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ABSTRACT

Background: Annually and globally, cardiovascular diseases yield the death of 17.9 million people. Continuous
and unobtrusive monitoring of vital signs supports an early detection of abnormalities and diseases, such as
atrial fibrillation. Here, we analyze capacitive electrocardiography (cECG) recorded in an armchair at home.
However, processing such data is challenging, as body movements and other artifacts disturb the signal quality.
Methods: In this paper, we suggest video-based pose estimation to assess the reliability of cEGC. In 20 subjects,
we measured reference and capacitive ECG synchronized with a video recording for key-point-based movement
analysis with the OpenPifPaf pose estimation algorithm. We considered all 17 human body joints to compute a
movement index and label all data in windows of 5 s as reliable vs. unreliable, according to that index. Then, we
compared the heart rates obtained from complete and reliable cEGC windows with the corresponding windows
from the reference ground truth ECG. Result: The left and right hip joints are most significantly influencing the
signal’s quality. In addition, the joints’ movement distance from the original position limited to the range 460.84
pixels and 382.22 pixels, respectively, deliver a reliable cECG signal. Conclusion: Video-based pose estimation
delivers reliable and unreliable periods of cECG recordings and improves continuous health monitoring at home.
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1. INTRODUCTION

Cardiovascular diseases (CVD) accounted for 32% of all global deaths in 2019, World Health Organization
(WHO) reported.1 Of these, 8% were caused due to heart attack and stroke. CVDs caused 38% of the 17 million
premature deaths under the age of 70 due to non-communicable diseases in 2019.1,2 Adequate care of diet,
physical activity, and control of alcohol consumption and tobacco use can prevent most CVDs.2

With the increasing cases of CVDs worldwide, from one side1 and improving the methods, techniques, and
technology of continuous and unobtrusive in-home monitoring,2 from the other side, it is necessary and possible
to detect these diseases in the early stages in order to deliver an efficient treatment to the patient.3 Capacitive
electrocardiography (cECG) measures the bio-potential differences, enabling non-contact patient monitoring.4

The capacitively coupled electrodes measure the activity of the heart muscles by measuring the electric
potential from the body surface, even from above the layers of clothing.3,4 The application of the cECG
electrodes has been reported for the continuous and unobtrusive monitoring of the heart rate (HR), in the
private spaces such as vehicle5,6 and home,7,8 embedded in beds and chairs.9

However, the cECG signal suffers from various factors such as movements and artifacts,10 coupling impedance,11

and electromagnetic interference (EMI),12,13 which disrupt the signal quality and decrease the signal-to-noise
ratio (SNR) and its reliability for measuring the cardiac parameters. The voluntary/involuntary movements of
the human body can affect the ECG signal and hence creating uncertainty on the signal reliability.
The signal quality assessment (SQA) plays a pivotal role in overcoming the problem and improving the SNR. The
exact determination of ECG signal characteristic points is important for detecting CVDs and other applications
of ECG signals.13
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Satija et al. have grouped the various methods for SQA of clinical ECG into five categories: (i) fiducial
features and heuristic rules-based SQA methods, (ii) fiducial features and machine learning-based SQA methods,
(iii) nonfiducial features and heuristic rules based SQA methods, (iv) nonfiducial features and machine learning
based SQA methods, (v) filtering-based SQA methods.13 Hou et al. developed an SQA approach for cECG
signals based on the phase-space reconstruction.9 Wartzek et al. proposed that contact electrification and
triboelectricity as the reasons for artifacts in the cECG signal and worked on developing different electrode
designs to minimize the effect.12 Fukuyama et al. investigated multi-layered fabric electrodes with the non-
layered ones in terms of movement artifact reduction.14

However, the SQA based on the key-joints’ movement data from the subject has not been explored yet. In this
study, we have proposed the neural network-based approach to classify the cECG signal based on its reliability
from the key-joints-based movement data collected from the subject using the pose estimation algorithm. We
use the signal from the adhesive Plux sensors (ECG Plux sensor, Plux, Lisbon, Portugal) as the reference for
classifying the cECG signal and, therefore, towards the model’s learning.

2. MATERIALS AND METHODS

We propose a novel pipeline for the cECG signal classification based on extracting the key-point based movements
of human body from the video recording (Figure 1). We used 11 minutes of video recordings of 20 subjects
sitting on the cECG armchair while reading books and turning over the pages (Figure 2). We conducted the
recordings under similar circumstances, e.g., temperature and humidity; none of the subjects declared any known
CVDs, while all subjects filled and signed the consent form. We recorded the ECG ground truth and cECG
(Capical GmbH, Braunschweig, Germany) in 500 Hz and 560 Hz, respectibely. Besides, we recorded the key-point
coordinates using the pose estimation at 10 frames per second (FPS).

Figure 1. An overview of our proposed pipeline for the cECG classification

The Plux and cECG sensors were time synchronized using an optical synchronization interface. The video
recording of joints and pose estimation was then synchronized with the signal by calculating the offset timestamp
individually customized for each subject. The signals were filtered using the bandpass filter with the standard
range of 0.05 Hz and 100 Hz as the low and high cut-off frequencies, respectively.

We divided the ECG signals into windows of 5 seconds15 to calculate HR from both the Plux and Capical
sensors using the HeartPy module.16 The HeartPy module computes the HR as the average beat-beat interval
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Figure 2. Representative position of capacitive electrodes in cECG armchair

across the entire analyzed signal. To check upon the accuracy of the peaks and reject the false peaks, it
measures the HR variability using the root mean square of the successive differences (RMSSD). Figure 3 shows
the representative signal and RMSSD calculated using the equation 1:

Figure 3. Representative signal image. Source: HeartPy documentation16

RMSSD =

√√√√ 1

n− 2

n−2∑
i=0

(RRi −RRi+1)2 (1)

RMSSD is calculated on the basis of the number of R-peaks denoted by ’n’, RRi denoted the R interval from
the ith peak, whereas the RRi+1 denotes the R interval from the i+1th peak. The summation of the square of
each of the succesive time difference is then averaged to calculate the RMSSD. Having HR from the Plux sensor
as the reference, the window of the cECG was either marked as accepted (reliable signal) or rejected (unreliable
signal). If the calculated HR of cECG was in the 90% range of HR from the Plux, the reliability criteria was
met.17
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The calculated HR from reference and cECG in the window of 5 seconds is as shown in Figure 4 for one of
the subject. The gaps of HR from cECG represent the unreliable regions of the signal.

Figure 4. HR calculated from Plux and cECG are compared for identifying the reliable and unreliable regions

Labeling accepted and rejected windows ( see Figure 5 and Figure 6) is based on the HR criteria computed
from the Plux ECG.

Figure 5. Accepted Window (labelled as ‘1’) as the HR calculated from the cECG signal lie in the 90% range of the HR
from the reference ECG

The movement of the human body was calculated with the key point-based method. We used pose estimation
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Figure 6. Rejected Window (labelled as ‘0’) as the HR calculated from the cECG signal does not lie in the 90% range of
the HR from the reference ECG

algorithm OpenPifPaf18 to record the coordinates from the 17 major joints of the human body (see Figure 7)
every 100 ms.
Based on these coordinates, the absolute distance moved by each joint was calculated using the equation 2:

d(A,B) =
√

(x− x′) + (y − y′) (2)

The d(A,B) defines the distance between the two points denoted by A and B with the 2-d coordinates as (x,
y) and (x’, y’).

Figure 7. Representative image of 17 human body joints. Source: COCO 2017 dataset18

The movements data and the cECG window labels (accepted: ‘1’ and rejected: ‘0’), were fed to the neural
network for training and testing the model performance. The visual representation of the movement data in
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Figure 8. Movement data from significant joints

Figure 9. Movement data from less significant joints

pixels for the 30 seconds of time period for both the significant and the less significant joints are shown as in
Figure 8 and Figure 9 respectively. The left and right hip were found to be the significant ones in our study.

The movement data for the same 30 seconds of window for the combined sum of movement from all the 17
joints is as shown in Figure 10.

We developed a long short term memory (LSTM) neural network, which is well suited to the classification
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Figure 10. Movement data from the summation of all the 17 joints of a subject

problems of time series sequential data.19,20 It is a special kind of recurrent neural network (RNN), capable
of handling the problem of vanishing gradient which is encountered while training the traditional RNNs. The
developed LSTM consists of a single input layer connected to 100 LSTM cells along with hidden states. The
output of the LSTM layer is then passed on to the fully connected layer which transforms the hidden states into
two classes of classification (see Figure 11).

Having the total accepted and rejected windows of 82% and 18% respectively, caused an imbalance in the
whole dataset. we observed the model tendency towards false positive classification. IThus, we applied the
approach of synthetic data generation21 using the Gaussian noise. After feeding the movement data of 17 joints
obtained from 20 subjects, along with the signal classification and synthetic data generation, to the neural
network, we trained the model for ten rounds, each comprising 100 epochs. We used the random data split in
the ratio of 80:20 for our training set and testing set, respectively.

Figure 11. LSTM Neural Network Architecture

3. RESULTS

The mean confusion matrix is shown in Figure 12. The confusion matrix provides insight into the performance
of the classification algorithm by providing the error in the results from the predicted and actual label classes.
The four basic characteristics of the confusion matrix used to define the measurement metrics of the classifier
and our results are as follows:
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Figure 12. Mean confusion matrix for evaluating the performance of classification model (after 10 rounds)

• TP (True Positive): % of windows that have been correctly classified as accepted of the total accepted
windows - 91%

• TN (True Negative): % of windows that have been correctly classified as rejected of the total rejected
windows - 90%

• FP (False Positive): % of windows that have been misclassified as accepted of the total rejected windows
- 10%

• FN (False Negative): % of windows that have been misclassified as rejected of the total accepted windows
- 09%

The mean F1 score was 90.48%. Using the LSTM feature importance, we obtained the significance of each joint
along with that of the summation of all joints (represented by ”sum” in the figure) on the model’s performance
(see Figure 13). Our results showed that the movement originated from the left and right hip joints were the
most significant joints on the signal reliability. For each feature that we conducted the evaluation, we shuffled
the feature column randomly and calculate the mean absolute error (MAE).

If a feature has a significant impact on the LSTM model, then the MAE became worse with that feature
permuted. We went through this procedure for all the features. Figure 13 indicates that how worse MAE is
without each feature, which is the importance of each feature.
We found the maximum movement for the most effective joints, at which the quality of signal and the reliability
of the window are still maintained. The left and right hips were found to be 460.84 pixels and 382.22 pixels,
respectively.

4. DISCUSSION

One of the popular and feasible methods of continuous health monitoring for the early detection of CVDs is
through non-contact/ non-invasive measurement. The existing signal processing and analysis from the cECG
electrodes mostly focused on the disturbances from the human body movement and artifact and do not correlate
the motion and signal, which can be seen as an instruction to the user to use such technology for reliable and
usable monitoring. This will help to improve the existing state-of-the-art cECG signal quality.10,17,22,23

Our study was, however, limited to 11 minutes of data recording from 20 subjects, all of them being free
from any chronic heart complications. The subjects were assigned the task of reading, which might not take into
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Figure 13. Relative importance of each joint.

account all the types of body movements, leading to only partial learning of the neural network. In addition,
the application of this method for data recording during daily living could give a better perspective, which is
the subject of our next study.

The model was also trained with the data in the smart home lab environment and not the actual living home
environment.

While estimating the importance of the joint from the feature importance, we also found the left elbow as
the most significant joint. However, we expect the same should be reflected in the output with respect to the
right elbow, and this is the consequence of an imbalanced dataset and limited types of activity (the majority
of subjects turn over the book with their left hand). This could be because of the more movements from that
joint in the specific activity of reading. Movement from all the 17 human body joints were treated equally for
the classification of the cECG signal reliability. Based on the literature research and from the knowledge of
medical science, not all the joint movement have equal affect on the signal quality. Since, some of the joints
have more effect than the others, a weighted sum approach could give better results and robust algorithm for
our classification algorithm.

5. CONCLUSION

From this study, we can conclude that different joints of the body can have drastic effects on the cECG signal
and HR measurement. Some joints at the central part of the body such as the left and right hip, contribute
significantly and have more importance. The study shows that even though movement can cause disruption
to the signal; it depends on the type of activity and the certain degree of joint movement associated with it.
Considering a limited movement within the allowed range still can contribute to a reliable ECG signal, leading
to an effective, unobtrusive monitoring.
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