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ABSTRACT

Lung cancer ranks as the second leading type of cancer globally. The predominant forms are non-small cell
carcinoma and small cell carcinoma. Lung cancer is diagnosed based on biopsies, surgical resection specimens,
or cytology. Standard work-up of histopathological lung cancer samples includes immunohistochemistry (IHC)
staining, which allows the visualization of specific proteins expressed on cellular structures in the sample. Com-
putational methods play a key role in evaluating immune cells and detecting immune checkpoint markers in
distinct tissue sections. These analyses are essential for designing targeted immuno-oncology treatments. Cur-
rent pathological analysis of these samples is both time-intensive and challenging, often hinging on the expertise
of a few highly skilled pathologists. An automated solution using computer vision, has the potential to assist
pathologists in achieving a more accurate and consistent diagnosis. Our paper introduces a novel approach that
leverages deep unsupervised learning techniques to autonomously label regions within IHC-stained samples. We
developed a robust clustering model by actively extracting radiomic features from small patches within whole
slide images. To achieve this, we utilized Self-Organizing Maps, a type of artificial neural network trained using
unsupervised learning to produce a low-dimensional, discretized representation of the input space of the training
samples. This method allowed us to effectively cluster the extracted features, enhancing our ability to analyze
and interpret the complex data presented in the whole slide images. Our findings indicate that unsupervised
clustering is a promising approach to meet the increasing demand for high-quality annotations in the emerging
field of computational pathology.
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1. INTRODUCTION

Lung cancer is characterized by uncontrolled growth of neoplastic cells derived from pulmonary tissues such as
bronchial epithelium. Besides association with smoking, which accounts for approximately 85% of all cases,1

and some less common environmental factors, its etiology is largely unknown. According to the World Cancer
Research Fund, in 2020, there were 2,206,771 diagnosed cases of lung cancer worldwide, with a higher prevalence
in men.2 Non-small cell lung cancer (NSCLC) represents the majority of lung cancer cases, encompassing
approximately 80% to 85% of all new diagnoses, while small cell lung cancer (SCLC) accounts for the remaining
10% to 15% of cases.3
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Lung cancer is diagnosed based on biopsies, surgical resection specimens, or cytology. Standard work-up
of histopathological lung cancer samples includes immunohistochemistry (IHC) staining, which allows the visu-
alization of specific proteins expressed on cellular structures in the sample. Expert pathologists then analyze
these IHC-stained slides, concentrating on cellular patterns and potential indications of malignant cells.4 This
thorough assessment is critical to confirm the diagnosis, determine the subtype, and evaluate prognostic and
predictive markers that can guide the therapy. Currently, relevant markers include the immune checkpoint pro-
tein PD-L1. In addition to markers expressed in tumor cells, current biomarker strategies increasingly consider
patterns of immune cell infiltration that reflect the patient’s response to the tumor and may have additional
potential for biomarker discovery.

Integrating advanced image processing and analysis techniques has the potential to make the pathology
workflow more efficient, increase accuracy, and discover relevant image features beyond the limits of human
perception. However, there are significant challenges in employing supervised learning methods for this purpose.
One major hurdle is the need for large amounts of annotated data, which demands considerable time and expertise
from pathologists. Moreover, variations in slide preparation and staining can make the curation of consistent
training data difficult.

Unsupervised learning, which seeks patterns in data without pre-existing labels, offers a unique advantage
in medical imaging scenarios where extensive labeled datasets are challenging to obtain. In the context of non-
small cell lung cancer, one relevant task is the evaluation of tumor-, stroma-, and immune cells. Computational
methods are now at the forefront of these evaluations. For instance, before lung cancer biopsies are subjected
to Next-Generation Sequencing (NGS) analyses, as part of ”molecular pathology”, there is a need to precisely
quantify the tumor cell content. Furthermore, the identification and scoring of immune cells, especially in the
context of the expression of immune checkpoint markers in specific tissue regions or cell populations, has been
increasingly recognized.

This paper explores the use of unsupervised learning to detect and cluster different tissue types in IHC-
stained images. By employing Self-Organizing Maps (SOM) and deep feature extraction techniques, we adopted
methods originally developed for analysis of radiology images (”radiomics”) for our aim to enhance the analysis
of IHC-stained lung cancer samples.

2. RELATED WORKS

In the field of computational pathology, various methodologies have been explored by researchers. Coundray
et al.5 classified NSCLC and predicted mutations based on histological images. Their process begins with
segmenting the digital histological images, which are obtained from samples stained with (H&E), into smaller
sections or ’tiles’. Non-relevant background tiles are then filtered out. The remaining relevant images serve as
training data for an Inception V3 Convolutional Neural Network (CNN). This network is employed to create
a classification model capable of identifying coherent structures within the samples. The method was able to
detect cancerous structures accurately.

Similarly, Graham et al.6 focused on detecting lung cancer in histology images using patch-level summary
statistics. Their approach begins with the extraction of patches from H&E stained samples. These patches
are then utilized to train a ResNet-32 CNN. The method is designed to classify identified structures within the
samples as non-diagnostic, lung adenocarcinoma, or lung squamous cell carcinoma.

In 2021, Carrillo-Perez et al.7 introduced a method that combines RNA-Seq probability data with histology
images for the detection of non-small cell lung cancer. This approach differs from others in the literature by
integrating omics and histology data, aiming to provide a more comprehensive analysis of the material and
thereby achieving a refined classification accuracy. The process involves dividing the sample into tiles, which are
then used for training a ResNet-18 CNN. Additionally, they train a support vector machine (SVM) to identify
patterns within the RNA-Seq data. The probabilities generated by each classifier are subsequently fused, leading
to the final prediction for the sample. The authors reported that this combined method demonstrates improved
efficiency when compared to classifications using whole slide images (WSI) or RNA-Seq data alone.

Li et al.8 focused on the identification of specific subtypes, including adenosquamous carcinoma (ASC), lung
squamous cell carcinoma (LUSC), and SCLC. Utilizing a dataset of 121 WSIs, they applied the Relief algorithm
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to extract relevant features from these images. These extracted features were then used to train an SVM for the
classification of the mentioned subtypes. Their results indicated varying levels of classification accuracy: they
achieved a 73.91% accuracy rate in distinguishing between LUSC and ASC, an 83.91% accuracy rate for LUSC
and SCLC classification, and a 73.67% accuracy rate in differentiating between ASC and SCLC.

Baranwal et al.9 conducted an evaluation of various Deep CNNs architectures, including VGG19, ResNet-50,
Inception-ResNet, and DenseNet-121, to classify histopathology images of lung cancer. The initial phase of
their research involved preprocessing the dataset, which included steps such as data preparation, normalization,
cleaning, and formatting. After that, the histopathology images were processed through the aforementioned
CNN architectures. Among these, DenseNet-121 demonstrated superior performance. It achieved an overall
accuracy of 99.08%, alongside a sensitivity rate of 99.08%.

In contrast with existing research in the field, our study identifies a notable gap in the exploration of different
staining techniques, particularly in the context of unsupervised methods. Immunohistochemistry staining, which
we focus on, offers distinct features that could provide new insights into the problem. Our work, therefore, makes
significant contributions in several key areas:

• Development of an Unsupervised Methodology: Our paper introduces an unsupervised method
designed to cluster various structures within the samples. This approach represents a shift from the more
commonly used supervised methods in histological image analysis.

• Interpretability through Categorization: In our approach, each cluster within the samples is cat-
egorized by a pathologist. This process enhances the understanding and interpretability of the various
structures present in the samples.

3. METHODS

The methodology of our study was structured around a four-step process, encompassing patch generation (Fig.
1 – Step 1), radiomic feature extraction (Fig. 1 – Step 2), feature normalization (Fig. 1 – Step 3), and clustering
using self-organizing maps (SOM) (Fig. 1 – Step 4). Initially, patches of size 512x512 pixels were generated from
WSI. This stage included the identification and removal of background elements from the images. Subsequently,
radiomic features were extracted for each patch and systematically catalogued in a CSV file, along with their
corresponding sample identification, to maintain an accurate record of the origin of each patch. This step was
critical for ensuring reliable sample tracking during the analysis. The study design involved using different
samples for training and evaluating the clusters. The extracted features were then normalized using the MinMax
method. The final stage involved training a SOM algorithm to create clusters. This was executed with varying
configurations, resulting in maps of 2x2, 3x3, and 4x4 dimensions, corresponding to 4, 9, and 16 clusters,
respectively. The subsequent sections provide a detailed description of each of these steps.

Figure 1. Method overview from whole slide image (WSI) using self-organizing Maps (SOM) to output.

3.1 Data Acquisition and Preprocessing

The dataset used in this study was obtained from the Hannover Medical School and encompassed 12 WSIs from a
previously published study.10 These slides presented a wide variety of tissue types, including both cancerous and
adjacent lung and pleural regions, as well as multiple sub-types (i.e., squamous and adenocarcinoma) NSCLC.

To prepare the tissue samples for imaging, each specimen was sliced into sections measuring 3 µm in thickness.
Following this, the sections underwent an automated IHC staining protocol (Ventana Benchmark XT, Roche
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Diagnostics, Tucson, AZ). Through this staining procedure, T-cells (CD3, company) were distinctly colored
brown via the use of 3,3 - Diaminobenzidine (DAB), while B-cells (CD20) were rendered in red using Neufuchsin.
Other cell structures, such as cell nuclei, were highlighted using a hematoxylin counterstain that is not specific
for a particular cell lineage.

The WSIs were captured using a scanner (Aperio AT2, Leica Microsystems, Wetzlar, Germany) at a resolution
of 0.253 µm/pixel, equivalent to a 40x magnification, ensuring the detailed representation of cellular structures
and interactions within the presented tissue samples.

Following the acquisition of the WSIs, we extracted patches of dimensions 512×512 pixels (Fig. 2). Utilizing
the OpenSlide for Python framework, we slid over the entire WSI, cropped and isolated individual patches.
To ensure quality, each patch underwent a background check. Background regions in WSIs often manifest as
near-uniform grayscale, typically with average pixel intensities exceeding 200. By converting patches to grayscale
and applying a threshold of 200 for average intensity value, we were able to effectively identify and exclude such
background patches from subsequent analyses.

Figure 2. Example of patches extracted from WSI.

3.2 Feature Extraction and Normalization

Radiomics stands for the extraction of a large number of image features from radiographic images, turning them
into mineable data.11 The idea behind radiomics is to utilize the comprehensive quantitative details embedded
in medical images, which might often be imperceptible to the human eye. The data-driven nature of radiomics
allows it to capture subtle intratumoral heterogeneity which can be important for diagnosis, prognosis, and
prediction of treatment response.12 With the surge in computational power and the increased sophistication of
machine learning algorithms, radiomics is positioned at the forefront of leveraging medical imaging for precision
medicine.

Our feature extraction process followed the principles of radiomics. Using the PyRadiomics library,13 we
extracted a detailed set of features from our patches. This included nine shape 2D features to capture the
structural intricacies, 18 first order statistics detailing basic pixel value properties, 22 features from the gray
level co-occurrence matrix (GLCM) representing textural properties, 16 from the gray level run length matrix
(GLRLM) identifying colinear voxels with consistent gray levels, 16 from the neighbouring gray tone difference
matrix (NGTDM) highlighting gray level differences, and 14 from the gray level dependence matrix (GLDM)
measuring gray level dependencies. In total, 95 features were extracted from each patch and were systematically
stored in a patient-based CSV file.

To ensure the features were on a consistent scale, we applied MinMax normalization to our dataset. This
normalization technique scales each feature to a specified range, between zero and one. This standardized the
feature range and improved the convergence speed of algorithms that rely on gradient computation.

3.3 Clustering Methodology

Given the high dimensionality of our dataset, characterized by 95 radiomic features extracted from each patch,
we chose the SOM method for its proven capability in effectively handling high-dimensional data spaces. We
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configured the SOM with 95 neurons in the input layer, to directly correspond with the number of features. The
chosen map sizes were 2x2 and 3x3 configurations, organizing the patches into distinct clusters of four and nine,
respectively. It is imperative to note that global clustering can sometimes lead to scenarios where not all clusters
are represented in the final images. We analyzed both configurations to gain a comprehensive understanding of
the clustering patterns, reinforcing the suitability of the SOM approach for this research.

4. EXPERIMENTS

Our experiments were conducted on a server equipped with dual Intel Xeon Silver processors, 192 GB of DDR4
RAM, and two NVIDIA RTX A4000 graphics cards, running on the Linux Ubuntu 22.04 operating system. The
programming work was carried out using Python 3.10. For the implementation and testing of the SOM, we
utilized the MiniSom framework14 within the Python environment. Additionally, OpenSlide was employed for
loading the WSI, OpenCV version 4 for patch generation and background removal, and PyRadiomics 3.1.0 for
feature extraction.

We performed grouped k-fold cross-validation, k = 6. This cross-validation scheme was chosen to ensure that
the validation data from each fold always consisted of WSIs from distinct patients. This setup was essential,
given the individual variability between patients’ samples. Therefore, for each fold, 10 patients were used for
training, while the samples from the remaining two patients were used for validation. To prevent any class
imbalance, the number of patches in the training set was balanced using random under-sampling. After training
each fold, the clustering model was then applied to the validation data to generate the resultant cluster images.

The quantization error was computed for each clustering model. For each data point, the quantization error
was the distance between that data point and the weight vector of its best matching unit (BMU) in the SOM. A
smaller quantization error generally indicates that the map represents the data more accurately. For biological
interpretation of the clusters, a pathologist analyzed how many patches of a certain cluster belonged to a tumor,
healthy, or immune infiltration regions.

5. RESULTS

As previously mentioned, the configuration for the SOM in our study was established with dimensions of 2x2,
3x3, and 4x4, consequently generating 4, 9, and 16 clusters, respectively. Figure 5 illustrates examples of the
maps generated by the algorithm using our training data. These maps are subsequently utilized to cluster the
data based on the extracted radiomic features. Each cluster in the SOM represents a group of patches with
similar characteristics. The algorithm organizes these patches spatially on the map, where patches with more
similar feature profiles are placed closer together. This spatial arrangement allows for the intuitive visualization
and interpretation of the data’s inherent patterns and relationships. Specifically, by clustering the radiomic
features, we can discern underlying structures and relationships that are not immediately apparent from the
images alone. This approach facilitates a deeper understanding of the complex data characteristics and enables
us to explore potential biomarkers or correlations between the radiomic feature clusters and clinical outcomes.

(a) (b) (c)

Figure 3. Clustering 2x2, 3x3, and 4x4 maps generated on our training data.
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In the clustering experiments with four classes, the quantization error across the six folds showcased a consis-
tency, ranging between 0.5748 and 0.6364. This variability, though relatively tight, indicated subtle variations in
clustering precision across different training and validation sets. Specifically, the third fold exhibited the highest
quantization error at 0.6364, while the first fold showed the least error at 0.5748.

The experiments using nine classes, a discernible reduction in quantization error was observed, suggesting a
potentially improved representation capability of the clustering model in this setting. The quantization error in
this configuration spanned from 0.4447 to 0.5236. The third fold emerged as the best-performing set, recording
the lowest quantization error at 0.4447, while the fifth fold presented the highest at 0.5236.

6. DISCUSSION

The clinical validation of our clustering approach presented a similar aspect as the computational insights from
the quantization error metrics. In the four-cluster model, there was a noted overlap of cellular phenotypes,
with both benign and malignant cell types manifesting within the same cluster. Such co-occurrences introduce
potential ambiguities in diagnostic procedures, underscoring the necessity for methodological refinement.

In the nine-cluster model, the results demonstrated significant promise. The increased number of clusters
enabled a better differentiation of distinct tissue types. Through this model, a pathologist was able to adeptly
identify a range of tissue types, including tumor tissues and adjacent non-neoplastic tissues such as the lung,
lung inflammation, lymphoid tissues, pleural tissue, and connective and fatty tissues. For example, the potential
biological significance for cluster number two was healthy lung tissue. Clusters 3, 4, and 5 were predominantly
characterized as tumor cells. Cluster 6 predominantly represented the surrounding stroma, while Cluster 7
included both the surrounding and intratumoral stroma. Cluster 8 was characterized by immune cells predomi-
nantly infiltrating the stroma, and cluster 9 was quite indicative of immune cells within pre-existing newly-formed
lymphoid tissue. Figure 4 presents the clustering results for a WSI, comparing maps derived from both 4-cluster
and 9-cluster configurations alongside the original IHC image.

Figure 4. Comparative visualization of immunohistochemistry (IHC)-stained lung tissue. From left to right: original IHC
image, clustering maps for four and nine clusters, and overlays of the IHC image with respective clustering results.

Given the high demand for high-quality image annotations in the field of machine learning - based biomarker
analysis in translational biomarker research, our method holds substantial promise to accelerate current analysis
workflows. The unsupervised categorization into distinct clusters can support the process of image annotation.
In addion, there is potential for novel insights into tumor heterogeieity

Besides, the use of IHC staining in our method presents advantages over traditional H&E analysis, marking
a significant novelty in our approach. IHC staining allows for the specific identification and visualization of
certain proteins and antigens within tissue sections, providing a more targeted and detailed understanding of
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the tumor microenvironment. This specificity is particularly beneficial in the context of lung cancer, where
the expression of certain proteins can be indicative of tumor type, prognosis, and potential therapeutic targets.
Unlike H&E staining, which primarily reveals morphological features, IHC staining can highlight molecular
characteristics, offering deeper insights into the biological behavior of cancer cells. Additionally, IHC is invaluable
in distinguishing between different types of lung cancer subtypes, which can be challenging with H&E staining
alone.

The use of an unsupervised methodology in our research presents significant advantages, particularly in the
context of analyzing complex histopathology data. One of the primary benefits is the ability to discover hidden
patterns and relationships within the data without the need for pre-labeled training sets. This aspect is especially
crucial in the field of oncology, where the variability and subtlety of cancerous tissues can be large, and predefined
categories may not capture all relevant features. Unsupervised learning algorithms, such as the SOM used in
our study, are adept at identifying inherent structures and clusters within the data, leading to potentially novel
insights about tumor characteristics and behavior.

Furthermore, additional studies are essential to enhance the significance of the clusters identified in our
research. The findings, especially the superior performance of the 16-cluster configuration using SOM, highlight
the need for further exploration into combining clusters with overlapping or redundant characteristics. The
increased number of clusters, while effective in categorizing radiomic features, introduces the challenge of potential
overlap and redundancy. Future research should, therefore, aim to develop methodologies for merging clusters
that represent similar aspects of lung cancer histopathology.

7. CONCLUSION

In this study, unsupervised learning techniques were applied to segment NSCLC and lung tissue samples. The
nine-cluster configuration, using SOM, showed the potential to effectively differentiate key histopathological
features within WSIs. The clusters were associated with neoplastic regions, stromal areas, and specific patterns
of immune cell infiltration. This approach suggests the potential of unsupervised learning to overcome the lack
of high-quality annotations and to enhance tissue segmentation and classification in digital pathology.
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