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Task design for crowdsourced 
glioma cell annotation 
in microscopy images
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Thomas Skripuletz 3, Majid Esmaeilzadeh 4, Joachim K. Krauss 4, Christian Hartmann 1, 
Thomas M. Deserno 2 & Friedrich Feuerhake 1,5*

Crowdsourcing has been used in computational pathology to generate cell and cell nuclei annotations 
for machine learning. Herein, we broaden its scope to the previously unsolved challenging task of 
glioma cell detection. This requires multiplexed immunofluorescence microscopy due to diffuse 
invasiveness and exceptional similarity between glioma cells and reactive astrocytes. In four 
pilot experiments, we iteratively developed a task design enabling high-quality annotations by 
crowdworkers on Amazon Mechanical Turk. We applied majority or weighted vote and validated 
them against ground truth in the final setting. On the base of a YOLO convolutional neural network 
architecture, we used these consensus labels for training with different image representations 
regarding colors, intensities, and immmunohistochemical marker combinations. A crowd of 712 
workers defined aggregated point annotations in 235 images with an average F

1
 score of 0.627 for 

majority vote. The networks resulted in acceptable F
1
 scores up to 0.69 for YOLOv8 on average and 

indicated first evidence for transferability to images lacking tumor markers, especially in IDH-wildtype 
glioblastoma. Our work confirms feasibility of crowdsourcing to generate labels suitable for training of 
machine learning tools in the challenging and clinically relevant use case of glioma microenvironment.

Crowdsourcing addresses the urgent need for training data in machine learning (ML), as it has been shown that 
crowdlabels can be feasible to train convolutional neural networks (CNNs)1–3. It considers the collaborative solu-
tion of problems by several workers with heterogeneous domain knowledge, in the format of participatory online 
activity4. In this constellation, neither the contributors’ educational backgrounds, nor their environmental condi-
tions are known, as there is no direct contact to the crowd. Therefore, strategies for successful task design include 
a focus on simple tasks and qualification phases with performance tests5. Crowd instructions should use simple 
English without complex scientific terms and provide illustrated or animated explanations in the qualification 
phase. Further, tasks should allow timely completion, preferably within less than 10 min6. It is recommendable 
to test task design in pilot studies to prove its reliability. In the case of paid contributions, compensation schemes 
can influence performance7 and thus may have impact on quality of results.

Crowdsourcing has been widely used in cancer research8–10. In microscopic images, crowds were asked for 
scoring of unambiguously stained cells or annotation of cell nuclei11–13, representing tasks of low complexity. 
Expanding crowdsourcing towards more complex problems requires several considerations. First, semantic 
content and visual appearance have a strong influence on how crowdworkers perceive task complexity14. Sec-
ondly, complexity strongly increases with higher number of classes; e.g., school pupils annotated cells in a 
competitive format with levels from “mild” (annotating a single cell type) step-wise adding further cell types 
up to “supercharger” level, with decreasing accuracy in higher levels15. A third type of task complexity concerns 
required skills for image annotation, such as delineation of anatomical or pathologically altered structures. 
This typically requires specific strategies to achieve satisfying results including “educated” crowds with prior 
knowledge (e.g., medical students) and/or an advanced work setting, such as direct contact between requester 
and crowdworker16–18.
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Accurate cell detection is critical to analyze brain tumor microenvironments19. However, it is difficult to dis-
tinguish reactive astrocytes (cells from central nervous system) from almost identically-looking tumor (glioma) 
cells in this use case. Tumor cells can resemble their normal counterparts (astrocyte-like differentiation) and 
non-malignant astrocytes may assume phenotypes resembling malignant cells (reactive astrocytosis)20. This is in 
contrast to, for example, solid epithelial tumors, where de-differentiated malignant cells may share some morpho-
logical features with the tissue of origin (e.g., gland-like structures), but pre-existing surrounding tissues do not 
significantly change their characteristics towards a malignant appearance. In the CNS, reactive astrocytosis can 
acquire morphological features resembling malignant giant cells, even in inflammatory conditions like multiple 
sclerosis21. Given this exceptional overlap between pre-existing reactive and truly malignant components of 
glioma microenvironment, the combination of immunohistochemical markers and the size and quality of training 
data for ML are especially important in this use case. In the context of crowdsourcing, this shifts cell labeling to 
a complex challenge, with the need to integrate information from multiple color channels with morphological 
features. The required markers can be stained and visualized in so-called multiplex immunofluorescence images 
(MSIs)22. MSI s in cancer research provide the advantage of combining in-depth information about cellular sub-
types by several markers with spatial information on cell level. This allows distance metrics and neighborhood 
analyses to study possible cell-cell-interactions23. In these fluorescence images 4 ′ ,6-Diamidin-2-phenylindol 
(DAPI) is widely used to stain nuclei of all cells and therefore used in segmentation algorithms. Deep learning 
is frequently used for cell detection in MSIs, e.g., to study co-registered slides24 or spatial relations25. Greenwald 
et al. introduced a cell phenotyping iteratively trained on crowdsourced and expert-corrected data for several cell 
types in multiple tumor and tissue types26. However, this study lacks brain tumors and therefore focuses on cell 
types that could be easily recognized based on staining. In brain context, α-thalassemia/mental retardation syn-
drome X-linked protein (ATRX) is a nuclear marker in non-neoplastic cells, but lost in the tumor cells of many 
Isocitrate dehydrogenase 1 (IDH1)-mutated astrocytomas and glial fibrillary acidic protein (GFAP) is expressed 
by cells with astrocytic origin27. Using these markers, tumor cells can be distinguished from astrocytes. Whereas 
tumor cell nuclei are negative for ATRX and possibly surrounded by GFAP, the nuclei of astrocytes are positive for 
ATRX and also surrounded by GFAP. Thereby, astrocytes show mostly a star shaped character. The morphology 
is also important to distinguish these two cell types from others like neurons with larger ATRX-positive nuclei.

In this work, we developed a task design for advanced cell annotations in MSIs of IDH1-mutated high-grade 
astrocytoma for paid crowds. Addressing the above mentioned complexity and quality assurance, we analyzed 
the image size, crowd size, and task description in pilot experiments. In order to evaluate the reliability of crowd 
annotations based on the developed task design, we used them for training YOLO-based CNNs and tested them 
against truth provided by experts. We further considered the transfer to IDH-wildtype glioblastoma without 
ATRX-loss. Our major contributions are

•	 distinguishing glioma cells from similar astrocytes based on both morphology and staining,
•	 developing an iteratively optimized task design for acquisition of feasible annotations,
•	 training a CNN transferable to different glioma types, and thereby
•	 overcoming annotation bottleneck in glioma microenvironment studies.

Related work
Since the first formal description of crowdsourcing in 190728, traditional crowdsourcing methods are applied to 
solve specific tasks with the main purpose to directly use the crowdlabels. Therefore, quality control measures like 
confidence scores or scattered gold standard are required to eliminate noisy labels16. As pathology is a domain 
characterized by highly specialized medical expertise, most publications focus on showing reliability8. A repre-
sentative example for crowdsourcing applications showed feasibility by comparing the crowd against experts for 
a small subset in the context of estrogen receptor scoring in breast cancer, requiring thresholding and distinction 
of relevant cancer cells from normal gland cells, immune cells, or artifacts29. Individual examples like these, in 
line with a growing body of evidence beyond pathology, as recently reviewed by Zhang et al., support a major 
role of platforms, adapted task design, instructions, fairness of compensation/rewards, and motivational aspects 
on the solver/participant side as emerging research topics for crowdsourcing in knowledge-intensive tasks30.

Recent developments to further increase scalability aim at integrating crowdlabels into machine learning 
frameworks to improve performance of networks. Examples include segmentation of cell nuclei with a VGG16 
trained on crowdlabels3, combination of a network trained on crowdlabels with an network based on experts2, 
or labeling of mitoses predicted by a CNN trained on expert annotations, with subsequent use of expectation-
maximization-based aggregated crowdlabels to fine-tune the network1. Alternatively, Greenwald et al. propose an 
iterative approach between training, crowdsourced correction, expert correction, and re-training26. In contrast, 
answer aggregation is commonly used to reduce the influence of noisy labels. For example, label augmented 
and weighted majority voting (LAWMV), in which each label is weighted based on the label of close data set 
instances, is shown to outperform other methods like majority vote31. Several approaches are based on expecta-
tion-maximization32, e.g., an additional layer, called “crowd layer”, was included by Rodrigues et al. to directly 
utilize all individual crowdlabels using backpropagation33. Wei et al. propose a novel U-Net, which connect all 
labels from all annotators and handle them as union34. Detailed comparisons between label separation and dif-
ferent aggregation methods showed that among other things task design and crowd size have a strong impact 
on the performance of method35.

Related work in the context of multiplexed stainings is largely focused on staining information only, not 
primarily considering morphological or contextual aspects. Several work focus on marker intensity thresholds, 
e.g., manually selected by experts and then used to train a classifier19. Other methods include detection of lym-
phocytes or macrophages using U-Net and YOLOv2 as transfer learning approach from brightfield images25. 
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Bounding box detection of astrocytes and other normal brain cell populations could be solved by a Faster RCNN 
and phenotyping them based on a Capsule Network24. However, the appearance of cells in malignant altered 
tissue is completely changed, such that phenotyping purely based on staining information is often not satisfying, 
especially to distinguish between reactive astrocytes and tumor cells.

Methods
We performed four pilot experiments to iteratively adopt the task design. Based on the final task design, further 
experiments provided crowdsourced labels for training. We considered different color schemes for the CNNs.

Crowdsourcing
Setting
Crowdworkers were asked to click on certain cells in MSIs on Amazon Mechanical Turk (AMT)36. Therefore, 
we extensively revised a website, which was developed for crowdsourced delineation in human eyes37. On this 
website, the basic concept (task description, qualification phase with performance test) we needed was already 
implemented: Crowdworker can navigate with next respectively previous button or go directly back to the task 
description at any time. Workers were asked to set point annotations by left-clicking for only one class. These 
points could be removed with right-clicking or short key. At least one point had to be set per image, otherwise 
the image was displayed again later on. Furthermore, workers could check their annotations in a mask with a 
transparent image overlay. The order of the images of one task could be different between crowdworkers, since 
the image that was edited least often was displayed first. Only the last image was the same for all workers as it was 
used for quality control (see “Answer aggregation” section). If they were not finished after 45 minutes, the task 
was terminated automatically. Obviously, the number of labels needed to train a CNN is too large for a single 
worker. At the same time, a minimum number of workers per MSI is necessary for satisfying quality. Therefore, 
we divided the entire AMT crowd of 712 workers into subgroups. Each subgroup annotated other MSIs. We 
uploaded 235 MSIs (74 for tumor tasks and 163 for astrocyte tasks) to AMT. Due to task complexity and corre-
spondingly required enlarged tutorial and qualification phase, a task was designed for 15–20 min and paid with 
$2. To reduce the risk of technical errors, we provided them at different days. Following the recommendation to 
divide the task into smaller ones38, we split the job in two independent tasks for astrocytes and tumor cells. Due 
to the common imbalance that many more tumor cells than astrocytes occur, the crowd should annotate more 
MSIs for the astrocyte task. The proportion of both cell types differs depending on the region within the glioma. 
Thus, we used different MSIs for both tasks. For crowdsourcing, the MSIs were cut into tiles with an overlap 
of 30 pixels to ensure that cells at the boarder were entirely displayed. In postprocessing, the crowdlabels were 
stitched together to the size of the MSI.

Task design
The instructions contained plain text with task description and its medical relevance intended to increase work-
ers’ motivation. The different cell types were explained by example images (14 for astrocytes and 9 for tumors 
showing some representative cells each) together with the same image in which the target cells were delineated. 
Subsequently, an obligatory qualification phase followed which comprised three MSI-tiles, which had to be 
annotated with a positive predictive value (PPV, precision) of at least 0.8 before being able to proceed to the 
main task. To increase clarity, we reduced the markers to the most essential ones (referred to as Var1): GFAP in 
blue, ATRX in red, and DAPI in white; i.e., the crowd was asked to detect astrocytes based on red nuclei with a 
mostly star-shaped blue surrounding and tumor cells based on white nuclei. We chose this scheme by consider-
ing common color weaknesses. In clinical routine, a marker for IDH1 (R132H) is commonly used to visualize 
the tumor cells. We also stained this marker, but decided to not include its channel for crowdsourcing due to the 
following reasons. An additional color would further increase the complexity. Especially, the overlap with GFAP 
requires tools to switch markers on and off, in which an annotation becomes difficult for non-experts. Therefore, 
we focus on ATRX as a nuclear marker.

Pilot experiments
To reveal the optimal tile size (PE1), volunteers consecutively annotated the same MSI twice, once with small 
tiles (MSI cut into 48 tiles) and once with large tiles (cut into four tiles). Since the astrocyte density can be low, 
tiles without any astrocyte can occur e.g., in the tumor core. Low densities could lead to false positives as workers 
need to label at least one cell for technical reasons and probably expect several target cells in an image. Therefore, 
we selected for PE1 MSIs with at least 22 astrocytes. To control the possible influence on the second annotations 
by remembering the first annotation, we asked the workers in a third step immediately after both annotations 
to label a couple of images. Shown were a mixture of 10 images, five from the annotation set and five new ones. 
The workers should select whether they know this image or not. An expert did the same, but additionally re-
labeled all cells with discrepancies. Further focus was on (i) a suitable crowd size (PE2), (ii) the time required to 
perform a task (PE3), and (iii) presentation of the task to enable fast understanding (PE4). We evaluated feedback 
based on questionnaires or direct contact in PE1–3 or analyzed the received crowdlabels in PE1, PE2, and PE4.

Answer aggregation
We aggregated all individual labels using majority vote (MV) and weighted vote (WV). Besides the tiles, all 
workers should edit a so-called ground truth-image (518 × 438 pixels for tumor task with 38 tumor cells, 878 × 
940 pixels for astrocyte task with 7 astrocytes), based on which they were compared with an expert. This image 
was shown as last one of the task and the special meaning of it was unknown for the workers. For WV, a user’s 
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weight was 1.00 if he correctly labeled all cells in the ground truth-image. A value of 0.20 was subtracted for each 
wrong cell with a minimum value of 0.05 for the final weight.

Feasibility
We measured Fleiss’ κ to assess the inter-rater reliability between non-experts and experts. As a benchmark, three 
experts familiarized themselves with the staining on four MSIs, aligned each other in a consensus meeting, and 
afterwards independently annotated four new MSIs.

The crowd’s quality was evaluated on the above mentioned ground truth-image and further, so-called ground 
truth-tiles with expert labels (five tiles for tumor task of 518 × 438 pixels with 96 tumor cells, four tiles for astro-
cyte task of 940 × 878 pixels with 23 astrocytes) located in the center of MSIs scattered over the entire task. For 
this, true positives, false positives, and false negatives based on point-annotations were counted together in all 
ground truth-tiles to measure the true positive rate (TPR, sensitivity, recall), the PPV, and the F1 score (Dice’s 
coefficient) as commonly defined.

Machine learning
We used YOLO39, a widely applied architecture40 in version YOLOv5 and the currently latest version YOLOv841. 
These models were pretrained on the Common Objects in Context data set42. For comparison, we applied a Faster 
RCNN architecture43. The bounding boxes for the training were automatically extracted from the point-based 
labels in a two-tiered approach. First, the image background was removed based on the lower intensity of the 
background-pixel as observed in the corresponding histogram. Secondly, the outlines of a cell were segmented 
by a flood-fill algorithm, expanding the labeled nuclei by either rejecting or including neighboring pixels based 
on contrast and color. Since astrocytes and tumor cells were labeled in different images, we generated training 
images that simultaneously marked both cell types in one image. Two preliminary models, each trained on one 
cell type, were utilized to generate the consolidated training data. We used 1000 epochs for training with at batch 
size of 7 performed on GPU Nvidia RTX 3080Ti in about 4 h per variant. We used a confidence threshold of 0.25 
for testing and performed it on a CPU with 64 GB RAM. An estimation of the complexity of the single steps in 
the process is given in Supplementary Table 1.

We considered nine variants for ML training (Fig. 1): Var1–Var4 included ATRX, GFAP, and DAPI in differ-
ent colors or intensities. Var5–Var6 were reduced to GFAP and DAPI channels only. Lacking the information on 
ATRX expression, this resembles the situation in IDH1 wildtype glioblastoma, where ATRX expression cannot be 
part of cell classification. Var7–9 further added markers for cell types out of interest. Thereby, Var9 contained all 
stained markers. We trained and validated nine CNNs with consolidated data based on the aggregated crowdla-
bels (27 of the MSIs were used as validation set). The independent test set included expert annotations of 43 MSIs. 
It contained 11,571 annotated tumor cells and 322 astrocytes. As the number of cells in a single MSI could be 
small, we combined all cells over the entire test set to measure TPR, PPV, and F1 score. For these measurements, 
we used an intersection over union of at least 0.35 based on the predicted and ground truth bounding boxes. In 
addition, we measured the average precision (AP50, AP@[0.5 : 0.05 : 0.95]).

Material
The data set contained 59 brain tumor specimens from 43 patients. Thirty-three of these patients were considered 
for crowdsourcing and 19 patients in the ML test set. Paraffin sections were stained with the above mentioned 
markers (DAPI, ATRX, GFAP, IDH1) and additional markers for macrophages (MS4A4A, CD68, CD206), T-cells 
(CD3), and vessels (CD34). In the scanned slides, we randomly selected regions ranging form tumor core to 
adjacent normal tissue. These regions were multispectral color deconvoluted at a resolution of 0.25 µm/pixel 
(Vectra Polaris, Akoya Biosciences), resulting in MSIs of 1860 × 1396 pixels. To reduce bias, both data sets, the 
crowdsourcing and the ML test set cover different staining batches and different regions within the tissue. We 
used 298 MSIs in total. The use of anonymized tissue samples for digital pathology analyses was approved by the 
institutional review board of Hannover Medical School in accordance with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards (approval number 6960-2015 and 707-2013). The approved 
workflow includes obtaining informed consent from all subjects contributing anonymized tissue samples.

Results
First, we present the results of the pilot experiments and explain how this led to the final task design. Then, we 
describe the measured reliability of crowds in further experiments and the validation of the nine CNNs trained 
on these crowdlabels.

Crowdsourcing
Pilot experiments
In order to account for task complexity, we used an iterative design concept composed of four consecutive pilot 
experiments (PE1–PE4; Table 1). In experiment PE1, we investigated the tile size of the MSIs. PE1 showed no 
clear preference of the users based on a questionnaire addressing this aspect and resulted in a MV-F1 score of 
0.78 for smaller and of 0.70 for larger tiles, supporting an advantage of smaller tiles. Since cell density tends to 
be higher for tumor cells than for astrocytes, we used a larger tile size for astrocyte (MSIs cut into four tiles) and 
an intermediate size (MSIs cut into 16 tiles) for tumor tasks. This helped to reduce the risk of false positives due 
to low cell densities. We also tested the possibility of a bias from repeatedly annotating identical images in an 
experiment. Thereby, most of the workers were uncertain with their decision based on questionnaire. They cor-
rectly predicted whether they saw this image before for 2.1 out of five known and 3.4 out of five unknown images 
on average. That showed crowdworkers and experts did not recognize already annotated images.
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In the second iteration (PE2), we optimized comprehensibility of the crowd instructions and analyzed the 
influence of the crowd size on the quality of the aggregated solution. For the instructions, a questionnaire 
showed that (1) the motivation of about 50% of the school students increased by the explanation of the medical 
relevance, (2) tool usability was important for motivation, and (3) the task definition needed adjustments. For 
about 80% of the students, it was clear what the requested activity was, whereas the others struggled with the 
task, particularly with the aspect of similarity of cells. This systematic assessment resulted in minor adoptions 
of the example images, including, additional representation of the same image showing dots in addition to the 
outlines as we observed that some participants placed points around the cells to mimic their borders instead 
of clicking at the cell nuclei. A further observation identified in PE2 was that some contributors misclassified 
pre-existing cells with the same marker-constellation, yet clearly different morphology of cells, such as neurons 
or components of blood vessels. The obvious commonality with astrocytes (the red nuclear ATRX signal), but 

Table 1.   We iteratively established the task design to ensure the quality of crowd annotations. Therefore, we 
performed pilot experiments with volunteers, 10th grade students of a German cooperative comprehensive 
school, and a paid crowd (in this Table).

Pilot experiment Crowd Target parameter Number of MSIs

PE1 18 volunteers Tile size 13

PE2 25 high school students Crowd size, instruction 4

PE3 10 volunteers Number of MSIs, instruction 4

PE4 35 Amazon Mechanical Turk workers Instruction 8

a b

c

Var1 Var2 Var3

Var4 Var5 Var6

Var7 Var8 Var9

Var1

Var5

Var9

DAPI GFAP ATRX CD3 CD68/CD206/MS4A4A IDH1 CD34 Intensities [%]
Var1 white azure red - - - - 200
Var2 white azure red - - - - 100
Var3 green blue red - - - - 100
Var4 green blue red - - - - 200
Var5 green red - - - - - 100
Var6 green red - - - - - 200
Var7 white blue - red green - - 100
Var8 white blue - red green - - 100
Var9 white blue green red yellow magenta cyan 100

Figure 1.   Image representation for machine learning variants. (a) Smaller tile. (b) Larger tile. Var1–4: markers 
DAPI, ATRX, and GFAP in different colors and intensities. Var5–6: DAPI and GFAP (but, without ATRX). 
Var7–9: not required markers added. (c) overview of the colors and intensities.
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otherwise fundamentally different composition (cell shape, position, or size) required additional explanations. 
Therefore, we included a figure depicting important cell features to call crowdworker’s attention to difficulties 
of the astrocyte task (Fig. 2c), displayed directly after the qualification phase. As for the optimal crowd size, PE2 
also showed that aggregating the annotations of more than 6–7 participants did not further increase the accuracy. 
This was in agreement with own published results from previous experiments with a crowd of medical students16. 
Based on these results and to reduce the risk of bias due to low performers by introducing a small “reserve”, we 
used a crowd size of at least ten contributors.

PE3 was necessary to determine an suitable number of MSIs given that task complexity required advanced 
crowd instructions on one side, while on the other hand published recommendations clearly suggested to conse-
quently limit the time for task duration. In PE3, we observed an approximate processing time of 4 min per MSI 
(astrocyte annotation) respectively 8 min per MSI (tumor cell annotation). Based on this result, we included four 
MSIs for the astrocyte task (i.e. in total 16 larger tiles) and two MSIs for tumor task (i.e. in total 32 intermediate 
sized tiles) to keep within the aimed total processing time of 15–20 min. Further adjustment based on volunteers’ 
feedback improving the third representation (dot and outline) of the example images by focusing on the dot 
(final version of example images: Fig. 2b).

In contrast to PE1–3, the last experiment (PE4) was designed in AMT to validate the setting in a real-world 
scenario. Therefore, a direct contact to the workers or questionnaires for detailed feedback, were not possible 
anymore. Thus, our conclusions were based on observations in the obtained annotations. We addressed misclas-
sifications by updating the crowd instruction (Fig. 2c), changed explanations towards plain English, and avoided 
logical operations. We here included a video (Supplementary Video S1) and icons (Fig. 2a) that allow an accessible 
label explanation. The sum of results from those consecutive pilot experiments led us to the final task design.

Feasibility
We applied the final task design to our main data set, which was considered for ML training. Therefore, we split 
the data set into 30 astrocyte tasks and 37 tumor cell tasks on AMT. The crowd quickly labeled potential tumor 
cells in 74 MSIs and potential astrocytes in 163 MSIs (in hours). In comparison, the expert needed months 
(12,642 tumor cells and 440 astrocytes in 59 MSIs) for the ground truth used for crowdsourcing or in ML test 
set. Total cost for AMT were $2207.49 (including charges and vat). This results in expenses for AMT-based 
annotation of about $10 per MSI, compared to about $120 for about 30 min per MSI annotated by board-certified 
pathologists. As the tasks were immediately unavailable due to demand and solution, latency control was not 
necessary in contrast to others44,45.

a

b c

Icons and text for astrocyte task

Please set a point on the red center of the cell with
these two characteristics:

Red CoreWITH blue surrounding, mostly star shaped

DON’T click on:

- Cells with white core, whether they are surrounded
by blue or not

- Cells with red core without blue surroundings

Icons and text for tumor task

Please set a point on the white center of the cell with
these characteristics:

- Only Cells with white Core

DON’T click on:

- Cells with red core

Example image for astrocyte task

Example image for tumor task

Figure 2.   Crowd instruction. (a) Icons and text as information material. (b) Example image (first column for 
original image, second for image with delineation for explanation, and third for image with point annotation) 
to visualize the crowd task. (c) Displayed after the qualification phase to recapitulate cell features before solving 
the task. Here, 1 in yellow: astrocytes (red nucleus, blue cytoplasm, star-shaped), 2 in red: endothelial cells 
(red nucleus, pale blue cytoplasm, spindle-like), 3 in green: other non-neoplastic cells (red nucleus), and 4 in 
magenta: tumor cells (white nucleus, blue cytoplasm, star-shaped).
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Figure 3a,b show the annotations on the ground truth-image of 10 workers. The majority found the correct 
astrocytes and missed some tumor cells. Cells wrongly labeled as astrocytes e.g., neurons showed a similarity 
to astrocytes by sharing an ATRX positive nuclei. Other false positives concerned vessels, near which usually 
astrocytes stay to form the blood brain barrier, but also other cell types, where GFAP is present in the vicinity but 
does not belong to the cell. As the cells labeled by several workers were almost correct, this figure clearly shows 
the strongness of an answer aggregation. The inter-rater reliability was consistent with the visual evaluation. It 
was determined between non-experts on the ground truth-image of the AMT crowd with 270 workers for astro-
cytes (Fleiss κ = 0.32 ), 318 workers for tumor cells ( κ = 0.30 ) and 10 further MSIs on pilot crowds, as well as 
between three experts for four MSIs and both cell types showing a κ of 0.46 on average (Fig. 3c). Individual labels 
showed a median F1 score of 0.47 for astrocytes and 0.73 for tumor cells considering the ground truth-tiles. As 
expected, a few workers clicked only on some cells probably to quickly finish the task. In contrast, we observed 
high-performers that provided annotations close to expert ones.

Aggregated crowd annotations compared to an expert (Table 2) showed a quite high PPV in general and 
reduced for WV in ground truth-tiles (note: the ground truth-image was used for WV-construction). MV 
resulted for astrocytes in a TPR of 0.48, a PPV of 0.90, and a F1 score of 0.62 combining the entire ground truth, 
as well as for tumor cells in a TPR of 0.47, a PPV of 0.97, and a F1 score of 0.63. This allows a first assumption 
that workers developed an understanding how the correct target structures look like.

a b

0.3
0.4
0.5
0.6

0.2
0.1

image

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12

• •
• • • • •

•
• • • ••

•
•

•

• •

• experts (both cell types)• pilot crowd (tumor cells)• pilot crowd (astrocytes)• entire AMT crowd (tumor cells)• entire AMT crowd (astrocytes)

c

Figure 3.   Performance of individual crowdworkers. (a) Tumor task; (b) astrocyte task. Yellow dots show 
ground truth, rectangles are bounding boxes around the crowd’s point annotations (different colors for 
each worker). (c) Fleiss κ to assess inter-rater reliability. The entire Amazon Mechanical Turk (AMT) crowd 
annotated only a small tile of image i9 and i12 (ground truth-image), whereas the pilot crowds and experts 
labeled the entire multiplex immunofluorescence image.

Table 2.   Crowd’s feasibility (weighted vote and majority vote of crowd annotations) on a ground truth-image 
and scattered tiles annotated by expert. TPR refers to the true positive rate, PPV to positive predictive value, c 
to the number of cells, and F1 to the F1 score.

Astrocytes Tumor cells

c

Weighted vote Majority vote

c

Weighted vote Majority vote

TPR PPV F1 TPR PPV F1 TPR PPV F1 TPR PPV F1

Ground truth-image 7 0.26 1.0 0.44 0.46 0.97 0.56 38 0.46 1.0 0.63 0.45 0.98 0.60

Ground truth-tiles 23 0.52 0.50 0.51 0.57 0.62 0.59 96 0.75 0.78 0.77 0.63 0.82 0.71
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Machine learning
We trained YOLOv5 and YOLOv8-based CNNs in nine variants with varying image representation on aggregated 
crowdlabels and tested them on expert annotations. To reach a comparable training for each variant, we specified 
a minimum number of 1000 training epochs. The observed number of iterations for the training to converge 
was with 200–500 epochs on average below this threshold. The YOLOv8-based networks achieved F1 scores of 
0.61–0.69 averaged over both cell types, which was primarily due to low scores for astrocytes (Table 3) AP50 was 
in the range of 0.15–0.27 as a larger fraction of overlapping bounding boxes had an intersection of union between 
0.35 and 0.50 (intersection over union distribution given in Supplementary Fig. 1. The scores of YOLOv5-based 
networks are given in Supplementary Table 2, together with a qualitative comparison with Faster RCNN on Var2 
in Supplementary Fig. 2.

The PPV showed that most of the detected tumor cells were true positive. This can be shifted by adopting the 
confidence threshold (data not shown). Var1 used the same markers and colors as the crowd, Var2 differed in 
the color intensity, but the CNN of Var2 showed a slightly better quality. Var7–9 including additional markers 
received no clear improvement of the quality. A comparison between Var1, 5, and 9 on individual cells is illus-
trated in Fig. 4. It shows that especially Var9 detected other cells like neurons as astrocytes and areas without 
nuclei as tumor cells. In Var9, the number of false positive astrocytes was increased. We assume that mixed colors 
due to the overlap between the channel could complicate assignment of markers. Several false positive tumor cells 
detected by Var1 and Var5 had a reduced ATRX signal in their nuclei. Var5 surprisingly achieved the best results 
especially clearly better than Var1. Since Var5 used a color scheme without the important ATRX information, this 
shows the importance of the cell morphology. Our results showed that a CNN trained on aggregated crowdlabels 
could detect tumor cells and astrocytes and reduced marker information led to success.

Discussion
This study focused on task design as prerequisite for reliable application of crowdsourced data in ML in the 
context of labeling astrocytes and tumor cells in high-grade IDH1-mutated astrocytoma. We showed feasibility 
of the approach and discuss the implications of the results for tumor microenvironment analysis beyond IDH1 
mutated glioma, specifically for potential applications in IDH wildtype glioblastoma.

Starting from general recommendations5, we developed an adaptable task design focusing on tile size, number 
of MSIs, crowd size, and especially on crowd instruction. Optimization of tile size is an important step. Workers 
and pathologists may consider information on the microenvironment when facing larger tiles, e.g., “calibrat-
ing” their assessment based on neighboring tissue structures. In contrast, smaller tiles lack this advantage, but 
reduce the common risk to lose focus on the important structures. In our experience, most pathologists prefer 
to work on annotations in the context of metadata (such as age, localization, medical history) and larger tiles, 
ideally with a zoom function to change magnification. Our results indicate that non-experts tend to concentrate 
on specific cells without significant consideration of adjacent structures, reflected by better performance on 
smaller tiles. Further, our observations confirm the importance of graphical instructions, and explanations in 
simple language5. Interestingly, the motivation of school students with an interest in the field of computational 
biology could be increased by providing medical background information. Due to the setting of crowdsourcing 
on AMT, without an option to obtain feedback from crowdworkers, we could not study the effect of motivation 
in the final experiment.

As expected considering the task difficulty, we found a relatively low agreement between crowdworkers, but 
κ-values were only slightly lower than between three experts. In the field of pathology, inter-rater inconsistency 
is a general effect that needs to be addressed in model generation, e.g., Bertram et al. reported a considerable 
expert-related disagreement for mitosis labeling46. Tabata et al. described Cohens κ values between 0.6 and 

Table 3.   Comparison of machine learning variants in YOLOv8. TPR refers to the true positive rate and PPV 
to positive predictive value. TPR, PPV, and F1 score are based on an intersection over union of at least 0.35 
between overlapping bounding boxes. AP50 and AP@ referring to AP@[0.5 : 0.05 : 0.95] include the average 
precision. Var1–4 contain the markers DAPI, ATRX, and GFAP; Var5–6 DAPI and GFAP; Var7–8 DAPI, GFAP 
and other; Var9 DAPI, ATRX, GFAP, and other; also differing in their colors and intensities (details in Fig. 1). 
Best variant highlighted in bold.

Astrocytes Tumor cells Mean

TPR PPV AP50 AP@ F1 score TPR PPV AP50 AP@ F1 score AP50 AP@ F1 score

Var1 0.52 0.27 0.14 0.01 0.35 0.55 0.90 0.16 0.03 0.68 0.15 0.02 0.52

Var2 0.57 0.36 0.20 0.03 0.44 0.53 0.93 0.17 0.03 0.67 0.19 0.03 0.56

Var3 0.33 0.36 0.09 0.01 0.35 0.50 0.93 0.23 0.05 0.65 0.16 0.03 0.50

Var4 0.40 0.63 0.21 0.03 0.49 0.51 0.92 0.17 0.03 0.66 0.19 0.03 0.58

Var5 0.59 0.44 0.25 0.04 0.51 0.54 0.76 0.30 0.06 0.63 0.27 0.05 0.57

Var6 0.55 0.51 0.23 0.04 0.53 0.50 0.78 0.25 0.04 0.61 0.24 0.04 0.57

Var7 0.56 0.38 0.19 0.03 0.45 0.57 0.86 0.22 0.04 0.69 0.20 0.03 0.57

Var8 0.42 0.37 0.13 0.02 0.40 0.51 0.86 0.24 0.04 0.64 0.19 0.03 0.52

Var9 0.52 0.33 0.14 0.02 0.40 0.51 0.88 0.31 0.07 0.65 0.22 0.04 0.53
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0.9 for mitosis labeling between different experts and intra-rater values based on different visualization tools 
between 0.59 and 0.9447. Ji et al. described a moderate concordance between the five experts (Fleiss κ = 0.6 ) in 
the context of bounding boxes48.

Our final task design resulted in aggregated F1 scores that indicated feasibility for crowdsourcing in this set-
ting. In our specific use case, the complexity was mainly due to exceptional morphological similarity between 
the classes of cells for annotation. An additional level of complexity was caused by almost inevitable technical 
limitations, such as remaining “diffuse” staining background, even after thorough technical optimization of 
staining or imperfect color deconvolution due to overlapping fluorophore emission spectra. In these condi-
tions, the signal can not unambigiously assigned to a given marker, unless an evaluator has specific domain 
knowledge. Hence, we reduced the number of markers for crowdsourcing to the bare minimum. Observed 
errors, like incorrect labeling of cells with similar marker expression as astrocytes, but (for experts) obviously 
not part of this class, were in line with the notion that lack of domain knowledge in non-expert crowds can 
reduce accuracy49. In contrast to resource-intensive approaches such as an iterative pipeline involving experts 
in annotation revision26, we propose a scalable concept with answer aggregation—the gold standard for quality 
control. Whereas availability of trained pathologists is limited, crowdlabels are scalable once the system works. 
To deal with outliers and weaknesses, answer aggregation and noise handling can work well to mitigate problems 
introduced by single workers16,18,50. Surprisingly, in our setting, MV performed better than WV. As we could 
not study whether the performance of a single worker strongly varies between images inside a task, we rely on 
literature data that showed a stable performance of individuals in a single histology task16. Therefore, we assume 
a better behavior of WV by including more cells to measure the weights, distributing these cells over the entire 
task, or adopting the definition of the WV.

Overall, we showed feasibility for a scalable, robust, and standardized cell detection which requires compu-
tational methods. We generated training data with our crowdsourcing approach, evaluated the crowd’s perfor-
mance based on a ground truth-image and ground truth-tiles, and then additionally tested the crowdsourced 
labels in ML-tools using an independent, expert-annotated test set. Often, crowdlabels are used for training1,3 
or as data augmentation. This clearly outperforms models purely trained on expert annotations2. We trained 
nine YOLOv5 and YOLOv8-CNNs exclusively with crowdsourcing labels in order to reserve the precious and 
accurate expert annotations for testing. The performance of these networks confirmed that the quality of crowd-
sourcing was sufficient to provide adequate training data in this case based on TPR, PPV, and F1 score using 
a slightly relaxed definition of the required intersection over union of at least 0.35 for overlapping bounding 
boxes. Classical measurements like average precision showed the challenges of bounding boxes related to a task 

Figure 4.   Detections of YOLOv5 convolutional neuronal networks for astrocytes (circles around pixels 
predicted as cell centers) and tumor cells (rectangles). (a) Var1; ground truth represented by yellow (astrocyte), 
black (tumor), blue (other cell) dots. (b) Var5; ground truth represented by white (astrocyte), green (tumor), 
yellow (other cell) dots. (c) Var9; ground truth represented by red (astrocyte), black (tumor), and blue (other 
cell) dots. (d) Var1 (green), Var5 (yellow), Var9 (magenta). Ground truth represented by black (tumor), white 
(astrocytes), blue (immune cells), and yellow (others) dots.
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focused on largely variable shapes and the position of cell nuclei in relation to the visible cell processes. Besides 
the detection of clearly distinguishable individual cells, we also observed that a model may predict overlapping 
bounding boxes, classified as astrocyte and tumor cell, which seem to refer to the same cell. A possible scenario 
is the biological existence of only one cell which is erroneously predicted as two cells of different type, which may 
be driven by morphological variations such as pleomorphism or surrounding staining. A second scenario cor-
responds biologically to the unique mechanism of diffuse glioma invasion with mutually interacting pre-existing 
non-neoplastic and malignant cell with astrocytic features, and can actually reflect physically overlapping cells 
of different cell types with eventually interlacing cell processes. This issue was related to machine learning and 
not to crowdsourcing as we intentionally simplified the task design, for example to consider point annotations 
for the crowd, and to use two separate tasks for astrocytes and tumor cells.

In context of most downstream analyses, we consider the approach feasible, as predicted cells are mainly used 
as input of subsequent analyses like neighborhood metrics, and therefore cell centers but not bounding boxes 
themselves are further processed. We assume that an adjusted WV (see above) and oversampling could further 
improve our predictions, especially increase the scores for astrocytes. Besides, the effect of our two-tier approach 
that a model included a single cell type and secondly both cell types can be considered. For crowdsourcing, it 
is not reasonable to combine both cell types in a single task as the increased complexity usually decreases the 
quality15,17. However, two independent tasks (by dealing with low astrocyte frequencies in tumor core) can include 
the same images such that the final model can be trained directly on both cell types. Here, we did not focus 
on maximizing the detection quality of the CNN, instead our goal was to test whether the crowdlabels enable 
reasonable training of a CNN. In a further study, it could be helpful towards a high-accurate CNN to adopt the 
CNN architecture and analyze its effect. We tested the effect of different color schemes showing that variants with 
reduced marker information (Var5–6) performed better. This has the benefit that the method is applicable to 
similar multiplex stainings sharing common markers like ATRX and GFAP, but the choice of additional markers 
(e.g., other immune cells than macrophages) should not influence the cell prediction.

This important finding also indicated a potential for a transfer learning approach. For this, labels were pre-
pared based on tumor-specific markers (e.g., ATRX-loss in high-grade IDH1 astrocytoma as represented in 
Var1). Then, a CNN was trained with these labels and successfully applied on images lacking these tumor-specific 
information (Var5). This opens the opportunity to expand the use of this CNN to the much more common glio-
blastoma (IDH-wildtype) without those markers. Astrocytoma images can be annotated in Var1, the model can 
be trained with these labels in Var5, and then applied to glioblastoma in the same color scheme. This is relevant 
for further research in the field, given that even experts can occasionally hardly distinguish between massively 
reactive astrocytes and tumor cells20. Our results clearly indicate a potential for successful transfer of our method 
towards IDH1 wildtype glioma; however, validation is limited due to the current lack of specific histopathologi-
cal tumor-cell markers that can be combined with other markers in multiplexed immunhohistochemistry. The 
very rare supratentorial high grade gliomas with H3G34 mutations and the slightly more frequent, however, 
also rare, diffuse midline glioma (DMG) with H3K27M mutation would in principle be potential application 
fields. However, the rare occurrence (H3G34 mutations) and specific morphology (H3K27M) limit feasibility 
and medical need for this application.

In summary, we developed a task design which was feasible for complex cell annotations of reactive astrocytes 
and tumor cells at single-cell level. Our results indicated that CNNs trained with aggregated crowdlabels are 
suitable for glioma microenvironment analysis. Together with first evidence for successful application of transfer 
learning in tumors lacking specific immunohistochemical markers, this indicates considerable potential for this 
emerging scientific field and supports the need for further development of crowdsourcing and advanced image 
analysis in brain tumor research.

Data availability
The task design is available in the manuscript, the video in Supplementary Material S1. Images will be made 
publicly available through an appropriate platform like https://​www.​openm​icros​copy.​org/ to be downloaded 
for academic purpose.
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