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Abstract

Objectives: Segmentation is crucial in medical imaging.
Deep learning based on convolutional neural networks
showed promising results. However, the absence of large-
scale datasets and a high degree of inter- and intra-
observer variations pose a bottleneck. Crowdsourcing
might be an alternative, as many non-experts provide ref-
erences. We aim to compare different types of crowd-
sourcing for medical image segmentation.
Methods: We develop a crowdsourcing platform that
integrates citizen science (incentive: participating in the
research), paid microtask (incentive: financial reward), and
gamification (incentive: entertainment). For evaluation, we
choose the use case of sclera segmentation in fundus images
as a proof-of-concept and analyze the accuracy of crowd-
sourced masks and the generalization of learning models
trained with crowdsourced masks.
Results: The developed platform is suited for the different
types of crowdsourcing and offers an easy and intuitive
way to implement crowdsourcing studies. Regarding the
proof-of-concept study, citizen science, paid microtask, and
gamification yield a median F-score of 82.2, 69.4, and 69.3 %
compared to expert-labeled ground truth, respectively.
Generating consensus masks improves the gamification
masks (78.3 %). Despite the small training data (50 images),
deep learning reaches median F-scores of 80.0, 73.5, and
76.5 % for citizen science, paid microtask, and gamification,
respectively, indicating sufficient generalizability.

Conclusions: As the platform has proven useful, we aim
to make it available as open-source software for other
researchers.

Keywords: crowdsourcing; image segmentation; deep
learning; platform

Introduction

Image segmentation is the process of detecting (inter-
connected) regions with similar properties. This involves
localization of the region, its delineation, and if multiple
objects are within the image, the assignment of labels. The
output is a mask in which each pixel is assigned to a label or
to the background. Segmentation plays a vital role in many
applications in medical imaging [1, 2].

Recently, deep learning (DL) has shifted the segmenta-
tion paradigm [3, 4]. DL outperforms conventional machine
learning (ML) using hand-crafted features and parameters
based on domain knowledge, as it considers training data for
automatically computing a model that describes the rela-
tionship between input (image) and output (mask) in an end-
to-end fashion. For example, convolutional neural networks
(CNN) such as the U-Net [5] are used in many medical
imaging applications [6].

The accuracy of DL increases with the quantity and
quality of training data. For supervised learning, the training
images need additional ground truth annotations, which are
tedious and time-consuming to generate. Annotated data-
bases for everyday images are freely available but for
medical imaging, large and carefully expert-labelled data-
sets are rare [7]. In addition, many of the available datasets,
such as the ones used in scientific challenges, e.g. theMICCAI
challenges, can rather be assumed to be “silver standards” as
they do not require the same strict criteria as gold standards
[8]. Ker et al. consider the lack of ground truth as the main
bottleneck for DL-applications in medical imaging [9].

Domain experts bear another unsolved problem, as
they yield inter- and intra-observer variability. Therefore,
expert-trained models often cannot generalize to real-
world data. To account for intra-observer variability, more
experts can create more annotations, but this increases
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costs and efforts. Furthermore, a consensus must be
created from multiple annotations. Algorithms like the
simultaneous truth and performance level estimation
(STAPLE) are useful [10]. Based on expectation-
maximization, STAPLE computes a consensus mask and
improves generalization [11].

In previous work, we investigated the influence of
training data characteristics on segmentation accuracy [12].
We segmented the sclera in photographs of the human eye
which is an important preprocessing step in biometrics [13],
medical research [14], diagnostics [15], and clinical trials [16].
We analyzed the total number of trainings images vs. the
number of masks per image [12]. According to our results,
more images with fewer masks yield better results but a
minimum of three masks is required to obtain adequate
STAPLE results.

In 2006, the term “crowdsourcing” was coined with
promising results in various fields of research [17]. There are
multiple definitions of crowdsourcing in the literature,
which usually involve a large group of individuals that are
connected via the internet and perform an open task pro-
posed by an imitator and the fulfillment of the task results in
a benefit which might be monetary but might also be social
recognition or self-esteem [18]. Motivation is a key factor for
crowdsourcing and depending on the incentive, different
methods can be defined:
– Citizen science motivates by participating in science [19],
– Paid microtask by receiving payment [20], and
– Gamification by entertainment [21].

Typical crowdsourcing collects or annotates data for
research (e.g., image classification). Recently, crowdsourcing
of image segmentation has been comprehensively reviewed
[22]. For example, in 2021, Bafti et al. presented a crowd-
sourcing platform for the semi-automatic image segmenta-
tion in cell biology [23], and Marzahl et al. introduced a
collaboration toolset for local image annotations [24]. In
previous work, we build an internet platform for crowd-
sourcing image segmentation provided by citizen scientists
[25]. However, these approaches do not compare different
types of motivation. So far, the accuracy of paidmicrotask or
gamification has not been directly compared to citizen sci-
ence in the medical domain.

In this work, we present a novel platform for crowd-
sourcing that offers different crowdsourcing methods as no
“out-of-the-box” software is available for this task. As a proof-
of-concept study, we segment the sclera in photographs of the
human eye. For each crowdsourcing method, we quantita-
tively analyze the accuracy of the acquired masks and asso-
ciated costs and compare the different methods among each
other. We aim to answer the following questions:

– Platform: Is the platform suitable for integrating different
crowdsourcing methods?

– Proof-of-concept-study: How accurate are the crowd-
sourced masks compared to expert delineations and how
suitable are they for training of a DL model?

Related work

Citizen science has a long history in medical imaging.
Albarqouni et al. developed a web platform for mitosis
detection in breast cancer histology images that they used
for DL training [26]. Regarding image segmentation, Maier-
Hein et al. used endoscopy data from laparoscopic surgeries
[27], and Grote et al. used microscopy images annotated by
third-year medical students [28]. All works report the feasi-
bility of citizen science for medical image segmentation but
differ in the reported quality.

The concept of gamification was introduced approxi-
mately a decade ago and found applications in education,
advertising, and e-health [29]. To make non-game activities
more entertaining, gamification adds elements such as [30,
31]: (i) points rewarding successfully finishing a task, (ii)
leaderboards ranking gamers by their points, or (iii) badges
visualizing important achievements. In addition, messages
or voice communications enable direct interconnection
between the gamers. In medical applications, for instance,
Balducci et al. proposed games for skin lesion analysis in
dermatology [32]; Ionescu et al. suggested a game for opti-
mizing computer-aided detection inmammography [33], and
Mavandadi et al. developed a game with red blood cell
images for malaria diagnosis [34]. Arganda-Carreras et al.
organized a challenge on electron microscopic images of the
brain [35]. The medical data donors project (https://www.
medicaldatadonors.org/) offers a variety of games for
different medical images. Recently, major studios (Gearbox
Studio Québec, CCP Games) integrated crowdsourcing games
into their commercial video games [36, 37].

Paid microtask require a platform handling the finan-
cial rewards, such as Amazon’s Mechanical Turk (MTurk)
(https://www.mturk.com/). A requester defines a human
intelligence task (HIT) associated with a description, quali-
fication constraint, and payment. All HITs are offered to
“paid crowdworkers”, who freely decide which HIT to
perform. Gurari et al. used a library of biological and
biomedical images, which were segmented by MTurk paid
crowdworkers [38]. Sharma et al. used the crowd for seg-
menting of chromosomes in microscopic cell spreads [39].
Heim et al. analyzed liver segmentation in abdominal CT [40]
and Cheplygina et al. airway annotation in chest CT [41].
Regarding images of the eye, Mitry et al. performed different
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studies with retinal images for detecting clinically relevant
features that can also be detected by ophthalmologically
naive individuals [42–44]. All authors report principle
feasibility, but Heim et al., for instance, reported up to 30 %
of unusable segmentations [40].

Recruitment and motivation is a major problem of all
types of crowdsourcing [45]. However, only a few attempts
have been made to combine incentives: Feyisetan et al.
improved paid microtasks by gamification: they added game
levels and a leaderboard [46]. Bowser et al. used mobile apps
to recruit citizen scientists [47]. Tinati et al. integrated a real-
time chat and activity feeds to furthermotivate the users [48].

Materials and methods

Requirements of the platform

We aim to develop a platform integrating three types of crowdsourcing
methods for image segmentation, addressing (i) citizen scientists, (ii)
paid crowdworkers, and (iii) gamers. The platform is intended to be
task-oriented with a task consisting of a set of images, an informative
text about the task, the number of desired masks per image, and one or
multiple types of crowdsourcingmethods that should be used to acquire
the masks. The three different users groups should interact in different
ways with the platform.

The admin should be able to define a task and its parameters and
to import images which are then stored in a database. There needs to
be a way to monitor or abort running tasks. After cancellation or
completion of a task, the generated masks should be available for
downloaded. Additionally, an interface to MTurk is required which
allows to (i) see all running human intelligence tasks (HITs) on the
MTurk platform, (ii) analyze their status (number of pending or per-
formed segmentation), or (iii) cancel a running HIT.

A citizen scientist should be able to register at the platform and
after login, a personal dashboard shall be offered. The dashboard should
show the list of available tasks as well as graphical elements indicating
performance, i.e., the activity in the past months and a user level, which
is based on the number of created masks.

A paid crowdworker should not directly interact with the platform
but only via the AmazonMTurk platform. For that, the platformneeds to
be able to transfers all parameters of a task to MTurk, making it
accessible as a HIT on AmazonMTurk. A Gamer should also not directly
interact with the platform with all data exchange taking place in the
background between the game and the platform.

In addition, the platform requires several background services, e.g.
for regular backups and for mask processing, e.g. the STAPLE algorithm
to combine several masks into an aggregated one.

Crowd acquisition

Our previous work [12] indicates that for sclera segmentation, three to
five masks with STAPLE yield adequate consensus quality. To generate
four masks for each image, we acquire data from the crowd with
different strategies:

– Citizen scientists: We invite volunteers (students, trainees, other
university members) per e-mail to contribute to our research
project voluntarily without offering financial reward. We ask each
participant to generate a single mask for each image and randomly
pick four masks for each image.

– Paid crowdworkers: For each image, we define a HIT with four
assignments. Thereby, four workers generate amask.We pay 0.10$
per mask to all workers of any qualification who fulfill the HIT
within 2 min.

– Gamers: We invite volunteers (students, trainees, other university
members) per e-mail and ask if they are interested in playing a new
game. If they reply positive, we schedule an appointment with 4–6
volunteers and meet using a free video conference tool. In that
meeting, we present the game to the gamers and ask them to play.
The video conference system allows the gamers to communicate
with each other. We organized four appointments with different
gamers.

Deep learning architecture

We use acquired masks to train a UNet as UNets can cope with low
numbers of training data [5]. For implementation, we use a Python API
[49], which is based on PyTorch and related libraries (torch==1.8.1,
torchvision==0.9.1, pillow==8.2.0, scipy==1.6.2).

We apply a VGG-16 pre-trained model, which was initially pro-
posed by the Visual GeometryGroup (VGG) of OxfordUniversity [50] and
adjust the learning rates using the Adam optimizer [51] and a binary
cross entropy loss function. Initial learning rates are 10−4 and 10−6 for the
decoder and encoder, respectively. We kept the number of epochs
dynamically to account for early stoppingwith amaximumof 20 epochs.
If the validation error does not decreasemore than a threshold of 0.0008
for three epochs we lower the decoder learning rate by a factor of 10. If
for another three epochs there is again no improvement, we stop the
training. To increase generalizability, we train four randomly initialized
models with random image order. During training, we store the entropy
loss and the F-scores.

We scaled all images andmasks to 640× 427 pixels and applied data
augmentation using a Python framework (albumentations==0.5.2) with
global operators scaling, rotation, and color transform. We apply an
80 %/20 % training/validation split and run all experiments on an out-of-
the-shelf computer with GPU (NVIDIA GTX1070 GPU, CUDA runtime:
10.1).

Evaluation methodology

To answer our research question in how far the acquired masks are
feasible, we perform different evaluations. In order to compare the
accuracy of the masks with the ground truth, we use the Boundary
F-score. Amask (I) is compared to the corresponding GroundTruthmask
(IGT) using precision p and recall r combined into a single metric

F − score(I, IGT) = 2
p(I, IGT)r(I, IGT)
p(I, IGT)+r(I, IGT)

We used this metric as it is the de facto standard method in sclera
segmentation and allows to compare our results to other works. First,
we compute the F-score of all individual masks. Second, to account for
intra-observer variability, we use STAPLE to generate consensus masks
for each image and each crowdsourcingmethod and compute F-score of
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the STAPLE masks. Third, we use the STAPLE masks directly for DL
training. Subsequently, we predict the masks of an unseen test data and
compute the F-score between the predictedmasks and the ground truth.

Additionally, we analyze the time it takes to acquire the masks. As
the gaming sessions needed to be organized, we exclude gamification
from this analysis, hence i∈{cs,pm} denoting citizen science (cs) and paid
microtask (pm). We store a time stamp when a citizen scientist or paid
crowdworker saved a mask on the platform. Assuming that citizen sci-
entists work on the images consecutively, we can assess the effort per
mask. Contrarily, paid crowdworker work in parallel such that the
individual efforts remain unclear to us. Furthermore, we are interested
in the total time Ti to establish the reference set. We derive it from the
waiting time Wi between task creation and the first mask being sub-
mitted and the duration Di between the first and last mask being
submitted

Ti = Wi + Di

Dataset

We compose the dataset of 100 photographs of the human eye by
randomly selecting 50 images from the public Sclera Blood Vessels,
Periocular and Iris (SBVPI) dataset [13] and 50 images from our private
dataset from previous work [14]. The high-resolution RGB images have
3,000 × 1,700 pixels and 2,992 × 2,000 pixels, respectively. The healthy
subjects look into four different view directions (up, down, left, right).
Further information on the complexity of sclera segmentation are
reported in [14] which also gives information on the interobserver dif-
ferences, underlining the complexity of the sclera segmentation task.

We randomly split the data into 50 images for training and 50 for
testing. Crowdsourcing is used to generate masks for the 50 training
images only.

Gamification

Inspired by the crowdsourcing game “Dr. Detective” [52], we developed
themultiplayer game “Dr. Columbus” that features all typical components
of a client-server architecture. The game concept is proposed in [53].

The client is available for Windows, and Linux and offers a
graphical user interface (GUI). On first use, the gamer creates a personal
account with associated score, rank, and badge. The server stores all
other data (e.g. user information) and is connected to our crowdsourcing
platform to receive the images and store the generated masks. Multiple
gamers perform a game round, which lasts 200 s. At first, each gamer
chooses a starting position on the sclera. Similar to the concept of
“Snake”, the gamer needs to increase the territory without being cut by

any opponent [53]. Figure 1 visualizes some stages. The remaining time is
indicated on the upper left part of the GUI.

The gamers receive positive and negative points according to their
area size within and outside the sclera, respectively. We use an expert
annotation as Ground Truth: A true positive pixel covering the sclera
increases the gamer score, a false positive pixel outside the sclera,
reduces it. Based on the points, the system continuously updates the
leadership board. Wemotivate the gamers with popups, in-gamemusic,
and sound effects [53]. A video demonstrating the key concepts is
publicly-available: https://www.youtube.com/watch?v=tyB-yFzRvZM.

The mask generated by a gamer in one game round is incomplete.
Therefore, we combine the masks of all gamers into a consensus mask,
i.e., each pixel covered by a gamer in a round is assumed to be part of the
sclera.

Results

Platform

Figure 2 displays the developed architecture of the platform:
boxes represent logical units of the platform which are
connected via interfaces that are visualized as arrows. Solid
arrows indicate direct access of a user group to a function-
ality, e.g., citizen scientists access directly their personal
dashboard via the browser. Dashed arrows indicate access in
the background, e.g., all data exchange between the webin-
terface and the database interface are not visible to the
users. The arrow heads indicate the type of data exchange. A
one-way arrow represents a data exchange on request, e.g.,
the admin decides on request when to upload new images
to the platform. Two-way arrows indicate a constant flow
of data, e.g., between the database and the background
services.

The admin controls the platform,which is composed of a
web interface and a database. There are several background
services, e.g., STAPLE and backup engines. In addition, we
have an external interface to Amazon MTurk and a game
server, which is based on our own previous work [53]. The
entire platform uses free software only (Table 1) and can be
accessed at https://welineation.plri.de.

The admin defines the task and its parameters. Images
can be imported in popular formats (*.png/*.jpg) which

Figure 1: Progress during a single round of the game. Each colored area represents the progress of a single gamer.
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are then stored in the database. Running tasks can be
monitored and aborted. After cancellation or completion of
a task, the generated masks can be downloaded. Addition-
ally, we provide the administrator an MTurk management
interface, which allows to i) see all running HITs on the
MTurk platform, ii) analyze their status (number of
pending or performed segmentation), or iii) cancel a
running HIT.

Figure 3 shows the personal dashboard of the citizen
scientists. It shows graphical elements indicating perfor-
mance, i.e., the activity in the past months and a user level,
which is based on the number of created masks. Below, it
shows the list of tasks.

If the citizen scientist starts a task for the first time, the
informative text is shown. Then, the first image is presented.

Citizen scientists can navigate through the images (Figure 4).
For annotation, they can choose to click individual contour
points or continuously move the mouse with pressed mouse
button along the contour. The number of vertices is auto-
maticallyminimizedwhile contour is smoothed using Bezier
interpolation. Citizen scientists can add, delete, or move
vertices [54]. If they press “prev” or “next” or any menu
option, the system automatically stores the vertices in the
database as a mask of the corresponding images.

If the admin marks a task for being processed by paid
crowdworkers, a background process makes the task
accessible as a HIT on Amazon MTurk (Figure 5) using the
provided API. If paid crowdworkers select a HIT, they are
forwarded directly to the image segmentation tool (Figure 4,
right part). If the segmentation is done, they directly return
to theMTurk site, our systemautomatically approves theHIT
without any sanity check, and MTurk transfers the payment
to the worker’s account.

Comparison of crowdsourcing methods

For each crowdsourcing method, a task was generated to
generate masks for the 50 training images. For citizen
science and paid microtasks exactly 4 masks/image were
acquired. For the crowdsourcing game, there were some-
times moremasks generated as Gamers playedmore than 4
rounds per images. In that case, 4 masks were randomly
selected.

Figure 2: Platform architecture. For the sake of clarity, tasks which assign a number of images and a number of desiredmasks to a crowdsourcing group
are not represented.

Table : Software used for platform development.

Component Software library

Web interface frontend Bootstrap material design, Javascript
Segmentation tool PaperJS, Simplify.js, jQuery
Personal dashboard charts.js, pace.js, progressbar.js, D.js
Web interface backend Django framework
Database interfaces Django framework
Database PostgreSQL
STAPLE engine Python SciPy, NumPy, Pillow
Containerization and deployment Docker, Kubernetes, Gitlab CI
Game client Unity framework
Game server Node.js
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Unfortunately, we needed to exclude two images
retrospectively from the training set as we observed that the
ground truth was inaccurate (SBVP filenames: “11L_u_1.JPG”,
“24L_u_3.JPG”).

Using raw masks, the median F-scores for citizen sci-
ence, paid microtask, and gamification are 82.2, 69.4, 69.3 %,

respectively. For STAPLE masks, they are 80.7, 54.3, 78.3 %,
respectively (Figure 6). The minimum values for raw and
STAPLE masks are 7 and 39.0 %, 1 and 12.6 %, and 27.5 and
30.0 % respectively.

In addition, we computed F-scores for individual
images (Figure 7). For each image and technique, a boxplot

Figure 3: Personal dashboard.

Figure 4: Segmentation tool.

Figure 5: MTurk interface.
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representing the four acquired masks is given. Citizen sci-
ence, paid microtask, and gamification showed highest
median values in 77.08 %, 6.25 %, and 16.6 7% of images,
respectively. Outliers occurred in 25 %, 22.9 %, and 14.6 % of
images, respectively.

We manually analyzed paid microtask images with
particular low F-scores smaller than 20%.We detectedwrong
segmentation as themajor reasons, namely delineation of the
whole eye (Figure 8, left), delineation of the iris (Figure 8,
middle), and wrong usage of the tool (Figure 8, right).

Figure 6: F-Scores of all masks (left) and STAPLE
masks (right). Numbers indicate median
values rounded to two decimal digits.

Figure 7: F-Scores of all masks for each indi-
vidual image.

Figure 8: Masks acquired by paid microtask
with particular low F-scores. White, green, and
magenta pixels indicate true positive, false
negative, and false positive pixel labelling,
respectively.
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Deep learning performance

We trained four models for each incentive and mean
F-scores and losses saturate after 15 epochs (Figure 9). The
highest F-score is from citizen science and only slightly
below 90 %. It is followed by gamification and paid micro-
task, with about 80 % and 70 %, respectively.

We applied the four models that were trained
for each incentive technique on the test dataset. The
predicted masks qualitatively reflect the performance
from training (Figure 10) with citizen science performing
best, followed by gamification and paid microtask.
Overexposure and speckles occur on the eye lid at the
outer regions of the images with these pixels being often
falsely classified.

Quantitatively, the highest average F-scores of 80.0 %
results from citizen science, followed by gamification and
paid microtask with 76.5 % and 73.5 %, respectively
(Figure 11). The four models trained with gamification data

show the largest interquartile range deviation, followed by
paid microtask and citizen science.

Time and effort analysis

Citizen scientists freely decided when to perform the task
andwaitedWcs=21:50 (hh:mm;median value) after receiving
the invitation mail before submitting their first mask. After
generation of a task on our platform, it tookWpm≈00:01 until
the HIT was available on MTurk and paid crowdworkers
started working in parallel.

Analyzing time stamps on the server showsDcs≈06:11 for
acquisition of the whole dataset. Citizen scientists deliver
one mask with a median of 60 s (Figure 12) but make long
breaks. Paid crowdworkers deliver a mask every 6 s and
Dpm=00:48. Therefore, total times are

Tcs = W cs + Dcs = 21 : 50 + 06 : 11 = 28 : 01

Tpm = Wpm + Dpm = 00 : 01 + 00 : 48 = 00 : 49

Figure 9: Mean training F-scores (left) and loss
(right). For some epochs there are no values
due to early stopping.

Figure 10: Sclera pixels (yellow) predicted by
the U-Net trained with data from citizen sci-
ence (left), gamification (center), and paid
microtask (right).
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Discussion

In this work, we introduced a platform for crowdsourcing
medical image segmentation that integrates citizen science,
paid microtask, and gamification to generate ground truth
for deep learning. As proof-of-concept, we compared the
three crowdsourcing methods for acquiring sclera masks on
RGB photographs of human eyes. We answer the first
research question (Is the platform suitable for integrating
different crowdsourcing methods?) with a positive answer.
The platform proved useful for acquiring masks from each
method. Due to all data being integrated in a single system,
masks and metadata were all in a unified format, avoiding
data conversions which facilitated the comparison of the
different methods significantly.

Regarding the proof-of-concept study, masks of citizen
scientists yield highest F-scores with many reaching values
higher than 90 %. With gamification, only a single mask
reaches such a high score but the number of outliers is
reduced: all masks are higher than 20 %. Contrarily, paid
microtask results in six outliers (F-scores<20 %). After
applying STAPLE, the F-score of gamification is improved
but paid microtasks are decreases. Apparently, masks with
low scores gain too much weight, negatively impacting the
consensus STAPLE masks.

To answer our second research question (Howaccurate
are crowdsourced masks as compared to expert-based
delineations?): crowdsourcing delivers results from
non-experts which are insufficient to directly replace the
domain expert with individual masks being not acceptable
as a training dataset. However, in other works it has been
shown that several novices can in fact replace the expert in
case enough data is available [54] so maybe for the problem
at hand, scaling the experiments too larger number of
masks acquired could improve F-scores to expert level.

Subsequently, we analyzed deep learning performance
when being trained with masks from crowdsourcing. The
models trained with citizen science data perform best,
followed by gamification, and paid microtask. The worst
model from citizen science outperforms the best model
from paid microtask. Hence, we answer our third research
question (How good generalizes a DL model that is trained
with crowdsourced masks?): in general, as well as in our
particular use case, an F-score of 80 % is insufficient for
computer-aided medical diagnostics. However, further
analysis with more than 50 training images is required as
we expect to increase the performance of DL with more
training data rather than better quality of the training data
[12]. Moreover, the DL architecture was not finely tuned.
For comparison, state-of-the-art methods report F-scores
larger than 95 % on the SBVPI dataset [55]. In a recent
challenge for sclera detection in photographs acquired
using mobile phones, the best-performing group used a
modified U-Net and reached 86.8 % [56]. While the reported
results in our work are lower, we believe that they reflect
meaningfully the effectiveness of the different crowd-
sourcing incentives.

With respect to the comparison of the different methods
of crowdsourcing, our work has several limitations, as we
primarily aimed to present the integrated platform archi-
tecture and a proof of concept study. For instance, we only
used F-score for evaluation which has certain disadvantages
as it is a composite measure [57] and other measures might
result in slightly different outcomes. However, we used it
because it is a typical measure in the field of sclera seg-
mentation and intuitively reflects segmentation quality.

Figure 12: Time differences betweenmasks provided by citizen scientists
(left) and paid crowdworkers (right). Values are clamped at 200 s with
4.8 % of citizen science values being larger.

Figure 11: F-Scores of applying trained models to test dataset. Each
boxplot represents the F-scores of four models.
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Another limitation is that our game needs a ground
truth segmentation. In the future, wewant to analyze in how
far the game can be realized without any underlying anno-
tation. Furthermore, the partial masks from gamification
were simply added. If a gamer confuses the sclera with
reflections, the entire mask is impacted negatively. In future
work, more meaningful combinations of the partial masks
can be applied, for example, as recently proposed by Petit
et al. [58]. We will also employ graph-cut algorithms
according to Balaji et al. [59].

Furthermore, we analyzed the time to acquire a set of
reference data. As HITs do not require any planning time
and the tasks are performed in parallel, this is a very fast
option for ground truth generation. Our 50 images were
processed in just 49 min. Regarding the lower quality of
masks from a paid microtask, we observed that 7 % of the
paid crowdworkers misunderstood the task: they delineated
the iris or the whole eye instead of the sclera (Figure 9). 2.5 %
of the masks appear to be intentionally wrong. The workers
randomly clicked somewhere and finished the HIT.
Evidently, this unintended behavior could also be explained
by a non-optimal explanation andmissing quality control. In
a follow-up study, we target this issue by a more detailed
explanation and a “training phase”which requires a certain
quality of segmentations before the paid task begins.

Another avenue for future work is to narrow the
worker’s qualification or adapt payment. We offered US$
0.10 for 2 min or less, which is more than US$ 3 per hour and
equals similar HITs on MTurk. In Germany however, the
hourly minimal wage by law is about US$ 12. To the best of
our knowledge, there is no “payment vs. quality” analysis yet
regarding the crowdsourcing of (medical) image segmenta-
tions. However, Moayedikia, Gaderi & Yeoh recently pro-
posed algorithms to optimize the budget of HITs [60].
Furthermore, according to Heim et al. [61], we will add a
quality control stage to our platform that checks a submitted
mask before its acceptance and payment.

Our work has several limitations. We try to compare
three different crowdsourcingmethods using the acquisition
of medical image masks as proof-of-concept study. By the
nature of this approach, this results in a problem of
comparing their pros and cons due to different tasks design
and – as it was not possible to recruit the same participants
for all three methods. Therefore, we see this work as a first
step towards a comparison of the different methods but
evidently, more work is required to increase the generaliz-
ability of the results. Moreover, the different methods had
different time constraints which were necessary to enable a
joyful game experience for the gamification approach and a
natural time limit is required for a paid microtask needs to

be defined in the mTurk system. Therefore, our results are
specific for this use case and might be biased by that,
therefore requiring more analysis.

Currently, we are turning the platform into open source.
This will allow others to use the platform and contribute
to its improvement. In future work we aim at conducting
large-scaled experiments to analyze open parameters of
paid microtask (e.g., payment, qualification) and gamifica-
tion (e.g., combination of partial masks).

Conclusions

– In this paper, we introduced a unified platform for
crowdsourcing medical image segmentation.

– Citizen science, paid microtask, and gamification are all
suitable to obtain training data for CNNs we the pro-
posed platform.

– Citizen science performs with best accuracy, paid
microtask is fastest but also most cost intensive, and
gamification is inexpensive and performs with accu-
racies in between the other approaches.

– All crowdsourcing methods yield silver standards only
[8] but bridge missing training data in medical deep
learning [9].
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Appendix

Examples of F-scores

The figure illustrates the accuracy of masks with F-Scores of
91.0 %, 76.6 %, and 37.6 %, respectively (Figure 13).
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Details on STAPLE algorithm

We use the STAPLE algorithm proposed by Warwick et al.
[11] to combine differentmasks into a consensusmaskwhich
is an estimate of the unknown true mask. STAPLE is
a majority voting algorithm which is agnostic of the
underlying image type and therefore does not include any
kind of semantic information or segmentation mechanisms.
It assumes that the masks were acquired independently
from each other and estimates a sensitivity and the
specificity value for each mask. Using these metrics, it uses
the concept of iterative expectation-maximization by two
subsequent steps: in the E-step, the expected value of the log
likelihood function under the posterior distribution of the
observed data is estimated. In theM-step, the expected value
is maximized by finding appropriate sensitivity and the
specificity values. Both steps are repeated until convergence
and thereby enable the computation of a consensus mask
and also an estimate of sensitivity and the specificity for each
mask.
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