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Robust in‑vehicle respiratory rate 
detection using multimodal signal 
fusion
Joana M. Warnecke 1,2*, Joan Lasenby 2 & Thomas M. Deserno 1

Continuous health monitoring in private spaces such as the car is not yet fully exploited to detect 
diseases in an early stage. Therefore, we develop a redundant health monitoring sensor system and 
signal fusion approaches to determine the respiratory rate during driving. To recognise the breathing 
movements, we use a piezoelectric sensor, two accelerometers attached to the seat and the seat belt, 
and a camera behind the windscreen. We record data from 15 subjects during three driving scenarios 
(15 min each) city, highway, and countryside. An additional chest belt provides the ground truth. We 
compare the four convolutional neural network (CNN)‑based fusion approaches: early, sensor‑based 
late, signal‑based late, and hybrid fusion. We evaluate the performance of fusing for all four signals to 
determine the portion of driving time and the signal combination. The hybrid algorithm fusing all four 
signals is most effective in detecting respiratory rates in the city ( P = 62.42 ), highway ( P = 62.67 ), 
and countryside ( P = 60.94 ). In summary, 60% of the total driving time can be used to measure the 
respiratory rate. The number of signals used in the multi‑signal fusion improves reliability and enables 
continuous health monitoring in a driving vehicle.

The respiratory rate is one out of four primary vital signs to derive the health status of  individuals1,2. It is signifi-
cant to predict adverse cardiac  events3, emotional  stress4, and cognitive  load5. Nicolo et al. defined thirteen goals 
for respiratory  monitoring1, ranging from the presence of breathing to cardiac events as well as environmental 
 stress1. Moreover, the respiratory rate provides information for airways and other lung structures, which are 
affected by chronic respiratory diseases (CRDs)2. Asthma, chronic obstructive pulmonary disease (COPD), 
occupational lung disease, and pulmonary hypertension are some of the most  prevalent6. According to the 
World Health Organisation (WHO), more than 262 million people suffer from  asthma6. In most cases, asthma 
can be treated with inhaled  medications7. However, COPD is mostly irreversible and particularly affects  adults8. 
It is characterized by breathlessness, sputum production, and chronic  coughing6. Furthermore, COPD patients 
develop more severe COVID-19  symptoms9. Continuous health monitoring and regular medical check-ups yield 
early detection of symptoms, improve therapeutic outcomes for CRDs, and prevent cardiac  events10. In Western 
countries, people spend, on average, 35 min per day in a  car11. Therefore, unobtrusive in-vehicle sensors can 
potentially integrate continuous health monitoring into our daily  lives12.

Currently, in-vehicle monitoring focuses on the tiredness tracking of the driver and uses eye- and face-
tracking or steering wheel, pedal, and lane  movements13,14. More recently, state-of-the-art research also focuses 
on vital signs recorded in automotive environments, in particular the respiratory  rate15,16. For instance, Ju et al. 
integrated a piezoelectric sensor in the seat belt to derive the drivers’ stress level under laboratory  conditions17. 
Baeck et al. applied similar sensors while  driving18. Vavrinsky et al. used ballistocardiography (BCG) in a bucket 
 seat19. Vinci et al. suggested radar sensors in the seat backrest at the height of the lunge to measure the respira-
tory  rate20. Guo et al.21 used a near-infrared camera for respiratory rate detection. However, current research is 
limited mostly to only one particular sensor concept and aims at supporting driving assistance systems rather 
than monitoring the long-term health status of vehicle  occupants15. In previous work, we used an accelerometer 
attached to the seat belt under different driving conditions to determine the best  position22 and a de-noising 
method for respiratory rate  monitoring23.

In this work, we present a redundant sensor system and signal fusion approaches for in-vehicle respiratory rate 
detection to answer the following research question: (1) Which portion of the driving time is utilisable to measure 
the respiratory rate robustly?, (2) Which sensor combination delivers the most reliable results?, and (3) What is the 
performance difference for respiratory rate detection between the driving scenarios?.
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Material 
Sensor system
Based on our previous  review16 and the performance assessment by Leonhardt et al.15, we choose two accelerom-
eter sensors (BiosignalPlux Explorer, Plux Wireless Biosignals, Lisboa, Portugal), a piezoelectric sensor (Biosig-
nalPlux Explorer, Plux Wireless Biosignals, Lisboa, Portugal), and an RGB camera (Raspberry Pi Foundation, 
Cambridge, United Kingdom). The camera has a resolution of 1280 × 720 pixels and records with ten frames per 
second (Fig. 1a). The channel hub (BiosignalPlux Explorer, Plux Wireless Biosignals, Lisboa, Portugal) connects 
the accelerometer, piezoelectric sensor, and chest belt and sends the recordings via Bluetooth, and the camera 
has a wired connection to the Raspberry Pi (Fig. 1b).

For ground truth measurements, we use a chest belt (BiosignalPlux Explorer, Plux Wireless Biosignals, Lisboa, 
Portugal) (Fig. 1c). We place the belt around the upper thorax of the subject and measure the peaks of the move-
ment. According to our previous  work23, we attach the accelerometers to the seat belt and the seat to measure 
noisy breathing movements and noise only, respectively (Fig. 1a). We integrate the piezoelectric sensor into the 
seat belt and attach the camera behind the steering wheel (Fig. 1c). We install all sensors into a street-legal vehicle 
(VW Tiguan, Volkswagen AG, Wolfsburg, Germany). To determine the respiratory rate optically, we average the 
green channel for specific regions of interest (ROI): (1) belt and (2) chest.

Experimental setup
We selected 15 test persons with different ages (20–67 years), genders (female: 6, male: 9), and body mass index 
(21–44). For each subject, we record 15 min of driving: (1) in the city, (2) on the highway, and (3) in the coun-
tryside. Following the navigation system, all subjects drove the same predetermined route.

Existing studies often show the technical feasibility in a simulated environment with a low number of 
 subjects17,19,20. Guo et al. conducted one experiment with five subjects under real driving conditions with a near-
infrared  camera21. The advantage of our study is the recording of various sensors for respiratory rate detection, 
three different driving scenarios, a higher number of subjects, and a publicly available data set.

Driving scenarios, such as highway, city, and countryside, are different due to a variety of factors, including 
road types, traffic conditions, speed limits, environmental variables, and the types of challenges. Therefore, we 
recorded data in three scenarios. Different driving scenarios feature distinct road conditions. Highways typically 
have well-defined lanes and relatively stable traffic patterns, while city roads often involve frequent lane changes, 
pedestrians, and complex traffic dynamics. The countryside has more uneven roads because the road conditions 
are often not as good as on the highway or in the city center. Collecting data in all scenarios enables a comparison 
between these different scenarios to analyse the data recorded with various road conditions. Each scenario has 
various traffic patterns. The highway typically has high-speed limits, while city driving involves frequent stops 
and starts and congestion. Countryside includes fewer vehicles and lower speed limits but can pose challenges 
like winding roads and variable road quality. The speed limit for the highway was 130 km/h, for the city 50 km/h, 
and for the countryside between 50 and 100 km/h.

Ethics approval
We record all data anonymously following the Helsinki Declaration. The ethics committee at TU Braunschweig 
(Braunschweig, Germany) approved the study’s procedures (internal process number: D_2022-13). Informed 
consent was obtained from all subjects. Specific consent was obtained for identifying images in an online open-
access publication.
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Figure 1.  Sensor system. (a) The camera is behind the steering wheel, and the accelerometers are in the seat 
belt as well as on the right side of the driver’s seat. (b) Schematic sensor system. (c) The piezoelectric sensor sits 
in the seat belt, and the chest belt for reference measurements is strapped around the subject’s chest.
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Signal pre‑processing
Piezoelectrical sensor
The piezoelectrical sensor determines the pressure that is generated when the breathing chest expands against the 
seat belt. As the sensor directly turns the pressure into an electrical signal (voltage), we do not apply additional 
preprocessing but use the raw data directly.

Accelerometers
For noise reduction, we attached accelerometer 1 to the seat belt at the position side-waist, which measures 
the respiration and the noise (Fig. 2a). We selected the position side waist based on a previous  publication22, 
which evaluated the positions of the shoulder, chest, side waist, and waist for respiratory rate detection with an 
accelerometer. The accelerometer 2 is attached to the seat of the driver on the right side and measures the envi-
ronmental noise (Fig. 2a). The required pre-processing of the signals uses bandpass (BP) filtering and principal 
component analysis (PCA). The noise canceling is then computed in the Fourier domain, using the fast Fourier 
transform (FFT) (Fig. 2b).

The magnitude in X1 of the accelerometer 1 includes the frequency distribution of respiration plus noise and 
X2 just the noise. In X2 , a higher magnitude of the frequency component implies higher noise. Specifically, |X2(k)| 
denotes the kth amplitude in an FFT series of accelerometer 2. Using Eq. (1), we calculated the suppression factor 
(SF) that suppresses the frequency components in X1 based on X2 magnitudes and µ(|X1|) is the mean value of 
the X1  amplitudes23:

Using the suppression factor (SF) in Eq. (2), we calculated the frequency distribution of the suppressed signal 
(supp):

The output is a de-noised signal for sensor A′
1(k) . In contrast to the previous publication, we applied the inverse 

FFT (iFFT) because the signal fusion approach needs the signal in the time domain as an  input23. For further 
details, we refer to our previous  work23.

Video
We attached a black-and-white chessboard pattern on the seat belt to increase the contrast between the clothes 
and the seat belt. This makes our vision system unresponsive to the color of the clothing the subject is wearing. 
Using the static setting in the car, we extract two ROIs covering the belt ( videoBelt ) and chest ( videoChest ) (Fig. 3). 
The ROIs are a rectangle and determined by the static positions of the camera as well as the driver’s seat: videoBelt 
(x: 701, y: 550, w: 10, h: 190) (Fig. 3a) and videoChest (x: 401, y: 550, w: 400, h: 190) (Fig. 3b).

This means that the ROI belt has a width of 10 pixels and a height of 190 pixels at positions x: 701 and y: 550. 
To ensure the accuracy of ROI extraction, we verify their positions during the pre-processing stage and make 
necessary position adjustments. Using Eq. (3), The average (avg) green colour values of each cut-out pixel in the 
ROI are calculated by adding up all the color values and dividing by the total number of values:

(1)SF(k) = e
−

|X2(k)|
(µ(|X1 |)

(2)Xsupp(k) = SF(k) · X1(k)
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Figure 2.  Pre-processing of the accelerometer signals. (a) Sensor positions. (b) Processing pipeline.
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The average colour values of the ROIs change with every in- and exhaling movement because the position of the 
belt changes. Therefore, the respiratory rate can be calculated based on the movement of the belt.

Implementation for statistical analysis
To derive the signal from the ROI of videoBelt and videoChest , we use the library OpenCV (version 4.5). We imple-
ment the CNN-based approach in Python (version 3.8.5) using the libraries TensorFlow (version 2.3.1) and 
Keras (version 2.4.3). The high-performance computer cluster Phoenix calculates all training and  testing24. For 
the evaluation, we use the library Numpy (version 1.19.0).

Input data
In total, our sensors deliver four input channels and one reference signal as ground truth. The recordings differ 
in signal-to-noise ratio (SNR). Figure 4 gives examples of lower (Fig. 4a) and higher SNRs (Fig. 4b), respectively. 
The arbitrary unit (au) represents the unit for the accelerometer and the video signal.

According to Chandra et al. 25, we apply additional pre-processing for signal fusion: 

1. Upsampling all data to a unified sampling rate of 200 Hz,
2. Median filtering, and 3. Amplitude normalization to the interval [−1, 1].

We split the signal into snippets of 201 overlapping samples. Following Chandra et al.25, test and training snippets 
overlap by 200 and 190 data points, respectively. We use the leave-one-subject-out cross-validation scheme: we 
train the CNN on 14 subjects and use the data of the remaining subjects for testing. We repeat this procedure 
15 times and average the results.

(3)color avg =
1

w · h

n∑

w=1

m∑

h=1

Pixelw,h

Average green 
channelCamera
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Figure 3.  Video signal. (a) ROI belt. (b) ROI chest. (c) Data processing.
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Signal fusion
We calculate the performance of (1) early fusion, (2) signal-based late fusion, (3) sensor-based late fusion, and (4) 
hybrid fusion (Fig. 5). The latter combines the other three with a majority  voting26. Many authors reported that 
one sensor is insufficient to measure vital signs in a medical setting and suggested redundancy with respect to 
both the number of sensors and the physical base of sensor  systems15,16. However, signals from multiple sensors 
need a fusion strategy. The algorithm from Chandra et al. estimates the heartbeat location of multiple signals 
based on a convolutional neural network (CNN)25. This general approach can be applied to other data. Münzner 
et al. compared early fusion with several late  fusions27.

Early fusion merges in a first convolutional layer. Sensor-based late fusion merges in the dense layer, and 
signal-based late fusion with an increased number of extracted features. For respiratory rate detection, we com-
bine these approaches and extend them with a majority vote.

The first layer receives our five input signals. The second layer is a convolutional layer, which generates 
a feature map. To extract the features, we use four filters with a length of 20 samples for each of the sensor 
 signals25. To prevent over-fitting, we use a dropout rate of 0.5 in the dropout layer. The pooling layer reduces the 
dimension of the feature map. The dense layer classifies snippets into binary classes 1 and 0, which means that 
the snippet contains a heartbeat or not, respectively. The activation function is a sigmoid function. The output 
layer generates a vector Y of multiple labels that are either 0 or 1 for a specific snippet. The majority vote takes 
place after the output layer.

VideoBelt

VideoChest

VideoBelt

(a)

(b)

VideoChest

Figure 4.  Input data from subject 5678 during the scenario city (a) Input data with low SNR from 20 to 50 s. 
(b) Input data with high SNR from second 210 to 240. We created the visualisation with MATLAB (MATLAB 
version R2021a, The MathWorks, Natick, United States).
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Figure 5.  Hybrid signal fusion for multiple sensors.

Table 1.  Performance in percent for one signal during the three driving scenarios. Significant values are in 
bold.

Approach Piezo [%] Acc [%] VideoBelt [%] VideoChest [%]

Early fusion 49.08 49.16 49.66 53.38

Signal-based late fusion 49.10 55.79 51.80 49.51

Sensor-based late fusion 49.10 49.19 53.58 51.40

Hybrid fusion 48.82 49.17 53.31 52.21

Table 2.  Performance in percent for two signals during the driving scenario. Significant values are in bold.

Approach Piezo+ Acc [%] Piezo+ VideoBelt [%] Piezo+ VideoChest [%] Acc+ VideoBelt [%] Acc+ VideoChest [%]
VideoBelt + 
VideoChest [%]

Early fusion 52.35 46.58 54.25 50.32 46.58 42.21

Signal-based late fusion 53.18 56.08 47.36 48.44 50.89 52.08

Sensor-based late fusion 48.77 48.87 50.63 47.93 55.15 46.73

Hybrid fusion 50.32 50.91 50.71 50.13 51.29 46.89
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An early fusion approach uses a single CNN and fuses signals within the convolutional layer (Fig. 5). By using 
two CNNs per signal, the sensor-based late fusion method extracts more features per signal. The signal-based 
late fusion uses one CNN per signal. Both of these approaches merge in the dense layer.

Evaluation
Comparing snippets with ground truth, we obtain true-positive (TP), true-negative (TN), false-positive (FP), 
and false-negative (FN) classifications. We calculate performance P = (PPV + S)/2 based on the positive pre-
dictive value PPV = TP/(TP + FP) and the sensitivity S = TP/(TP + FN) , as these evaluation metrics reflect 
the FP and FN  numbers25.

We first evaluate the different sensors and their combinations, disregarding the fusion algorithms and the driv-
ing scenarios. We then determine the best type of fusion and analyse the impact of the different driving scenarios. 
Finally, we determine the portion of driving time that can be used for reliable respiratory rate measurements.

Results
Comparison between one signal
The tables compare the average performance during the three driving scenarios for the four sensors to identify 
the signals with the best performance (Table 1). The signal-based late fusion yields the highest performance 
( Pmax = 55.79 ) with the signal accelerometer (Table 1). In summary, the videoBelt has the highest score twice, 
and the accelerometer and videoChest have the highest score once for a signal fusion approach. We will describe 
the de-noised accelerometer signal as Acc and the piezoelectric signal as Piezo in the following text to simplify 
the notation.

Table 3.  Performance in percent for three signals during the scenario city. Significant values are in bold.

Approach Piezo+Acc+VideoBelt [%] Piezo+ Acc+ VideoChest [%] Piezo+ VideoBelt + VideoChest [%]
Acc+ VideoBelt + 
VideoChest [%]

Early fusion 52.39 50.83 53.63 53.59

Signal-based late fusion 55.64 54.36 48.34 46.29

Sensor-based late fusion 48.49 46.96 51.24 50.48

Hybrid fusion 52.35 49.51 50.67 49.06
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Figure 6.  Performance of four signals for different driving scenarios. This plot was created with the MATLAB 
package from Allen et al.28 (MATLAB version R2021a, The MathWorks, Natick, United States).
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Comparison between two signals
The comparison of two sensor pairs shows that signal-based late fusion has the highest performance 
( Pmax = 56.08 ) with the pair piezoelectric sensor and videoBelt (Table 2). The sensor pair videoBelt and videoChest 
has the lowest performance for the early fusion approach ( P = 541.21 ). In summary, the combination of accel-
erometer and videoChest achieves the best performance twice, and the piezoelectric and videoBelt once.

Comparison between three signals
The three combined signals, piezoelectric signal, accelerometer, and videoBelt have the highest score 
( Pmax = 55.64 ) with the approach signal-based late fusion (Table 3). On the other hand, this fusion approach also 
has the worst performance with the combination of piezoelectric sensor, videoBelt , and videoChest ( P = 46.29 ). 
However, the combination of a piezoelectric sensor, accelerometer, and videoBelt as well as a piezoelectric sensor, 
videoBelt , and videoChest yields two times the highest performance per signal fusion approach.

Comparison between four signals
The raincloud plot visualises the distribution of the performance during the driving scenarios to show the per-
formance differences (Fig. 6). The early fusion approach consistently performs poorly, with the lowest scores in 
all scenarios and the lowest average performance overall (Fig. 6). However, the distribution for the other fusion 
algorithms is comparable (Fig. 6).

With the combination of all four signals, the signal-based late fusion approach achieves the highest score 
( Pmax = 62.88 ) in the scenario highway (Table 4). However, the hybrid fusion achieves the highest average 
performance ( MeanP = 62.01 ) overall driving scenarios. The early fusion technique yields the lowest average 
performance ( MeanP = 50.15).

Discussion
The major challenge for health monitoring during driving is the changing data quality due to artifacts, which are 
caused by movements of the car or driver due to driving activities or  talking15,16. Moreover, the different physical 
attributes, e.g., height and weight, of the test subjects lead to a high standard deviation in  performance15. The 
iPPG signal is especially sensitive to light changes and  movements29. Moreover, other methods, such as PCA 
and FFT, could lead to better signal extraction. Furthermore, it is possible to integrate more sensors into the 
redundant sensor system. The system could be extended by a magnetic induction sensor integrated into the seat 
 backrest30. We excluded the BCG sensor because the pretest in the car showed that the SNR was low. For the 
pretest, we placed the sensor at the backrest to measure ballistic forces generated by the lungs. We also excluded 
a radar sensor because the API did not allow sufficient time synchronization. For our pretest, we used the radar 
sensor from Acconeer A111. The Raspberry Pi and camera are low-cost devices. The reliability of the Raspberry 
Pi is proven in other  publications31,32. There is also the possibility of optimizing the structure of signal fusion 
models. The performance of models with adjusted parameters could be investigated in further studies, e.g., the 
number of convolutional  layers33, decreasing or varying the learning rate of the Adam  optimizer34, or other 
activation  functions35. A long short-term memory (LSTM) or autoencoder-based structure could also increase 
the  performance36.

The early fusion has the lowest performance with MeanP = 50.15 . This is attributed to the extraction of fewer 
features compared to sensor-based fusion, which achieves the highest score after the hybrid fusion process. In 
sensor-based fusion, a more extensive feature set is obtained by employing two CNNs to extract features in the 
convolutional layer for a single signal, resulting in enhanced performance.

Moreover, it is also important to compare the results from this paper with the literature. Ju et al.17 showed the 
technical feasibility of the pressure sensor integrated into the seatbelt, and Vavrinsky et al.19 of a pressure sensor 
integrated into the seat to measure the respiratory rate. However, they did not collect data from various subjects 
and presented an evaluation. Beak et al. measured the electrocardiogram (ECG), galvanic skin response (GSR), 
and respiration to detect the driver’s stress in a study with four male subjects under real driving  conditions18. 
For the respiration rate measuring, they integrated a piezoelectric sensor into the seat belt. They did not use a 
reference sensor such as a chest belt to collect a ground truth for the respiratory rate to evaluate the respiratory 
rate monitoring because the focus of this study was on the detection of the driver’s stress level. Vinci et al. used 
a microwave interferometer radar and conducted three measurements for 30 seconds to show the technical fea-
sibility and waveform of the signal in a simulated  environment20. Guo et al. recorded data with a near-infrared 
time-of-flight camera to derive the respiratory rate of five subjects under real driving conditions and compared 
the results with the measurements of a chest belt as a  reference21. The authors calculated the RR per minute. In 
contrast to our evaluation, they did not compare the position of the breathing movement with the reference. For 
43 % of the driving time on the highway, they had a difference of 0 to 3 breaths per minute (BPM) compared to 

Table 4.  Performance in percent for four signals during driving. Significant values are in bold.

Approach City [%] Highway [%] Countryside [%] MeanP [%]

Early fusion 52.83 49.62 48.01 50.15

Signal-based late fusion 62.68 62.88 60.39 61.98

Sensor-based late fusion 61.46 62.19 62.33 61.99

Hybrid fusion 62.42 62.67 60.94 62.01



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20435  | https://doi.org/10.1038/s41598-023-47504-y

www.nature.com/scientificreports/

the  reference21. The novelty of our work lies in the fusion of the different signals for respiratory rate detection. 
Moreover, we collected data from 15 subjects under three different driving scenarios to enable further algorithm 
development with these data. The accuracy of the sensor system and fusion with respect to the other evaluation 
metrics and recordings is not directly comparable.

For future work, we will record the controller area network (CAN) Bus data to detect artifacts that are caused 
by environmental disturbances. As suggested by Fu et al.37, we will also integrate movement detection using depth 
cameras. Other important vital signs are the heart rate and temperature. Future systems should record all primary 
vital signs, i.e., body temperature, pulse rate, and blood pressure. Additionally, we will publish a paper for in-
vehicle heartbeat detection. The heartbeat is another important vital sign to detect cardiovascular diseases, such 
as stroke. The study encompasses 19 healthy subjects and adheres to the same experimental design as described 
in this  paper38. We publish two papers because the description of the different sensor systems, pre-processing, 
and analysis would exceed the scope of one journal paper.

Conclusion
To detect respiratory rate while driving, we developed a redundant sensor system and signal fusion approaches. 
Based on our results, the hybrid fusion and all four sensors have the highest performance for in-vehicle respira-
tory rate detection: city ( P = 62.42 ), highway ( P = 62.67 ), and countryside ( P = 60.94 ). The result also shows 
that the fusion of multiple signals improves robustness. Furthermore, the voting system of the hybrid algorithm 
not only outperforms the other fusion algorithms but also presents several distinct advantages. This approach 
to algorithm fusion leverages the strengths of different techniques and combines them in a way that maximizes 
overall performance. By allowing each component algorithm to contribute its information through a voting 
mechanism, the hybrid algorithm achieves a higher accuracy and robustness. As a take-home message and to 
answer the initial research questions: We can monitor the respiratory rate continuously for over 60 percent of our 
driving time with a low variance between the driving scenarios, and the combination of all sensors delivers the 
most reliable performance. In summary, the results show the potential to detect CRD symptoms in an early stage.

Data availability
We publish the anonymous data in text (.txt) file format over the data storage system of TU Braunschweig under 
CC BY 4.0 to allow researchers to reproduce and apply further algorithms (link: https:// doi. org/ 10. 24355/ dbbs. 
084- 20221 02014 40-0, accessed on November 16th, 2023): chest belt (reference signal), accelerometer 1 and 2, 
piezoelectric signal, videoBelt , and videoChest , and subject information (subject ID, age, height, weight, gender, 
and known diseases).
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