, textile piezoresistive, and accelerometer assessing lumbar motion [6].
In addition, strain gauge is used by electrogoniometers to monitor changes in the angle
between two end plates [36]. Epionics SPINE for example, deployed strain gauge in two
sensor strips to evaluate the lumbar and thoraco-lumbar motions. Consmuller et al. found
that Epionics SPINE is capable of assessing the lumbar spine shape and range of motion
(RoM), having potential of evaluating LBP and rehabilitation [37]. Fragility, high expense,
and complexity of instruction for end users in working with the sensor are the barriers
to deploy the sensor in a daily routine. Bodyguard is a wearable device also deploying
strain gauge technology which delivers a relative expression of the posture to the range of
motion rather than absolute degree by computing spinal flexion/extension as a percentage
of strain gauge elongation. O’Sullivan et al. investigated the performance of the sensor and
found its potential as an effective tool for lumbopelvic posture monitoring in both clinical
and laboratory settings [5]. Wong et al. introduced a system made up of three sensor
modules, each having three uni-axial gyroscopes and one tri-axial accelerometer, along
with the digital data acquisition and feedback system. These three sensor modules were
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located in the upper trunk, mid trunk, and pelvic level. Due to the distributed topology of
the sensors, the device delivered an estimation of spinal curvature measurements [38].

In addition, there are several studies focusing on developing models and using artifi-
cial intelligence (AI) according to the available datasets. Shuvo et al. proposed a convo-
lutional neural network (CNN) model that achieved a 97.71% accuracy on the UCI-HAR
dataset. This dataset was recorded with a waist-mounted accelerometer and gyroscope
sensor and consists of six activities, namely walking, walking upstairs, walking downstairs,
sitting, standing, and lying [15]. Joshi et al. proposed a CNN-LSTM model and achieved an
86% accuracy on the WISDM dataset. The authors chose thirteen activities for this research,
namely standing, jogging, stairs, sitting, walking, typing, writing, brushing, folding clothes,
dribbling (basketball), playing (catch), eating (pasta), and clapping [39]. Perez-Gamboa et
al. used the UCI-HAR dataset and suggested a CNN-LSTM hybrid model and achieved a
94.7% accuracy [40]. Wang et al. suggested a personalized recurrent neural network (RNN)
or a variant of LSTM that reached a 96% accuracy on the WISDM (v2) [40]. However, there
has not been an evaluated wearable device measuring comprehensive physical activities
using both spinal movement and an accelerometer in both indoor and outdoor compliance
and developing HAR during ADL. Our contributions in this work are as follows:

• Identifying an appropriate wearable device with multi-tasking capability coping with
the daily routine of users;

• Designing and developing a comprehensive protocol in order to include a wide
range of daily activities for evaluating the device functionality which contributes to
rehabilitation, HAR, as well as fall detection;

• Developing, implementing, testing, and comparing three light neural networks in
order to evaluate the functionality of the device;

• Dividing the study design into indoor, outdoor, and transition states activities, each
with its own contributions and in a total of 22, i.e., ten indoor activities, four outdoor
activities, and eight transition states;

• Evaluating the accelerometer, spinal, and fusion of data and identifying the correlated
activities contributions.

The rest of this work is organized as follows: in Section 2 the materials, methods, and
the study design is described. We present the results in Section 3. This is then followed by
the discussion of the proposed approach and conclusion in Section 4.

2. Materials and Methods
2.1. Device Description

In this study, we used FlexTail® (Minktec, Braunschwieg, Lower Saxony, Germany),
an up to 60 cm long and 2.5 cm wide sensor system consisting of an elongated strain gauge
sensors strip and an electronics part at the bottom of the strip. There are 25 pairs of strain
gauges on each side of the strip to detect 25 pairs of 3-dimensional measuring points every 2
cm in the longitudinal direction. Relative segment angles with a 0.5° precision per segment
are recorded at an adjustable frequency, between 1 and 20 Hz. The electronics part contains
a 3-axis accelerometer sensor, a lithium–ion battery, an internal memory, a microprocessor,
as well as a Bluetooth and MicroUSB interface to transfer data to a smartphone or computer,
respectively. The plastic casing dimensions of the electronics part are 4 cm × 4.5 cm. The
device is placed on the spinal curve of the subject in order to log tilt changes in the spine.
This is accomplished by having subjects wear a tight shirt provided by the company. The
shirt has a longitudinal pocket on the back, holding the FlexTail firm but still allowing for a
particular degree of freedom to slide longitudinally along the spine (Figure 1).
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Figure 1. From left to right: Flexible wearable device, a subject wearing the wearable device, and the
corresponding subject’s movements on a Minktec mobile application. The sensor’s strip can be bent
to form a complete circle.

2.2. Study Design, Protocol, and Experiment

A total of thirty subjects were recruited to perform the experiment, of which twenty-
two were males and eight were females, with an average age, weight, and height of 26.7,
73 kg, and 176.5 cm, respectively. All subjects were healthy (no known disease) and
informed of the consent form. We designed the study comprising fourteen activities classi-
fied into three categories, namely static, dynamic, and transitions states (TSs), performed
indoors or outdoors.

The study design and protocol is composed of ten indoor activities, four outdoor
activities, and additional eight TSs. We recorded the indoor activities in the living lab,
whilst asking the subject to go through the following protocol, sequentially:

(1) Standing, (2) sitting on the bed and lying down on right lateral decubitus (RLD),
(3) turning, (4) and lying down on supine position, (5) turning, (6) and lying on left
lateral decubitus (LLD), (7) changing the position from lying down to sitting and standing,
(6) walking, (8) standing in the front of the armchair, (9) bending forward (BF), (10) back to
the original position, (11) bending backwards, (BB) (12) back to the original position, (13)
bending right (BR), (14) back to the original position, (15) bending left (BL), (16) back to the
original position, (17) changing the status from standing to sitting, (18) sitting, (19) changing
the position from sitting to standing, and end of the protocol. Therefore, the activities are
composed of:

• Outdoor-performed dynamic activities; walking, jogging, running, and walking up-
stairs (WU) from the third floor to the fourth floor;

• Indoor-performed static activities; RLD, supine, LLD, walking, standing, BF, BB, BR,
BL, and sitting. Of which nine out of ten activities, we categorize as the static activity
(except walking, which is not associated with the movement but stand still);

• TSs; we considered the TSs as the performance between changing each two positions
of static activities, if applicable. TSs include standing to lying down on the bed (TS1),
rolling from RLD to supine (TS2), supine to LLD (TS3), standing to BF (TS4), BF to BB
(TS5), BB to BR (TS6), BR to BL (TS7), and BL to sitting (TS8).

Except for WU, each activity took one minute. For WU, each subject took as long as
he/she needed to ascend the 23 stairs and one landing. Moreover, during BF, BB, BL, and
BR, we asked the subjects to perform it up to their degree of comfort (Figure 2).
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Figure 2. Top row from left to right: standing, BF, BB, and BR. Bottom row from left to right: supine
and LLD positions. The study design included comprehensive physical activities contributing in
wide-range of ADL.

2.3. Data Acquisition

Although the device was capable of recording data at a frequency of up to 20 Hz,
we have recorded the data in the sampling rate of 5 Hz, in order to secure the data
acquisition and avoid data loss. After each subject completed all indoor and outdoor
activities, the recorded data on the device in comma-separated values (CSV) format, which
was transferred to the computer through MicroUSB. As an alternative, we also recorded
the data over Bluetooth on a Raspberry 4B as the back up. Each CSV dataset contained
53 columns of data, of which, 50 columns the strain gauge sensor’s strip and three columns
were the 3D accelerometer data.

2.4. Data Processing and Analysis

The recorded data of performed activities was labeled based on duration, accordingly.
We developed two graphical user interfaces (GUIs) in order to reduce the risk of errors.

TSs were labeled based on the fixed duration of the previous activity and the visual
amplitude differences between the transition segment’s signal and the other segments of
the data (Figures 3 and 4).
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Figure 3. Labeling TS1 and RLD. We have labeled the TS activities based on the time period of
previous activity and visual comparison.

Figure 4. The recorded data for one of the subjects according to the protocol shows the indoor
activities and data labeling based on time.

The GUI is interactive in which the time stamp is set on top (Figures 5 and 6). When
configuring, the appropriate time stamp is performed by clicking on the corresponding
button on the left side, and the associated data are labeled and stored in a separate CSV file.

Taking into account the physical activities and length of experiment, we have picked
two window sizes of two and ten seconds with 50% overlap. In the case of ten-second
window size, 3773 windows were created with 50-time steps and 53 features. As for the
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two-second window, 21266 windows were created with 10-time steps and the same number
of features.

Figure 5. GUI for labeling indoor data. Time stamps and all three categories of activities are
interactively configured and selected on the top and right side of the GUI, respectively; and in order
to label the data, buttons on the right side of the panel can be used.

Figure 6. The GUI for outdoor activities. The initial experiment included four outdoor activities,
which was reduced to three by combining walking and jogging in the later steps during data analysis.
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In order to train and test the model, 77% and 23% of the windows were randomly
picked. To develop the neural network and overcome the challenge of multivariate time
series problem in activity classification, we developed the model based on the most suitable
architecture for our work, i.e., long short-term memory (LSTM), convolutional neural
network (CNN), and hybrid CNN-LSTM (Figure 7).

Figure 7. In addition to LSTM and CNN, we developed a hybrid model for activity classification.

We trained the models according to two-second and ten-second windows. In each
model, we have used two individual sets of data from accelerometer and strip sensors as
well as five different states and combination units. The individual data and the units are:

• Accelerometer with three features;
• Sensor strip with 50 features;
• Fusion of sensor strip and accelerometer with 53 features;
• Sensor strip with dimensional reduced features using principle component analysis

(PCA);
• Fusion of accelerometer with the PCA-generated features of sensor strip;

TSs were only included with the two-second windows, and data with the ten-second
window were neither trained nor tested with TSs.

All the models were trained using Google Colab’s graphics processing units on account
of the high number of epochs and the high number of features in the dataset.

3. Results

The study design and data acquisition were categorized into ten indoor activities, four
outdoor activities, and eight TSs. During the data processing and analysis, we noted the
similarity between two of the outdoor activities and inaccurate classification (i.e., walking
and jogging). Therefore, we combined these activities into one category.

The distribution of windows created for each label using two and ten-second windows
for the purpose of training the model is shown in Figures 8 and 9.
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Figure 8. Number of labels for ten-second window is lower than for two-second window. Due to the
nature of TSs, the models were not trained with this window size.

Figure 9. TSs are trained and tested with two-second window size. The number of labels for
two-second window is significantly greater due to the combination of jogging and walking.

We present the results of activities classification as follows:

3.1. Ten-second window
3.1.1. Architecture: CNN

• Accelerometer; yielded an overall classification accuracy of 87%. Using only the ac-
celerometer data resulted in a poor classification of at least four activities (standing = 82%,
BB = 40%, Sitting = 75%, and WU = 0%). This is due to the similar characteristics of
activities such as WU and walking.

• Sensors strip; gave the overall classification accuracy of 61%. On the one hand, activi-
ties such as BR, BL, and BB which are associated with spinal movements, delivered
the best accuracy classification results with 100%, 97%, and 91%, respectively. On
the other hand, static activities such as supine, LLD, standing, and RLD with 16%,
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16%, 25%, and 30%, respectively, yielded the poorest results. This indicates the similar
characteristics of spinal movements in static activities;

• Accelerometer and sensor strip; delivered better results compared with the individual
data in unit one and two. The overall classification accuracy was 94%. However, WU
and BB with 10% and 58% classification accuracy are still not correctly detected. This
shows that convolutional layers could not differentiate WU from walking or BB with
standing;

• PCA applied to the sensor strip; using 95% PCA, 50 features were reduced to 13. The
overall classification accuracy slightly lowered, as CNNs need as many features as
possible in order to perform pattern recognition;

• PCA applied to the sensors strip and accelerometer; with the PCA applied to the
sensor strip and accelerometer data, the activities such as RLD, supine, LLD, standing,
BF, BR, and running were 100% correctly detected (Figure 10).

Figure 10. Performance of CNN network in activities classification. Left: without PCA applied and
right: with PCA applied, which shows that the fusion of data significantly improve the network
performance.

3.1.2. Architecture: LSTM

• Accelerometer; delivered an overall accuracy of 80%. RLD, supine, LLD, and running
with 100% classification accuracy and WU, BB, and standing with 20%, 31%, and
43%, respectively, delivered the best and poorest results, respectively. Still, LSTM
encountered difficulty in distinguishing the activities with similar patterns;

• Sensor strip; using sensors strip data feeding the LSTM model resulted in poor perfor-
mance with an overall classification accuracy of 50%;

• Accelerometer and sensor strip; with 96% overall classification accuracy, the model
classified RLD, supine, LLD, BF, BR, BL, and sitting without error. In addition, WU as
one of the challenging activities reached an 80% accuracy. However, BB with a 60%
classification accuracy remained a bottleneck. The reason for the false classification of
WU can be laid on the landing step, in which the subject’s last step is considered as
walking rather than ascending;

• PCA applied to the sensor strip; with 95% PCA, compared to sensor strip, better
results were achieved. This can be due to the temporal dependency of LSTMs;

• PCA applied to the sensor strip and accelerometer; delivered 98% overall classifica-
tion. A total of 9 out of 13 activities were correctly detected. For the other four, BB,
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standing, WU, and walking delivered 89%, 90%, 90%, and 94% classification accuracy,
respectively, (Figure 11 and Table 1).

Figure 11. LSTM architecture with left and right, without and with PCA applied and data fusion.
LSTM shows a promising performance in bending-related activities.

Table 1. While the lying down related, static, and outdoor activities are better classified using
accelerometer data, the data fusion with the sensors strip and PCA application have the added value
of improving the classification accuracy.

Architecture RLD Supine LLD Standing Sitting Walking Running

CNN 100 100 100 82 75 100 100
LSTM 100 100 100 43 75 96 100

Hybrid 100 100 100 48 75 100 99

Fusion

CNN 100 100 100 92 94 100 100
LSTM 100 100 100 97 100 98 97

Hybrid 100 100 100 90 97 99 100

PCA and fusion

CNN 100 100 100 100 89 98 100
LSTM 100 100 100 90 100 94 100

Hybrid 100 100 100 75 100 100 100

3.1.3. Architecture: Hybrid CNN-LSTM

• Accelerometer; with an overall accuracy of 84%, the hybrid CNN-LSTM was unable
to classify the activities such as standing, BB, WU, and sitting. This is inline with the
result from the CNN;

• Sensor strip; delivered a very poor performance in classification. The results are
similar to the CNN model;

• Accelerometer and sensor strip; yielded an overall classification accuracy of 97%. WU
yielded an accuracy of 40% and RLD, supine, LLD, standing, BF, BR, and running
were 100% correctly detected;
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• PCA applied to the sensor strip; yielded better results compared with unit two. This
showed that the LSTM layer compensates for fewer features;

• PCA applied to the sensor strip and accelerometer; the fusion improved classification
in WU to 50%, and still supine, LLD, BF, BR, BL, sitting, walking, and running were
detected correctly without fault (Figure 12 and Table 2).

Figure 12. The hybrid model delivers a good performance with respect to lying down associated and
bending activities, but is unable to resolve the WU challenge.

Table 2. The individual data of sensors strip outperform the accelerometer data in the bending-related
activities. The data fusion with the accelerometer further strengthens the performance.

Architecture BF BB BR BL

CNN 28 91 100 97
LSTM 49 88 92 100

Hybrid 45 98 62 99

Fusion

CNN 98 58 100 100
LSTM 100 60 100 100

Hybrid 100 88 100 100

PCA and fusion

CNN 100 78 100 97
LSTM 100 89 100 100

Hybrid 100 82 100 100

3.2. Two-Second Window
3.2.1. Architecture: CNN

• Accelerometer; whilst the outdoor dynamic activities (walking = 99% and running =
97%), and lying down static position-associated activities (LLD, RLD, supine = 100%)
delivered good results, the bending-related activities and the activities with similar
characteristics and their corresponding TSs yielded a poor classification accuracy;

• Sensor strip; having compared the outcome of the CNN model using the sensor strip
in two- and ten-second windows indicated the poor performance in all activities
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disregarding the static, dynamic, transition, indoor, and outdoor type of activities
(except for BL). This indicates the unsuitability of the sensor strips data with the CNN
model;

• Accelerometer and sensor strip; with the overall classification accuracy of 84%, the
CNN model displayed a good performance for classifying both indoor and outdoor
activities. However, the TSs delivered poor results (i.e., TS1 = 66%, TS2 = 69%,
TS3 = 90%, TS4 = 40%, TS5 = 44%, TS6 = 57%, TS7 = 44%, and TS8 = 67%). Having less
data for TSs explains the poor classification accuracy;

• PCA applied to the sensors strip; delivered poor performance. In particular, lying
down-associated positions (RLD = 15%, supine = 23%, LLD = 30%), and static activities
(standing = 38% and sitting = 59%), as well as all TSs yielded very poor results;

• PCA applied to the sensor strip and accelerometer; even though the TSs were still
poorly detected, compared to unit three, the classification accuracy was improved by
1% (Figure 13).

Figure 13. CNN architecture with the data fusion and PCA applied for two-second windows.
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3.2.2. Architecture: LSTM

• Accelerometer; except for running and walking and the dynamic outdoor activities
delivering a classification accuracy greater than 90%, the remaining activities including
TSs were poorly classified;

• Sensor strip; with 40% overall classification accuracy, RLD, and BB with 2% and 92%
delivered the poorest and best outcome, respectively;

• Sensor strip and accelerometer; even though the data fusion improved the results,
the TSs activities were inadequately detected. TSs were mainly wrongly classified
into the previous and/or the next activity. This can be due to insufficient TSs data in
comparison with other activities;

• PCA applied to the sensor strip; compared to unit 2, it seems that the overall classifica-
tion accuracy was slightly improved;

• PCA applied to the sensor strip and accelerometer; RLD, BL, running, walking, and
BF were detected with 100%, 100%, 96%, 92%, and 91% accuracy, respectively. TS4
and supine delivered the least classification accuracy with 43% and 46%, respectively
(Figure 14).

Figure 14. Using data fusion and PCA applied with LSTM architecture. Using two-second window
downgrades the classification accuracy compared to ten-second windows, but TS1 and TS2 are
detected with 73% and 88% classification accuracy, respectively.
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3.2.3. Architecture: Hybrid CNN-LSTM

• Accelerometer; in compliance with the previous architecture, the lying down-associated
activities such as RLD, supine, and LLD delivered 100% classification accuracy while
none of the TSs were detected with an accuracy greater than 50%. Moreover, the
majority of bending-related activities were falsely classified. This is, again, similar to
the CNN’s architecture, where bending-related activities were falsely recognized;

• Sensor strip; except for BL with a 98% classification accuracy, the architecture delivered
a poor performance in almost all other activities;

• Sensor strip and accelerometer; data fusion improved the performance (RLD = 100%,
supine = 100%, LLD = 100%, BF = 100%, BB = 98%, BR = 90%, BL = 100%, walking = 91%,
and running = 98%). However, detecting TSs remained challenging;

• PCA applied to the sensor strip; although the general classification accuracy was low,
it exhibited better results than unit 2;

• PCA applied to the sensor strip and accelerometer; results (i.e., TS1 = 45%, TS2 = 31%,
TS3 = 23%, TS4 = 40%, TS5 = 34%, TS6 = 39%, TS7 = 44%, and TS8 = 42%) showed that
correctly classifying the TS activities remained challenging (Figure 15 and Table 3).

Figure 15. A hybrid architecture with two-second window delivers error-free results regarding lying
down-associated positions activities and BR and BF.
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Table 3. Data fusion in LSTM architecture yielded a promising output for fall detection using the
felx device.

Architecture TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

CNN 48 73 90 40 25 11 56 39
LSTM 65 85 87 30 31 29 48 47

Hybrid 48 46 42 10 0 14 26 44

Fusion

CNN 66 69 90 40 44 57 47 67
LSTM 84 96 77 33 47 54 56 53

Hybrid 50 31 19 37 38 31 49 47

PCA and fusion

CNN 73 69 77 47 41 36 59 56
LSTM 73 88 74 43 53 57 56 67

Hybrid 45 31 23 40 34 39 44 42

4. Discussion

In this work, we deployed, tested, and verified the functionality of a multi-tasking,
unobtrusive, and non-intrusive flexible wearable devices for simultaneously measuring
and monitoring HAR and physical activities during ADL in various applications. By
designing an extensive study protocol, we included several key physical activities which
are frequently experienced by individuals during their daily routine.

In contrast with the previous works [5,37,38], the performance, applications, versatility,
convenience, resolution, expense, and instruction in use have been significantly improved.
Moreover, developing light and efficient algorithms made near real-time feedback to
users possible. We also consider the solution as an in-home integrated evaluating system.
Compared to [5] and [38], we have improved the mode of wearability and convenience
of use for the users. The bulky set up, distributed hardware configuration, and complex
user instruction in [5,40] were turned into a wireless data transmission, single sensor strip,
and straightforward usage. The restricted applications (e.g., lumbo-pelvic posture and
trunk movements) with limited activities (e.g., sitting, standing, and sitting activities) with
a focus on sagittal and coronal planes have been extended to 22 various activities in three
general states of indoor, outdoor, and TS activities. We have developed and applied the
AI algorithms and tested the validity of the system in near real-time. In addition, the
overall performance of the system in terms of classification accuracy has been improved
to 98% compared to 86%, 94.7%, and 96% reported in [15,39,40], respectively. We have
achieved this overall performance whilst reducing the window size, extending the number
of activities, and improving the measuring resolution.

This study consisted of the activities which lead to pattern extraction, and contributes
to physical activity-based diseases such as dementia, Parkinson’s, and depression whether
for detection, prediction, or evaluation of the progress. In addition, the study was composed
of activities which may contribute to therapy and rehabilitation in telemedicine.

Furthermore, we considered TSs as an important aspect of the study to investigate
the contribution of the device in fall detection. This activity was simulated as the TS1
reflected standing to lying down with respect to the transition time and added value of
accelerometer data. Moreover, it can contribute in assessing the correct performance of the
therapy exercises.

We developed three light and efficient neural networks and evaluated the performance
in a comprehensive manner of the broad range of activities of HAR recruiting 30 subjects.
However, our work is restricted in terms of the number of subjects, and healthy subjects,
and has not been tested with patients suffering from LBP nor in actual daily living. Al-
leviating the pandemic restrictions may give us the possibility to highlight this aspect in
future studies.
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By performing several experiments prior than the actual tests, we realized that the
optimized sampling rate is 5 Hz. This was due to significant packet loss for the sampling
rates greater than 5 Hz. Storing the data on internal memory would have enabled us to
acquire the maximum rate (20 Hz). However, as we intended to transmit the data wirelessly
and implement the algorithm on an embedded system in the future work, we preserved
5 Hz.

Due to the similar characteristics of the activities such as BB and BF as well as LLD,
RLD, and supine, we expected similar classification accuracy. In some cases, BB and BF did
not match. In particular, as for BB, we observed the inadequate sliding movement of the
flexible wearable device in the shirt. As of evidence, we had to interrupt the experiment
for two subjects, due to the misplacement of the device on the back of the subjects, whilst
performing the activity supine to LLD. This was a challenge for the taller subjects rather
than the shorter ones. The flexible wearable device had a rather good degree of freedom for
sliding inside the shirt’s slot, having more than 10 cm of extra length. This extra length also
did not contribute to spinal movement. In contrast, the taller subjects had the edge-to-edge
of flex device and sliding slot, in which during the bending-related activities, the tip of the
device could become stuck in the slot.

We relied on the activity duration and visual differentiation (for TSs) of signal in
labeling. This could be further improved by using a synchronized camera. However, in
addition to the increasing the complexity of this study, some of the subjects would have
not agreed to be filmed.

In some cases such as walking, jogging, and running the collected data were the
function of the subjects’ performance. The walking performance of one subject could
be classified as the jogging performance of the other subject. This could be observed,
in particular, for the comparison of men and women, leading to similar features and
characteristics. Combining both jogging and walking in outdoor activities as one class of
activity was the consequence of such an observation.

To implement a light and well-performing algorithm in activity classification. We
tested the accelerometer and sensor strip individually. This drove us to find the added
value of the data fusion of both data sources. We avoided increasing the complexity of
the algorithm and load of data unnecessarily. This is of importance for implementing
the algorithm on the embedded systems and micro controllers with limited computation
power, in particular, for the applications demanding near real-time processing. We only
used the most significant contributing features that yielded better or at least the same
results compared with all 53 features.

From the implementation point of view on an embedded system, in the ten-second
window, the CNN model with accelerometer data delivered the optimized classification
accuracy for lying down-associated positions (RLD, supine, and LLD with 100%) as well as
outdoor activities. In the CNN, the data fusion and joint PCA and data fusion improved
the classification accuracy for the static activities including standing and sitting; standing
= 82% and sitting = from 75% to 92%, 94% by data fusion, and to 89%, 98% by joint
data fusion and PCA. LSTM yielded slightly better output for bending-related activities
(BF = 49%, BB = 88%, BR = 92%, and BL = 100%). Moreover, WU as the most challenging
activity reached the classification accuracy of 90% using LSTM architecture by joint PCA
and fusion data.

In the bending-related activities, the hybrid architecture of LSTM-CNN suppressed
the other two approaches. Applying data fusion and joint PCA improves the accuracy, even
though there is no significant difference between fused data and joint PCA applied and
fused data (6% in BB). However, this can lead to a large difference in practical implementa-
tion as the PCA has reduced the features from 50 to 13 in the sensor strip, and thus, the
load of data, computational power, and data processing time are significantly lower.

The poor performance in the classification of WU is due to (i) a smaller load of data
collected and (ii) the last step of the subject as a landing that can mislead the data to be
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categorized as a walking activity. This drawback can be resolved by increasing the number
of subjects and an increment in the number of stairs.

We observed that the larger window size (ten-second) performed better in classification
accuracy than the two-second window. However, still, the hybrid architecture with the
joint PCA and fusion data performed well (RLD = 100, supine = 100, LLD = 100, standing =
78, sitting = 91, walking = 96, running = 97, BF = 100, BB = 90, BR = 100, and BL = 95).

Among all three neural networks for the ten-second window size, LSTM yielded the
best classification accuracy. Even though the WU classification was a main challenge for
the CNN and hybrid CNN-LSTM architecture due to the smaller sample size than other
activities, LSTM performed adequately. Reducing the window size to two seconds and
delivering the near real-time output, the hybrid CNN-LSTM architecture performed better.
However, due to less samples, it yielded a poor classification of TSs.

The TSs, in particular TS1, could be of interest in smart homes, as they represent
standing to laying down position, which could reflect a fall. Using LSTM with data fusion
and joint data fusion and PCA, this was detected at 84% and 73% classification accuracy,
respectively. We expect that training the model with further data could improve the TS1
classification accuracy.

To extend the application of the device, it can be used in verification of the physical
activities in therapy and rehabilitation supervised by a medic, remotely, in order to observe
whether the exercises have been performed correctly. Currently, such monitoring is carried
out using cameras.

Monitoring the movement and analysis as well as improving the performance in sports
such as Golf, which is directly associated with the back spinal, may be another application
requiring further investigation.

As for the future work, the developed models can be implemented on a smartphone ap-
plication and/or Raspberry pi 4B as an intermediate hub for real-time in-home monitoring
of HAR.
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