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Abstract

With the growing significance of preventive
medicine, the healthcare field is developing innovative
technologies to support continuous health monitoring
and personalized healthcare. Therefore, we equip
an eScooter with sensors for electrocardiography,
photoplethysmography, and a camera for indirectly
monitoring vital signs. Personal eScooters and those
shared can be used for health monitoring. Combining
rental identity management with biomedical data
analytics allows a secure and privacy-protecting
collection of personal health information from multiple
rental devices. We demonstrate recordings during a
ride and discuss privacy protection, cyber security, and
artificial intelligence challenges. Our Health-eScooter
enables individual health monitoring conveniently,
unobtrusively, and mobile.

Keywords: eScooter, Shared Mobility, Health
Monitoring, Artificial Intelligence, Cyber Security

1. Introduction

Continuous health monitoring enables the early
detection of chronic diseases and improves treatment
and outcome (Steinhubl et al., 2018). It is crucial
to recognize individual changes and initialize early
intervention (Capozzi and Lanzola, 2011). Private
spaces such as smart homes (Wang et al., 2021),
workplaces, or vehicles (Wang et al., 2020) are suitable
for continuous health monitoring (Deserno, 2020).
However, many individuals are not taking advantage
of this emerging technology. Usage barriers include
limited access to monitoring devices, lack of awareness
about their importance, and concerns regarding data and
privacy protection (Baig and Gholamhosseini, 2013).

To address these challenges, we built the
Health-eScooter as a prototype for rental devices.
In 2022, more than 10 million people used scooter
sharing in Germany (Janson, 2022). Therefore, many
individuals can benefit from continuous monitoring
while following their daily activities.

The Health-eScooter captures vital signs during
the ride and incorporates data analytics and artificial
intelligence (AI), detects patterns, and generates alerts
or recommendations (Rizwan et al., 2020). We
address two research questions: (i) ”How to technically
implement continuous health monitoring on shared
mobility devices?”, especially eScooters, and (ii) ”How
to ensure data and privacy protection and cyber
security?”.

Highlighting the Health-eScooter use case, our
prototype exemplifies seamless integration into
daily life. By incorporating advanced monitoring
technologies and sensors into a widely used mode of
transportation, we create continuous health monitoring
beyond traditional healthcare settings. This innovative
approach enables early symptom detection, such
as atrial fibrillation, and actively empowers health
management. In contrast to typical smartwatches, the
system performs ECG measurements for a duration
exceeding 30 seconds, significantly.

With real-time data on vital signs, activity levels,
and other health metrics, riders of the Health-eScooter
can make informed decisions about their lifestyle,
seek timely medical assistance, and make necessary
adjustments to improve their overall well-being.

2. State-of-the-art

The World Health Organization (WHO) defines
health as the absence of illnesses and the comprehensive
perception of an individual’s position.
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Figure 1. Continuous data recording spans the entire individual’s lifetime.

The person’s life is considered in the context of
their culture and value system and about their goals,
expectations, standards, and concerns. According to
WHO, this Quality of Life (QoL) is assessed on six
levels (World Health Organization, 1997):

• Environmental: pollution, noise, traffic, climate,
but also financial resources, freedom, and the
home environment;

• Behavioral: mobility, activities of daily living,
and level of independence;

• Physiological: health, energy and fatigue, pain
and discomfort, sleep and rest;

• Psychological: bodily image and appearance,
feelings, self-esteem, concentration;

• Social: personal relationships, social support, and
sexual activities;

• Spiritual: religion, spirituality and personal
beliefs.

From these domains, we consider physiological
parameters the most important for health, and
their continuous monitoring is challenging.
Healthcare-related personal sensors have been subject
to research for more than 20 years, e.g., devices for
continuous electrocardiography (ECG) (Led et al.,
2004).

Durán-Vega et al. have suggested a cloud-based
middleware for shared health data collection. Here,
family members and caregivers of the elderly can
contribute to an individual database, while the subject
wears a mobile health data recorder on his wrist
(Durán-Vega et al., 2019).

In recent years, continuous health monitoring has
been linked to mobile devices like smartphones, which
allow the processing and transmitting personal health
data (Spring et al., 2013). Regarding vehicle-based
data recording, concepts have been designed for
health monitoring (Wang et al., 2020). For instance,
camera-based imaging became a way of indirectly
monitoring vital signs in vehicles (Kuo et al., 2015).
Moreover, integrating sensors for health monitoring into
devices such as beds (Harrington et al., 2021), armchairs
(Warnecke et al., 2021), and sensor patches (Kulau et al.,
2022), may complete lifelong health monitoring.

Our prototype exemplifies seamless integration into
daily life. By incorporating advanced monitoring
technologies and sensors into a widely used mode of
transportation, we create continuous health monitoring
beyond traditional healthcare settings. This innovative
approach enables early symptom detection and actively
empowers health management. With real-time data on
vital signs, activity levels, and other health metrics,
riders of the Health-eScooter can make informed
decisions about their lifestyle, seek timely medical
assistance, and make necessary adjustments to improve
their overall well-being.

3. Lifelong health monitoring

Lifelong health monitoring encompasses an
individual’s life, from birth to death, and involves the
comprehensive tracking of various parameters recorded
with different sensors (Fig. 1). Vital signs indicate the
human body’s physiological function. In particular, the
heart rate reflects cardiovascular health and indicates
cardiac abnormalities or stress-related conditions (Chen
et al., 2016).
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Figure 2. High-level architecture diagram from sensor calibration to payment.

The respiratory rate assesses the lung function
and helps to detect respiratory distress (Loughlin
et al., 2018). Regular monitoring of vital signs
visualizes deviations from normal ranges, facilitates
timely intervention, and prevents diseases (Evans
et al., 2001). Certain icons featured in Fig. 1 can
be reallocated to different life stages and additional
icons can be introduced as well. Novel technology
proliferates wearable devices, mobile health apps, and
remote monitoring systems. These devices track
and collect health-related data, including vital signs,
physical activity, sleep patterns, and nutrition. Even
if collected with different devices, continuous data
empowers individuals to manage their health activities
and facilitates decision-making and remote healthcare
delivery (Steinhubl et al., 2015).

Environmental factors, such as air quality,
temperature, and humidity, significantly impact
health. Monitoring these environmental parameters
helps to identify potential health risks, particularly
for vulnerable populations. Poor air quality, for
instance, exacerbates respiratory conditions (Mirabelli
et al., 2018), while extreme temperatures increase the
risk of heat-related illnesses (Alahmad et al., 2023).
Integrating environmental monitoring into lifelong
health monitoring provides a holistic perspective on
the factors influencing individual well-being (Haghi
et al., 2018). In addition, physical activity is a critical
component of lifelong health.

Tracking activity levels and analyzing motion
patterns can provide insights into individuals’ overall
fitness, detect sedentary behavior, and encourage
adherence to exercise regimens. Wearable devices
equipped with accelerometers and gyroscopes can
capture movement data, allowing for quantitative
physical activity assessment (Lopez et al., 2019).

While the integration of wearable devices and
health apps holds immense potential for lifelong health
monitoring, several challenges must be addressed: (i)
seamless integration of data from different devices and
apps into a cohesive and interoperable system (Dhayne
et al., 2019), (ii) data security and privacy, and (iii)
data analytics and appropriate alerting. The integration
of ECG and PPG data into eScooter records adds a
new layer of health-related information. Integrating
this data with other digital phenotype data requires a
sophisticated approach to store all recorded data in one
application. The recorded health data can be stored
within an electronic health record system with the
patient’s consent.

4. Health monitoring components

The high-level architecture of continuous health
monitoring based on rental devices includes identity
management for the rental fees and secure biomedical
data collection, data analytics, and software-based
sensor calibration (Fig. 2).
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When a person scans the device, the smartphone
app sends a unique identifier (ID) to the identity
management unit, which links all biomedical
measurements. The person’s individual database
is filled, disregarding the used vehicle.

From comparing measurement differences between
users and devices, automatic compensation of offsets,
and drifts is done in the cloud. The integrated sensors
for health monitoring capture the biosignals, which
are linked back to the rider of the rental device.
We demonstrate the feasibility of the Health-eScooter
use case. Companies stand to gain the advantage
of offering an additional service to their customers.
However, it’s important to note that obtaining approval
for a medical product necessitates substantiating its
feasibility through comprehensive studies.

4.1. Identity management and data storage

Identity management is already implemented in the
rental payment app. There are different approaches
for storing health data: (i) locally on the device, (ii)
in the cloud, and (iii) hybrid, combining elements of
(i) and (ii). For instance, the Apple Watch tracks
activity, heart rate, ECG, and other health-related
parameters using a hybrid solution (Apple, 2023b).
The primary storage location is the paired iPhone’s
Health app. Users can select comprehensive settings
in the Health app to collect, share, and store their
health data. Encrypted backups of the iPhone, created
through iCloud, include the health data (Apple, 2023a).
Synchronization via iCloud enables the secure sharing
of encrypted health information across multiple Apple
devices. The iCloud data is stored in an encrypted
format at rest (Apple, 2023a). This solution is also
applicable to the Health-eScooter. Alternatively, the
data can be transferred back to a smartphone app.

4.2. Data Analytics

Continuous health monitoring is based on the
analysis of biosignals. Advanced statistical methods
enable fast and reliable analysis of single or multiple
time series. Nevertheless, these methods only detect
inter-dependencies between the time series and
cause-and-effect laws, coupling the health data with
known or undetected diseases (Berente et al., 2021).
AI methods are more powerful and flexible but as
”black boxes” difficult to comprehend, not only for
developers and users but also for decision-makers (Kaur
et al., 2022). Data analytics in health applications
must be transparent, interpretable, understandable, and
certifiable.

Moreover, data analytics in health applications must
strictly follow ethical guidelines, and all electronic
devices must meet data protection, privacy, and cyber
security standards.

4.3. Sensor calibration

We expect offsets and different scales of the
biosignals when they are recorded with different
hardware devices. However, if several users use
several devices, a software-based calibration can be
implemented that adjusts data from one user compared
to data from the other on the same device.

5. A Health-eScooter prototype

Based on an off-the-shelf eScooter (MAX G30D
2, Segway-Ninebot, Peking, China), we incorporate a
sensor system (i.e., ECG, PPG, accelerometer, video)
that synchronously records multiple biosignals (Fig. 3).

Figure 3. Health-eScooter prototype.

5.1. Biomedical sensors

The ECG sensor (ECG Sensor (3 x 30 cm), PLUX
Biosignals, Lisbon, Portugal) records a 1-channel ECG
using three electrodes attached to the handlebar. One
electrode on each handlebar functions as the negative
and positive electrodes, while the third serves as a
voltage reference.
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The ECG electrodes are printed of flexible
polyurethane material (Warnecke et al., 2022).
This setup accurately captures the heart’s electrical
activity. Furthermore, the Health-eScooter utilizes a
photoplethysmography (PPG) sensor (SpO2 sensor,
PLUX Biosignals, Lisbon, Portugal). This sensor
employs one red (approx. 655 nm) and one infrared
(approx. 940 nm) light-emitting diode (LEDs) as
well as a photodiode measuring the reflected light
intensity. Moreover, we measure the ground truth with
three adhesive electrodes attached to the upper body
as reference ECG (ECG Sensor (3 x 30 cm), PLUX
Biosignals, Lisbon, Portugal). We recorded the data of
six drivers.

5.2. Other sensors

Additionally, we integrate a red, green, and blue
(RGB) camera (Raspberry Pi Camera, Raspberry Pi
Foundation, Cambridge, UK), enabling face recognition
and indirect heart rate measurements. Furthermore, it
facilitates signal quality assessment, offering visual cues
for the evaluation process. To capture facial landmarks
of the driver (Fig. 4), we apply the face recognition
engine SeetaFace from Wu et al. Wu et al., 2017. The
cascade schema for face detection progressively narrows
the search space. It utilizes stacked auto-encoder
networks for landmark detection and a modified
AlexNet for face composition. These methods enable
accurate face detection, precise landmark extraction,
and improved face composition. Lastly, we attach
an accelerometer (Accelerometer, PLUX Biosignals,
Lisbon, Portugal) to enable comprehensive motion
sensing.

Figure 4. Face recognition.

5.3. Further hardware components

We use an external and rechargeable battery for the
power supply of this sensor system.

The channel hub (BiosignalPlux Explorer, Plux
Wireless Biosignals, Lisboa, Portugal) transfers via
Bluetooth the ECG, PPG, and accelerometer signals to
a Raspberry Pi (Raspberry Pi model B with 4 GB RAM,
Raspberry Pi Foundation, Cambridge, UK). The camera
has a wired connection to the Raspberry Pi.

6. Explainable AI, privacy protection,
and cyber security

The convenient and unobtrusive measurement and
the merging of real-time health data from human
sensors, their quality-assured interpretation, and the
direct embedding in control loops and automated
decision-making and assistance can significantly
promote quality of life, well-being, and health, but also
user participation.

6.1. XAI for transparency, interpretability,
and trustworthiness

Explainable AI (XAI), also known as the “white
box” or “grey box,” enables a better understanding of
models and systems through easy interpretability and
traceability, i.e., the degree to which humans understand
AI decisions. XAI includes to program XAI methods,
deducing user-centric guidelines and principles for
XAI applications, and discussing XAI challenges and
requirements (Gerlach et al., 2022). The Defense
Advanced Research Projects Agency (DARPA) defines
XAI as creating explainable models maintaining high
predictive accuracy that enables humans to understand,
trust, and use AI efficiently.

AI includes machine learning (ML), which learns
from data without complex rules, mainly used for
pattern recognition and prediction. Deep learning
(DL) is a subfield of ML and characterized by
high accuracy and high performance, mainly used in
image or speech recognition and for predicting time
series. The “white/grey box” combines AI/ML/DL,
human-computer interactions (HCI), and explanations
from human experts in an application domain without
explaining internal AI structures or algorithms in its
functions. XAI models operate with algorithms and
methods such as local interpretable model-agnostic
explanations (LIME), Shapley additive explanations
(SHAP), or explain like I am 5 (ELI5), which are
different in their advantages and disadvantages w.r.t.
performance and accuracy. LIME approximates AI
models using interpretable models.
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This model-independent technique interacts locally
to understand and approximate global learning models.
SHAP supports explaining models and features to
build the model, presents ML forecasts based on a
feature assignment, and analyzes a feature meanings
distribution. SHAP clarifies predictions and global as
well as local explanations.

ELI5 supports classification and regression models,
computing the feature relevance based on the weights of
the ML model. ELI5 is not model-independent.

Societal fears lead to discussions, especially about
discrimination or unsafe behavior of AI in the sensitive
healthcare area.

Security, privacy, and personnel data protection
concerns about these technologies are justified because
alternating misunderstandings and misinterpretations
in socio-technical systems are the leading causes of
undesirable behavior, hazards, accidents, and problems
with acceptance. Health-eScooters using AI must be
underpinned by harm avoidance, legal compliance, and
technical robustness and support decision-making based
on general societal views.

Hybrid Intelligence (HI) as a complement
to human intellect refers to the synergistic and
proactive collaboration of humans and machines to
compensate for human weaknesses and augment human
decision-making capabilities, e.g., anomaly detection.

Certifiability is mandatory for all health applications
and requires transparency and quality assurance. This
also includes ethical and legal aspects and comparability
of different AI solutions regarding the same standards
and compliance with laws and regulations, e.g., ISO
27001, including information security management and
ethical-by-design development and operation principles.
AI ethics ensures the importance of human action and
oversight, societal and environmental well-being, and
AI responsibility and explainability.

Explainability is essential to ethics, while ethics
is not necessarily fundamental to explainability.
Therefore, the extent to which health monitoring is
accepted–dependent on a culture’s and country’s values
and norms–must be clarified.

Disclosure and sharing of personal health data
are uncomfortable for many customers due to
the lack of trust and transparency, inhibiting the
Health-eScooter’s acceptance. In addition, there are
concerns about cybercrime, i.e., a successful attack to
compromise system integrity, and governments must set
standards and guidelines for Health-eScooters. Thus,
critical success factors include efficient government
regulations, transparent privacy policies, and sufficient
certifications and education.

6.2. Privacy protection of health data

Health data is arguably the most sensitive data.
Moreover, protecting such data is paramount for all
technical solutions connected to health.

In our given Health-eScooter scenario, we have to
separate the involved parties and their respective access
to the health data and the corresponding security goals.
Due to space constraints, this paper cannot present a
full privacy threat model. However, we would like to
highlight a central privacy property which, under all
circumstances, should be maintained: the operator of
the Health-eScooter is only trusted to record the health
data. However, all further actions on the data, such
as permanent storage, analysis, or linking to individual
users, can only be conducted out of the reach of the
scooter provider due to data privacy concerns.

In our current prototype, we utilize the functionality
provided by the iOS health application: a mobile app
from the scooter provider is utilized to rent the scooter.
This app’s predominant purpose is the rental monitoring
and billing of the customer’s scooter usage. After
the ride has concluded, the recorded health data is
transferred from the vehicle to the provider’s mobile
app, which in turn hands this data without further
processing or storage to the phone’s health app in a
write-only fashion. The iOS Health app handles the
data securely and privately, as documented in Apple’s
corresponding specifications (Apple, 2023b).

More problematic is the fact that there currently
needs to be more technical measures that prevent the
scooter provider from covertly creating health profiles
for the scooter users. In the existing implementation,
the billing data in the provider’s mobile app could
be used to re-identify individual users and, thus, link
their health data recordings into health profiles. In a
future iteration of our model, we plan to investigate
a complete decoupling of the billing process from the
health recording. For this, it has to be prevented
that the scooter provider learns the user’s identity.
Hence, pseudonymous billing and data recording must
be introduced to the complete solution.

6.3. XAI for the Health-eScooter

We used the first heart rate data from the
Health-eScooter prototype. We started investigating
several AI services for cyber security, e.g., Darktrace,
Deep Instinct, and Spin. Although our first
Health-eScooter prototype data applicability checks are
promising. Our Health-eScooter specific knowledge and
know-how to (X)AI methods and tools are still limited,
and further implementations and tests are necessary.
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7. Results

The integrated health monitoring system captures
and records biomedical signals, including ECG and
PPG, and video as well as acceleration data. In
this section, we delve into the comprehensive results
obtained from the utilization of this system and the
valuable insights it offers into an individual’s health.

7.1. ECG and PPG recording

The recorded ECG data provide information on the
heart’s electrical activity, enabling in-depth analysis of
the cardiac rhythm (Fig. 5).

Figure 5. High SNR: ECG reference, ECG handlebar,

and PPG.

Through careful examination, irregularities,
arrhythmias, and potential cardiovascular conditions
can be identified, contributing to timely diagnoses and
appropriate interventions (Chen et al., 2016).

The PPG sensor of the integrated health monitoring
system offers data regarding the cardiovascular system’s
functionality. By analyzing changes in blood volume
within blood vessels, critical indicators such as
heart rate, blood oxygen saturation levels, and pulse
waveform characteristics can be derived (Castaneda
et al., 2018).

The ECG and PPG signals are captured by sensors
attached to the handlebar of the Health-eScooter. The
quality of the recorded data and the signal-to-noise
ratio depend on various factors, including the driver’s
movement and conductivity.

However, despite these considerations, the typical
wave shape of the ECG and PPG signals remains visible
without disturbances (Fig. 5).

7.2. Movement data for reliability

The acceleration sensors capture motion data to
quantify the movements of the Health-eScooter and
to understand its impact on the quality of biosignal
recordings (Fig. 6).
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Figure 6. Low SNR during acceleration: ECG

reference, ECG handlebar, and forward acceleration.

For example, in Fig. 6, the Health-eScooter
accelerates at T = 187 s, which directly lowers the
ECG signal quality and the signal-to-noise ratio (SNR).

To effectively address this issue, we suggest
weighting the biosignal’s reliability according to the
movement index obtained from the acceleration data.

8. Discussion, implications, and
recommendations

The implementation of sensors in a vehicle-based
monitoring system requires thorough planning. The
prototypical systems can therefore be broken down into
two major sections.

These are the on-vehicle installed hard- and software
of the sensor system and the integration into adjunct
systems. For the hardware components, the durability
of the sensors, as well as the overall system reliability,
can be a critical factor.
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Especially in the case of sensor systems outfitted
with sophisticated measurement devices. In addition,
the power supply of a mobile, power grid-independent
sensing system can limit the application’s capability
and thus lead to a diminished significance (Callebaut
et al., 2021). Regarding the connection to downstream
systems, not only the transmission technology, security,
and frequency need to be considered, but also the
usage of the recorded data in the implemented system
(Elhoseny et al., 2018).

Considering the adjunct services of the
Health-eScooter ecosystem (Fig. 2), and its variety
of possible applications, a thoroughly planned
implementation is inevitable to transfer the requirements
manifested in the architecture onto the existing system.
The Health-eScooter ecosystem can be viewed as
a possible blueprint for such a system. It can be a
foundation for other personal vehicles outfitted with
health sensors.

The Health-eScooter serves as a valuable addition to
wearable devices such as watches and fitness trackers.
One of its notable advantages lies in its integrated health
monitoring system, which eliminates the need for any
extra effort on the part of the rider. This seamless
experience is possible through the direct integration of
health monitoring sensors into the eScooter’s design.

Target groups are not only eScooter drivers but also,
e.g., drivers of bikes, cars, trucks, or buses. Airplane
pilots, who are required by law to be at least in good
health, are also a prominent target group. With the
Health-eScooter, in particular, younger people without
any known diseases can be reached. Early detection
of cardiovascular diseases or high blood pressure,
especially for younger people, significantly reduces the
risk of serious diseases at a young age.

Integrating scooters with advanced monitoring
technologies brings numerous benefits for continuous
health monitoring. However, important considerations
must be addressed. Privacy and security concerns
require robust encryption and adherence to privacy
regulations. Efficient data management and storage
mechanisms are necessary to handle the significant
amount of data generated. Interoperability with
existing healthcare systems can be achieved through
standardized protocols and formats for data exchange.

For remote patient monitoring, sensor-equipped
Health-eScooters enable healthcare professionals to
monitor patients, e.g., with chronic conditions. By
capturing real-time data, healthcare providers can detect
patient health changes, allowing timely intervention
and reducing the need for frequent hospital visits
(Duncker et al., 2021). In particular, the combination
of Health-eScooters and biomedical sensors can be

integrated into telemedicine platforms, enabling remote
consultations and virtual visits between healthcare
providers, physicians, and patients. The benefit
of real-time data transmission and exchange with
healthcare professionals during virtual consultations
thus enables more accurate diagnosis or better
medication adjustments. The collected data can
also identify patterns and trends in the biomedical
data, allowing clinicians to implement targeted
interventions or optimize personalized care plans and
recommendations in a regulated environment (Walker
et al., 2019).

The concept of our Health-eScooter also raises the
question of regulatory approval if the application is
intended to be used as a medical device (Baumgartner
et al., 2023). According to the definitions of the
American Food and Drug Administration (FDA) and the
European medical devices regulation (MDR), a medical
device is defined as an instrument, apparatus, appliance,
software, implant, reagent, material, or another article
that has a specific intended use such as diagnosis,
monitoring, treatment, alleviation, and other purposes.
The wide range of biosignals and health parameters,
including heart rate, oxygen saturation levels, activity
tracking, and others that can be monitored by the
Health-eScooter opens up two possible application
directions in principle.

Suppose it is intended to be used to analyze
and interpret the collected data, e.g., using machine
learning-based techniques to detect patterns and
generate alerts or medical recommendations leading to
a clinical action (diagnostic decision or modification of
a therapy). In that case, the application, which consists
of a hardware device with embedded software, is a
medical device according to the regulatory definition.
For regulatory approval, the Health-eScooter must
meet the general safety and performance requirements
as a medical device, as well as requirements for
risk management (ISO 14971), usability (IEC 62366),
software life cycle process (IEC 62304), cyber security,
clinical evaluation to demonstrate clinical validity,
and other requirements. However, the more likely
application case is well-being and physical training
support.

Even if the Health-eScooter’s monitoring system
detects irregular heart rhythms that could indicate atrial
fibrillation, it can notify the rider and advise him to
seek medical attention. The Health-eScooter does not
fall within the definition of a medical device because
it merely makes a recommendation. The concept of a
Health-eScooter as a certified medical device is worth
pursuing, but the main application will remain in the
context of well-being to support health.
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9. Limitations and further research

We have discussed general continuous health
monitoring on shared mobility devices and have
built a Health-eScooter prototype to show general
applicability (Technology Readiness Level (TRL) = 4),
including specific sensors, onboard micro-computers,
mobile network connectivity, and monitoring software
applicable to both onboard and in cloud environments.
The (X)AI methods already showed general
applicability for continuous health monitoring. Further
research must address higher TRL for market-ready
Health-eScooter products and services.

Further analyses must include low-cost sensors in
standard eScooters, an interface to combine rental
identity management with biomedical data protecting
users’ privacy, a low-cost Internet connection with
sufficient upload speed, and certified software for health
applications.

While we have completed our prototype research
to discuss it at HICSS 2024, it will take at least three
years more to develop a market-ready Health-eScooter
(TRL = 7 and higher), including a real-world evaluation
with eScooter and eHealth developers, producers, and
operators. Further research must address specific
business model development to determine who can
benefit from Health-eScooter products and services
investments. For efficiency, it has to be decided which
data are processed onboard and which are processed in
a cloud environment. Last, more specific and advanced
(X)AI-driven services must be implemented for health
monitoring and cyber security.

10. Conclusions

A vital strength of our integrated health monitoring
system lies in its ability to merge and synergize data
from multiple sources. Combining ECG, PPG, video,
and acceleration data enables a comprehensive and
real-time profile of an individual’s health status. We
explore these synergistic effects of data integration to a
more accurate and holistic assessment of an individual’s
well-being with a Health-eScooter prototype showing
applicability and efficiency for different and large target
groups (TRL = 4).
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