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A B S T R A C T   

Background and objective: The thyroid is a gland responsible for producing important body hormones. Several 
pathologies can affect this gland, such as thyroiditis, hypothyroidism, and thyroid cancer. The visual histological 
analysis of thyroid specimens is a valuable process that enables pathologists to detect diseases with high effi-
ciency, providing the patient with a better prognosis. Existing computer vision systems developed to aid in the 
analysis of histological samples have limitations in distinguishing pathologies with similar characteristics or 
samples containing multiple diseases. To overcome this challenge, hyperspectral images are being studied to 
represent biological samples based on their molecular interaction with light. 
Methods: In this study, we address the acquisition of infrared absorbance spectra from each voxel of histological 
specimens. This data is then used for the development of a multiclass fully-connected neural network model that 
discriminates spectral patterns, enabling the classification of voxels as healthy, cancerous, or goiter. 
Results: Through experiments using the k-fold cross-validation protocol, we obtained an average accuracy of 
93.66 %, a sensitivity of 93.47 %, and a specificity of 96.93 %. Our results demonstrate the feasibility of using 
infrared hyperspectral imaging to characterize healthy tissue and thyroid pathologies using absorbance mea-
surements. The proposed deep learning model has the potential to improve diagnostic efficiency and enhance 
patient outcomes.   

1. Introduction 

The thyroid is an endocrine gland situated in the lower front region 
of the neck, near the trachea. This gland is important for the production 
of hormones T3 and T4, which play significant roles in various body 
regulatory processes, including heart rate, energy level, and meta-
bolism. Pathologies of the thyroid encompass a wide variety of disor-
ders, all of which can adversely impact these hormonal productions. 
These disorders can range from benign conditions, such as thyroiditis 
and goiter, to more severe ones, including hyperthyroidism, hypothy-
roidism, and even thyroid cancer [1]. 

Goiter refers to the enlargement of the thyroid gland, a condition 
indicating that the gland’s volume exceeds normal size. It can manifest 
in different forms, such as diffuse, nodular, or multinodular. Typically, 

the thyroid gland grows anteriorly in the neck due to minimal con-
straints from the anterior cervical muscles, subcutaneous tissue, or skin 
[2]. 

On the other hand, thyroid cancer is a condition characterized by the 
growth of tumor cells within the thyroid gland tissue [3]. Typical 
symptoms of thyroid cancer include the presence of a neck lump (or 
nodule), difficulty in breathing or swallowing, pain, and voice hoarse-
ness. Projections indicate that by 2023, an estimated 1958,310 new 
cases of thyroid cancer are expected, and approximately 609,820 pa-
tients are projected to die from the disease [4]. 

Diagnosis of these diseases relies on screening techniques such as 
ultrasound, CT scans, and MRI, complemented by a biopsy of the thyroid 
gland. The fine-needle aspiration biopsy technique, in particular, ex-
tracts multiple tissue samples from the thyroid, aiding in the 
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determination of cancer type and stage. Furthermore, it facilitates 
treatment follow-up, confirms the complete removal of cancer, and 
provides an evaluation of the patient’s overall health [5]. 

Conventional computer vision techniques have been employed to aid 
in diagnosing diseases from biopsy slides [6,7]. These techniques 
analyze digital images of slides stained with hematoxylin and eosin 
(H&E). While these methods have achieved satisfactory results, their 
accuracy tends to decrease when analyzing samples from tumor mar-
gins, where a variety of pathological states can be observed on a single 
slide. 

To address this challenge, hyperspectral imaging (HSI) has emerged 
as a promising imaging modality to represent biological specimens [32]. 
It has been effectively applied to various tissue types, including breast 
[8,9], oral cavity [10,11], and gastrointestinal cancer [12,13]. HSI, 
resulting from vibrational spectroscopy processes, may be created using 
several measurements like absorbance, reflectance, and transmission. 
With a spectrometer, we modulate the frequency of the electromagnetic 
wave to acquire a sequence of measurements (spectrum) [14]. 

Biological tissues, with their distinct histochemical compositions, 
leave unique spectral signatures that can be captured and interpreted. In 
our initial observations, as illustrated in Fig. 1, the infrared light ab-
sorption patterns of various thyroid tissues revealed significant nuances. 
While the cancerous tissue demonstrated characteristic intensity con-
trasts in its absorption spectrum (Fig. 1(a)), the spectra of goiter and 
healthy tissues shared notable similarities (Fig. 1(b) and 1 (c)). How-
ever, when averaged across all three tissue types, certain regions of the 
spectrum emerged as more distinctive markers for each tissue type 
(Fig. 1(d)). These intricate patterns, although subtle and challenging for 
the human eye to discern, suggest the potential for computational 
techniques, like machine learning, to detect and interpret them. 

Various HSI acquisition methods for thyroid tissue classification 
have been explored in the literature. In 2017, Lu et al. [15] utilized 
ensemble linear discriminant analysis (LDA) in a classification model to 
distinguish thyroid cancer tissues from healthy ones using reflectance 
HSI, achieving an overall accuracy of 92 %. Later in 2019, Taylor et al. 
[16] and O’Dea et al. [17] explored the efficiency of HSI derived from 
Raman spectroscopy. Both studies proposed binary classifications to 
detect cancerous tissue, employing agglomerative hierarchical clus-
tering (AHC) and principal component analysis (PCA), respectively. 
Taylor et al. reported an overall accuracy of 89.8 %, while O’Dea et al. 
achieved an accuracy of 88 %. 

In 2020, Halicek et al. [18] developed a method to detect tumors on 
thyroid and salivary samples. They processed 216 surgical specimens 
from 82 patients, capturing HSI data and measuring reflectance over the 
visible electromagnetic spectrum, ranging from 450 to 900 cm− 1. Their 
method based on convolutional neural network (CNN) reached an ac-
curacy of 78 ± 2 % for all thyroid tumor classifications. 

Edwards et al. [19] examined the use of HSI and multiparametric 
radiomics to predict the aggressiveness of papillary thyroid carcinoma. 
They extracted 120 features to form a feature vector, which was used to 
train various conventional machine learning models. Among these, the 
linear support vector machine (SVM) and quadratic discriminant anal-
ysis (QDA) demonstrated the best performance, each achieving an ac-
curacy of 83 % and an area under the ROC curve (AUC) of 85 %. 

Recently, Tran et al. [20] proposed a video transformer network for 
detecting thyroid cancer in hyperspectral histological images. After 
collecting HSI from 49 whole slides of thyroid cancer and employing five 
data augmentation techniques to enrich the dataset, their method ach-
ieved an accuracy of 89.64 % and an F1 score of 88.1 % on the test 
database. 

Fig. 1. Minimum, maximum, and average spectrum for each tissue type.  
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In contrast to the existing literature (Table 1), this study expands the 
tissue analysis to include both cancerous and goitrous tissues, in light of 
the high prevalence of goiter. This approach allows for a more 
comprehensive understanding of thyroid pathologies and their varied 
presentations. Our methodology comprises a comprehensive pipeline, 
including data acquisition, preprocessing, and a custom voxel-based 
classification model developed using a fully-connected neural network 
(FCNN). Furthermore, we compare our proposed method against tradi-
tional machine learning algorithms through experimentation to discern 
the most effective AI model for this task. 

While current research focuses primarily on the binary classification 
of thyroid tissue using reflectance or Raman spectroscopy within the 
visible spectrum range, histological slides often contain multiple di-
agnoses, including inflammatory diseases, that may not be adequately 
addressed by a binary model applied to an entire sample. Furthermore, 
while convolutional neural networks (CNNs) and traditional machine 
learning algorithms are commonly employed to detect patterns and 
develop classification models for HSI samples, a variety of other deep 
learning approaches can provide additional opportunities for data 
modeling and pattern recognition, thereby enhancing data representa-
tion and comprehension. As such, there exist several research ap-
proaches that could be explored to bridge these gaps, including: (i) 
investigating the utility of alternative optical measurements such as 
absorbance and transmission; (ii) exploring other spectral ranges, 
including the infrared range with wavelengths from 700 to 1800 cm− 1, 
and far-infrared frequencies exceeding 1800 cm− 1; (iii) assessing the 
effectiveness of other deep learning architectures, such as FCNN, 
recurrent neural networks (RNN), and 1-dimensional convolutional 
neural networks (1D-CNN) in identifying patterns within spectral data; 
and (iv) evaluating various data modeling options, such as voxel-based 
and volume-based classifications. 

Therefore, the main contributions of this paper are: 

• Deployment of an HSI acquisition process using absorbance spec-
troscopy over the infrared spectrum (micro-FTIR), ranging from 750 
to 1800 cm− 1. 

• Development of a multi-classification model capable of distinguish-
ing between cancerous, healthy, and goiter tissue.  

• Inclusion of a binary evaluation for tissue classification in addition to 
multi-classification.  

• Evaluation and implementation of a voxel-based HIS classification 
method.  

• Design of a custom fully-connected neural network to detect patterns 
across the spectrum.  

• Benchmarking of traditional machine learning methods against the 
proposed FCNN. 

2. Background 

Spectroscopy is a research area that investigates the interaction of 
light with the atoms and molecules within a specific material, resulting 
in emission, absorption, reflection, or transmission. Emission 

spectroscopy characterizes the quantity of electromagnetic radiation 
emitted by a substance. Absorption, reflection, and transmission spec-
troscopy, on the other hand, reveal how a material interacts with light, 
providing crucial information about its composition. At specific fre-
quencies, these interactions can be utilized to identify a material based 
on its histochemical reaction [14]. 

Micro-Fourier Transform Infrared (Micro-FTIR) absorbance spec-
troscopy is a specific vibrational spectroscopic technique that utilizes 
infrared radiation, which is absorbed by the tissue’s molecules. This 
technique generates unique spectral patterns to characterize each tissue 
structure. These patterns are specific to the structure and composition of 
the sample, thereby facilitating the precise differentiation and identifi-
cation of various substances [21]. In the context of our study, 
Micro-FTIR absorbance spectroscopy enabled the differentiation be-
tween healthy and pathological thyroid tissues based on their distinct 
absorbance spectra. The key advantage of this method lies in its high 
sensitivity and specificity, which offer detailed insights into the molec-
ular structures of biological tissues without requiring any intrusive 
procedures or staining. 

Researchers study and measure the interaction of light with mate-
rials using specialized equipment known as a spectrometer. This device 
generally includes a light source along with a prism or a similar 
component that separates this light into various frequencies. The spec-
trometer then directs these frequencies onto the material under exami-
nation. Following this, a sensor records the intensity of light that the 
material absorbs, reflects, transmits, or emits, providing valuable in-
sights into its properties. 

A typical digital image consists of three-color channels — green, red, 
and blue (RGB) — each corresponding to the intensity of wavelengths 
within a range from approximately 400 to 700 cm− 1. In contrast, a 
hyperspectral image (Fig. 2) contains a substantially larger number of 

Table 1 
Literature overview on hyperspectral imaging for thyroid tissue classification.  

Article Optical Method Spectral Band Classification 
Method 

Lu et al. [15] Reflectance 450 to 900 cm− 1 LDA 
Taylor et al. [16] Raman 400 to 3000 cm− 1 AHC 
O’Dea et al. [17] Raman 400–1800 cm− 1 PCA 
Halicek et al. [18] Reflectance 450 to 900 cm− 1 CNN 
Edwards et al.  

[19] 
Not specified 450 to 900 cm− 1 SVM and QDA 

Tran et al. [20] Transmittance 470 to 720 cm− 1 Transformers 
Our work Absorbance 750 to 1800 

cm¡1 
FCNN  

Fig. 2. Absorbance spectrum of a single HSI voxel.  
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channels, such as 400 to 500 channels, approximately one channel for 
each minor wavelength or interval, usually around 300 to 400 in-
tensities along the wavelength. This structure allows each voxel in the 
hyperspectral image to store a spectrum of intensities corresponding to a 
portion of the examined material, hence providing a much richer rep-
resentation of its properties [22]. 

After the acquisition of the spectral data using one of the above- 
mentioned spectroscopy methods, such as Micro-FTIR, we can 
generate a hyperspectral image. This image is a three-dimensional data 
structure where each voxel encapsulates the spectrum for a specific 
point in the specimen, capturing not only spatial information but spec-
tral details about the composition and structure of the tissue [14,23]. 

3. Methodology 

Our method comprises several steps for hyperspectral image anal-
ysis. First, we preprocess the hyperspectral image by eliminating irrel-
evant data such as colloids through a high pass filter applied in the 
frequency domain (Fig. 3– Step 1). We then enlarge the cell area using a 
morphological operation (Fig. 3- Step 2). After that, we create a binary 
mask (Fig. 3- Step 3) to select valid voxels over the HSI and generate a 
voxel dataset. Later, this dataset is used to train a classification method 
(Fig. 3- Steps 4 to 6) that detects patterns across the voxels. To ensure 
real-world applicability, we also developed a data augmentation tech-
nique using Gaussian noise to effectively increase the database’s vari-
ability. In the following sections, we provide an in-depth discussion of 
the implementation and significance of these steps. 

3.1. Hyperspectral imaging acquisition 

In this study, we obtained 60 micro-array thyroid samples from 
different patients, each representing healthy, goiter, and cancerous tis-
sues (20 samples each). The goiter tissue group contained samples of 
both hyperplastic and colloid goiter, while the cancer tissue group 
comprised samples of papillary and follicular carcinomas. These histo-
logical specimens were acquired from a specialized company, US Bio-
max Inc., located in Rockville, USA. The samples were pre-labeled by the 
company’s pathologists and were later confirmed and reviewed by two 
highly experienced pathologists specialized in thyroid tissue, one from 
the Department of Pathology at the Ribeirão Preto School of Medicine of 
the University of São Paulo, and the other from the Pathology Service of 
the Clinical Hospital of Ribeirão Preto. 

We utilized ex vivo samples, which were collected in two adjacent 
slices. One slice from each sample was prepared specifically for spectral 
analysis, while the other was processed for standard histological ex-
amination, including hematoxylin and eosin staining. This dual- 
preparation approach ensured that the hyperspectral imaging analysis 
was conducted on samples in a state that closely simulates what is 
typically encountered in a clinical or surgical setting. Furthermore, it 
enabled us to effectively correlate the hyperspectral data with tradi-
tional histological findings, thereby enhancing the robustness and clin-
ical relevance of our analysis. 

Our study aims to differentiate histological tissues based on their 
absorbance intensity within the infrared spectrum. To perform these 
measurements, we used a Perkin Elmer Spotlight 400 micro-FTIR 
spectrometer (PerkinElmer, Waltham, Massachusetts, U.S.A.) equipped 

with a liquid nitrogen-cooled mercury− cadmium− telluride (MCT) de-
tector, connected to a microscope, to capture the absorbance intensity of 
thyroid tissue within an infrared spectrum range of 778 to 1800 cm− 1. 
Utilizing the spectral mapping technique, we collected measurements at 
two frequency intervals, resulting in 512 intensity readings per voxel. 
The system provides a spectral resolution of 4 cm− 1 and a spatial reso-
lution of 6.25 μm. To ensure the accuracy of our measurements, we 
performed the HSI acquisition under controlled dry-air conditions, 
keeping relative humidity below 5 %. The Spectrum Image software 
(PerkinElmer) automatically subtracted a background spectrum, which 
was obtained from the CaF2 window through 240 accumulations, from 
every image collected. 

3.2. Preprocessing and data augumentation 

In the initial preprocessing stage, we removed noise such as hu-
midity, cosmic rays, and background from the raw signal using a two- 
step process. First, we applied the second derivative to the signal, 
which helps reveal important features that might otherwise be hidden. 
After that, we applied the Savitzky-Golay filter to smooth the data using 
polynomial fitting techniques [24]. We chose this filter specifically for 
its effectiveness in smoothing the spectral signal, with the main goal of 
eliminating noise and attenuating narrow water bands within the 1350 
to 1800 cm− 1 range. 

After preprocessing, we excluded data that was not pertinent to our 
study, specifically colloids. Colloids, found in thyroid follicles, store 
hormones but do not contribute to our research objective of dis-
tinguishing between cancerous, goiter, and healthy tissue. Therefore, we 
implemented a segmentation process (Fig. 4) to isolate the regions of 
interest, which are cellular-based structures. This process involved 
creating a binary mask, using a high-pass filter in the frequency domain 
to emphasize the cellular borders (Fig. 4(c)), and expanding the detected 
region using opening morphological operation (Fig. 4(d)). 

To enhance the robustness, we employed Standard Scalar normali-
zation [25]. This technique adjusts the values within the dataset to have 
a mean of zero and a standard deviation of one, thus standardizing the 
range and distribution of the data. By doing so, we mitigated the po-
tential impact of outlier values and scale disparities among frequencies, 
thereby ensuring a more balanced and representative analysis. 

Also, to reduce the dimensionality of our problem and to avoid po-
tential negative influences from irrelevant frequencies, we utilized the 
SelectKBest algorithm. This feature selection method computes the chi- 
square statistic between each frequency and the target class, allowing us 
to concentrate on the 100 most impactful frequencies — as determined 
by their chi-square scores — out of the total 512 measured. 

To create a robust classification model that avoids overfitting and 
that is applicable to real-world cases, it is essential to establish a data-
base encompassing a broad range of scenarios. Data augmentation en-
hances data variability, aiding the development of a more generalized 
classification model. In this study, we adopted a data augmentation 
approach that involved the addition of noise based on the Gaussian 
distribution. This approach simulates natural variations in data by 
generating noise following the Gaussian, or normal, distribution and 
adding it to the original data. The mean and standard deviation of the 
distribution were calculated from the original data, ensuring the noise 
was relevant and representative. This method helps increase the 

Fig. 3. Overview of the proposed method.  
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robustness of our model by effectively expanding the variability within 
the dataset, thereby allowing our model to learn and generalize better 
from more diverse data. The Gaussian noise is calculated according to 
the following equation: 

P(x) =
1

σ
̅̅̅̅̅
2π

√ e− (x− μ)2/2σ2  

where σ is the standard deviation, μ is the mean, and the σ2 is the 
variance. 

The addition of inputs with noise, a form of data augmentation, 
contributes to the creation of a more generalized classification model 
[26,27]. Data augmentation is applied only to the training set, with the 
test set composed of voxels from patients not previously seen during 
training. This approach ensures no overlap of patients between the 
training and testing subsets. 

After preprocessing the dataset, we created a voxel dataset con-
taining all valid voxels from the HSI image. Excluding augmented data, 
background, and colloids, our dataset contains a total of 104,107 voxels 
from 60 hyperspectral images. The dimensions of the hyperspectral 
images typically vary around 300 × 300 pixels in width and height. 

3.3. Deep neural network architecture 

Our spectral dataset is formatted as an array, with each voxel as a 
separate sample. To effectively detect patterns and develop a classifi-
cation model, we utilize a FCNN, also known as a dense neural network. 
FCNN is very effective for tasks involving array-formatted data, as its 
architecture allows each neuron in one layer to be connected to all 
neurons in the subsequent layer. This characteristic enables a compre-
hensive exploration of interconnections and potential patterns within 
the data, making FCNN a fitting choice for our classification task. 

The FCNN architecture developed in our study consists of eight 
layers, of which one is the input layer, six are hidden layers, and one is 
the output layer. The input layer has 100 neurons, corresponding to the 
100 frequencies identified earlier by the SelectKBest algorithm. Each of 
the six hidden layers features 86 neurons, all employing the rectified 
linear unit (ReLU) activation function. To prevent overfitting and to 
improve model generalization, a dropout layer is added after each dense 
layer, set to randomly deactivate 40 % of the neurons. Finally, the 
output layer comprises three neurons, each representing one of the 
study’s classes: cancerous, goiter, and healthy tissues. This layer em-
ploys the softmax activation function to provide a probability distribu-
tion over these three classes. 

In addition to the aforementioned hyperparameters, we employ the 
RMSProp optimization algorithm and used the categorical cross-entropy 
function as the loss function to compute the difference between actual 
and predicted values during the training process. We ran the model for 
2000 epochs which were sufficient for the model to converge to optimal 

accuracy, and the batch size of 15,000 was chosen to maximize data 
utilization within the GPU’s VRAM capacity. 

In order to apply the FCNN for binary evaluation, we reduced the 
number of neurons in the last layer to two, corresponding to the two 
classes being evaluated. The softmax activation function, previously 
used for the multiclass evaluation, remained the same. Furthermore, we 
adjusted the loss function to binary cross-entropy. 

3.4. Benchmark methodology 

To compare the proposed deep learning model and to identify the 
classification method best suited to this problem, we propose a bench-
mark with traditional machine learning algorithms. In total, eleven al-
gorithms were tested: (i) quadratic discriminant analysis (QDA), (ii) 
naive Bayes, (iii) decision tree, (iv) AdaBoost classifier, (v) k-nearest 
neighbors (KNN), (vi) random forest, (vii) extreme gradient boosting 
(XGBoost), (viii) support vector machine with a linear-based function 
(linear SVM), (ix) SVM with a polynomial-based function (polynomial 
SVM), (x) SVM with a radial-based function (radial SVM), and (xi) 
multilayer perceptron (MLP). 

All the data processing steps used for deep learning were also applied 
in this benchmark, including best frequency selection and standard 
scalar normalization. The algorithms were implemented using the 
default parameters in the Scikit-Learn library, except for the KNN al-
gorithm where the value of K was set to 76. 

4. Experimental design 

The development of the proposed method and the experiments were 
conducted on a Linux Ubuntu 22.04 server, with two Intel Xeon Silver 
processors, 192 GB of RAM DDR4, and two NVIDIA RTX A4000 video 
cards. We implemented the method using Python 3.9 programming 
language with the Tensorflow 2.10 [28] and Scikit-Learn 1.2 [29] 
libraries. 

Thyroid HSI were evaluated under a three-experiment scheme: 
multiclass (healthy, goiter, and cancer) evaluation with deep learning, 
binary (all versus all in pairs) evaluations with deep learning, and 
multiclass evaluation with traditional machine learning methods. In 
order to prove the initial hypothesis of the work, the objective of these 
experiments is to evaluate (i) the performance of the FCNN in detecting 
patterns in a multiclass approach; (ii) the performance of FCNN in 
detecting patterns in a binary approach; (iii) compare the complexity 
and differences between binary and multiclass approaches; (iv) evaluate 
the performance of deep learning against traditional machine learning 
techniques. 

The experiments we conducted followed the K-fold cross validation 
experiment protocol in an inter-patient manner. In this protocol, the 
entire voxel dataset is separated into K parts, with K equal to 10, of 
which at each interaction, K − 1 parts are used for training and one is 

Fig. 4. Process of acquiring the region of interest (ROI) throughout FFT High-Pass Filter and enhancing using opening morphological operation. In (a) the original 
HIS image in the frequency 1604; (b) is its respective FFT Image; in (c) is the preliminary ROI detection after the application of the high-pass filter; and in (d) is the 
final ROI after morphology. 
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used for testing. As this model follows the inter-patient format, the pa-
tients contained in the test are different from the patients contained in 
the training base, with no repetition or data leakage between the bases. 

The evaluation of the methods consists of calculating five efficiency 
metrics: accuracy (ACC), precision (PRE), sensitivity (SEN), specificity 
(SPE), and the area under the receiver operating characteristic curve 
(AUC). These metrics measure the overall effectiveness of the model in 
addition to in-class detection efficiency and enable comparison in the 
format of a benchmark. 

5. Results 

The quantitative evaluation of the multiclass FCNN achieves an 
average accuracy of 93.66 % and an average AUC of 98.62 %, demon-
strating the method’s overall efficacy (Table 2). Furthermore, our deep 
learning-based method achieved a sensitivity of 93.47 %, indicating a 
robust ability to detect the positive classes. Among the experiments, the 
highest success rates were achieved in fold 4 (97.28 %) and fold 3 (96.63 
%). The lowest result, found in fold 0, achieved an accuracy of 89.82 %, 
which is still considerably higher than 33.33 %, the expected accuracy of 
a random guess in a three-class problem. This illustrates the model’s 
capacity to distinguish between the three classes. 

This average accuracy rate can also be observed in the classification 
of external validation samples. Fig. 5 contains three distinct tissue 
samples: malignant tumor (Fig. 5(a) – (c)), healthy (Fig. 5(d) – (f)) and 
goiter (Fig. 5(g) – (i)). Each sample has its respective voxel classification 
map generated by our model, providing a visual interpretation of the 
classification process. These three samples were left out of the training 
and testing process in order to visually validate the classification 
generated by the model. From the classification maps, we observe that 
93 % of the voxels are correctly classified. 

Upon analyzing the misclassifications, two distinct cases emerged: 
the model occasionally misidentified cancerous voxels as goiter, and it 
also incorrectly classified some normal voxels as goiter. This pattern can 
also be observed from the binary analysis of the classifier (Table 3). The 
differentiation between healthy and cancerous tissue reached an 
average accuracy of 98.73 % while between cancer and goiter, and 
healthy and goiter reached an overall accuracy of approximately 94 % 
each. We can infer from this observation that the goiter spectrum tends 
to approximate both healthy and cancerous spectra, which makes the 
classification process harder. 

Regarding the benchmark with traditional methods, the MLP, 
XGBoost, and Radial SVM achieved performance above 90 %, showing a 
good ability to detect patterns in the absorbance intensity of the infrared 
light (Table 4). Although they achieve lower performance compared to 
deep learning, these methods stand out as possible methods to integrate 
an ensemble learning system. 

6. Discussion 

Our analysis of hyperspectral images presents a unique approach to 
the diagnosis of thyroid pathologies on histological specimens. While 
most existing literature is focused on binary classification using reflec-
tance spectroscopy, we have introduced a novel method using a multi-
class approach in the context of hyperspectral imaging. This 
methodology has the potential to be extended to other subtypes of 
thyroid pathologies, such as inflammatory diseases, thereby enhancing 
its potential to make a significant impact in the field of medical 
diagnostics. 

Furthermore, our method brings another novelty, a voxel-based 
analysis in hyperspectral imaging. This approach allows the detection 
of multiple or mixed pathologies within a single sample. By breaking 
down the hyperspectral image into individual voxels and classifying 
each one independently, we can pinpoint distinct areas of the tissue 
sample, effectively overcoming the challenge of similar-looking pa-
thologies and improving the overall diagnostic accuracy. 

Table 2 
Quantitative evaluation of the multiclass FCNN.  

Fold ACC PRE SEN SPE AUC 

0 89.82% 90.17% 89.68% 95.11% 97.38% 
1 98.40% 98.47% 98.32% 99.24% 99.80% 
2 94.21% 94.35% 94.04% 97.18% 99.37% 
3 96.63% 96.70% 96.57% 98.35% 99.71% 
4 97.28% 97.42% 97.06% 98.71% 99.72% 
5 91.50% 91.62% 91.41% 95.82% 97.41% 
6 91.33% 91.47% 91.13% 95.75% 97.32% 
7 92.25% 92.27% 92.17% 96.14% 97.88% 
8 90.21% 90.69% 89.63% 95.40% 98.47% 
9 95.03% 95.25% 94.77% 97.64% 99.15% 
Mean 93.66% 93.84% 93.47% 96.93% 98.62% 
Std. Dev ±2.92 ±2.84 ±2.97 ±1.41 ±0.99  

Fig. 5. Classification Map of External Validation Samples. Each pixel color 
denotes a diagnosis, with blue for goiter-classified voxels, green for healthy- 
classified voxels, and red for cancer-classified voxels. 

Table 3 
Average results for the binary FCNN.  

Classification Type ACC PRE SEN SPE AUC 

Cancer & Healthy 98.73% 98.73% 98.73% 98.73% 99.53% 
Cancer & Goiter 94.95% 94.95% 94.95% 94.95% 97.02% 
Healthy & Goiter 94.43% 94.43% 94.42% 94.43% 97.43%  

Table 4 
Benchmark with traditional machine learning algorithms.  

Classifier ACC PRE SEN SPE AUC 

QDA 49.41% 77.92% 49.01% 49.01% 74.83% 
Naive Bayes 74.12% 74.20% 75.13% 75.13% 89.10% 
Decision Tree 79.67% 78.12% 79.59% 79.59% 84.84% 
Adaboost 81.70% 81.54% 83.00% 83.00% 91.98% 
KNN 84.60% 83.94% 85.23% 85.23% 95.48% 
Random Forest 87.31% 86.64% 87.87% 87.87% 96.95% 
SVM Linear 88.31% 89.89% 89.97% 89.97% 95.50% 
SVM Polynomial 88.34% 88.43% 89.91% 89.91% 95.10% 
MLP 90.37% 91.35% 92.15% 92.15% 99.24% 
XGBoost 90.64% 90.47% 91.28% 91.28% 98.61% 
SVM Radial 92.59% 92.78% 93.62% 93.62% 98.19%  
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Data augmentation played an important role in enhancing the per-
formance of our model. With our dataset being relatively small, there 
was a risk of overfitting, which could have led to a less generalized 
model. However, by employing data augmentation techniques along 
with a dropout layer, we increased the data variability of our training 
data by around 3–4 %, strengthening the robustness of our model. 

During our experiments, we methodically evaluated the influence of 
varying frequency counts on our model’s performance. It was observed 
that selecting fewer than 100 frequencies led to a deterioration in the 
model’s diagnostic accuracy while increasing this number beyond 100 
did not yield any notable improvements. Consequently, we identified 
the optimal count to be 100 frequencies, which exhibited the highest 
scoring rate based on their chi-square output. These frequencies, ranging 
from approximately 810 to 1728 cm− 1, serve as valuable markers for 
disease detection in thyroid tissues. This wide span comprehensively 
covers various biochemical components that contribute to the overall 
histological composition of the thyroid tissue. The literature indicates 
that these frequencies correspond to specific vibrational modes of mol-
ecules prevalent in pathological conditions, such as carbohydrates 
around 1020 to 1155 cm− 1; lipids from 1220 to 1470 cm− 1; proteins on 
1204, 1240, 1280 and 1400 cm− 1; deoxyribonucleic acid (DNA) and 
ribonucleic acid (RNA), from 1666 to 1717 cm− 1 [30,31]. 

The limited size of our dataset impacted the complexity of the ma-
chine learning model we could train for detecting patterns in the HSI 
spectrum. Acquiring and labeling hyperspectral images is a complex task 
that demands the time and expertise of both physicians and pathologists. 
The addition of augmented data did improve the model’s generaliz-
ability, suggesting that with an expanded dataset our proposed method 
could be scaled up to process larger data collections, potentially 
achieving even better results. 

A limitation of our work, which also opens up opportunities for 
further studies, lies in goiter detection. We noticed that goiter is typi-
cally harder to differentiate from the other two classes as their binary 
assessment reaches 4 % less in the evaluated metrics. This finding paves 
the way for further research into improved methods of representing 
goiter data, such as combining additional optical methods, expanding 
the range of frequencies measured, or even evaluating the performance 
of other deep learning models such as recurrent neural networks and 1D 
convolutional neural networks, besides the ensemble of them. 

Besides our approach for thyroid HSI classification, it may achieve 
potential clinical applications beyond thyroid pathology. Micro-FTIR 
spectroscopy with a multiclass FCNN could be adaptable to diagnose a 
range of other diseases, including breast, oral cavity, and lung cancer. 
The voxel-based analysis enables precise detection of multiple pathol-
ogies within a single sample, which could be very practical in clinical 
diagnostics. This approach could enhance disease detection accuracy, 
potentially leading to improved patient outcomes. 

The integration of real-time HSI with advanced AI analysis presents a 
tool for surgeons, especially during intricate procedures. This combi-
nation has the unique capability to assist in the precise identification of 
various tissue types, offering a level of detail that exceeds what standard 
imaging techniques can provide. One advantage of HSI is its efficacy in 
analyzing biopsies that are inadequately prepared for traditional histo-
pathological examination. Different from traditional computer vision 
methods, which depend on well-stained and properly processed sam-
ples, HSI leverages the distinct spectral signatures inherent in tissues. 
This allows for a comprehensive characterization of tissue types, even 
from samples that are poorly stained or not optimally prepared. 

Moreover, our paper tackles the thyroid tissue problem using a 
multiclass approach, which, despite increasing complexity, has yielded 
very promising results. This strategy also opens avenues for exploring a 
broader range of thyroid tissue types in future research. For instance, 
subsequent studies could focus on more detailed classifications, such as 
determining whether the tissue is a goiter and further categorizing it into 
specific types, like hyperplastic or colloid. Similarly, there is potential to 
specify the type of carcinoma, whether it be papillary or follicular. 

The voxel-based analysis of micro-FTIR spectroscopy spectra, uti-
lizing an FCNN, marks a significant advancement in the classification of 
thyroid tissues, providing a sophisticated means of detecting patterns 
indicative of cancer, goiter, or healthy states. The principal advantage of 
our method lies in its capacity to analyze hyperspectral images at the 
voxel level, facilitating the detection of multiple or mixed pathologies 
within a single specimen—an accomplishment that exceeds the capa-
bilities of traditional binary classification methods. Despite these 
promising advantages, a primary limitation stems from the method’s 
complexity and the requirement for specialized instrumentation in the 
clinical setting, specifically a spectrometer. Additionally, the differen-
tiation of goiter from other thyroid pathologies poses a challenge, as 
reflected by a modest decrease in performance metrics. 

For future work, we plan to evaluate the performance of an ensemble 
method based on the findings from our benchmark and to integrate the 
proposed method into a practical tool designed to assist pathologists in 
their daily diagnostic routine. Additionally, we aim to explore the po-
tential of integrating additional patient metadata along with patholog-
ical images to further enhance the model’s predictive capabilities. 

7. Conclusion 

Through hyperspectral imaging using micro-FTIR, our study 
confirmed the ability to distinguish between thyroid pathologies in 
histological samples. Our deep learning model adeptly identified 
healthy, cancerous, and goiter-affected tissues, presenting a ground-
breaking tool for pathologists. Despite dataset size constraints, our re-
sults evidence the diagnostic potential and precision this approach 
offers. 
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