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ABSTRACT

Worldwide, breast cancer presents a significant health challenge, necessitating innovative techniques for early de-
tection and prognosis. Although mammography is the established screening method, it has drawbacks, including
radiation exposure and high costs. Recent studies have explored the application of machine learning to frontal
infrared images for breast cancer detection. However, the potential of infrared imaging from angular views has
not been thoroughly explored. In this paper, we investigate, develop, and evaluate classification models for breast
cancer diagnosis using lateral and oblique infrared images. Our approach incorporates radiomic features and
Convolutional Neural Networks along with various feature fusion techniques to train deep neural networks. The
primary objective is to determine the suitability of angular views for breast cancer detection, identify the most
effective view, and assess its impact on classification accuracy. Utilizing the publicly available Database for Mas-
tology Research with Infrared Images (DMR-IR), we apply an image processing pipeline for image improvement
and segmentation. Additionally, we extract features using two strategies: radiomic features and convolutional
neural network features. Subsequently, we conduct a series of k-fold cross-validation experiments to determine
whether the features and feature fusion techniques are effective. Our findings indicate that oblique images, par-
ticularly when combined with DenseNet features, demonstrate superior performance. We achieved an average
accuracy of 97.74%, specificity of 95.25%, and an F1 score of 98.24%. This study contributes to the advancement
of machine learning in early breast cancer detection and underscores the significant potential of angular views
in thermal infrared imaging, leading to improved diagnostic outcomes for patients worldwide.
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1. INTRODUCTION

Breast cancer is a significant global health challenge that impacts millions of people worldwide. It is the most
common cancer among women globally impacting low- and high-income countries.1 According to the World
Health Organization (WHO), breast cancer is the leading cause of cancer-related deaths among women world-
wide.2

According to WHO statistics,2 the global impact of breast cancer remains significant. In that year, there
were 2.3 million women diagnosed with this disease, and it led to 685,000 deaths worldwide, which illustrates
the need for effective detection and treatment strategies. Also, by the end of 2020, the number of women who
had been diagnosed with breast cancer in the previous five years reached 7.8 million, making breast cancer the
most prevalent cancer globally.
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Mammography is the most common screening device for breast cancer diagnosis. It is particularly effective in
women over the age of 50, with an overall sensitivity of about 87 percent.3 However, its effectiveness may vary,
especially in younger women with denser breast tissue, where false-negative results can occur. To address these
limitations, researchers explore innovative techniques, such as machine learning algorithms applied to a variety
of imaging modalities.

Infrared imaging, specifically thermography, has emerged as a promising tool for early cancer detection. The
temperature distribution in healthy individuals tends to exhibit symmetry over the sagittal axis and remains
consistent over time. In cancerous tissues, there may be asymmetries attributed to increased blood flow and
metabolic changes.4 This difference in thermal patterns presents an opportunity for thermography to be utilized
for early detection of breast cancer.

Numerous studies have focused on frontal view imaging for breast cancer detection, demonstrating good
accuracy and sensitivity.5,6 However, lateral and oblique views have a high diagnostic value.7 There is a notable
gap for infrared imaging that specifically concentrates on using only side views without incorporating frontal
and clinical data.

Angular images offer a unique perspective of breast tissue, which may not be as effectively captured in frontal
views. These side views can potentially reveal subtler thermal anomalies and vascular patterns that are indicative
of early-stage breast cancer, which might be obscured in frontal imaging due to overlapping tissues or varying
breast densities. Moreover, lateral views are particularly beneficial in visualizing the outer quadrants of the
breast, where a significant proportion of breast cancer develops.

The purpose of this study is to conduct a comprehensive analysis of lateral and oblique images for breast
cancer detection. By evaluating the individual impact of lateral and oblique images without the use of other
information, such as frontal features or clinical data, our research aims to determine if angular images alone can
suffice for the accurate diagnosis of breast cancer.

2. RELATED PAPERS

In the field of breast cancer detection, much of the existing research focuses on the frontal view imaging. This
area has been extensively studied, leading to a wealth of knowledge and improved methods in detecting breast
cancer from frontal images. However, the study of angular view imaging is much less common. The use of
angular views in breast cancer imaging is an area that has not been thoroughly investigated, creating a gap in
the research. This section will describe the current state-of-the-art in the detection of breast cancer in the lateral
and oblique view.

Madhavi and Thomas8 developed a method for breast infrared image analysis using multi-view textural
feature fusion. Their technique involved extracting textural features from the images, utilizing methods like the
grey-level co-occurrence matrix, grey-level run length matrix, grey-level size zone matrix, and the neighbourhood
grey tone difference matrix. These methods are designed to quantitatively analyze local and regional textures in
the images. Their dataset comprised approximately 63 images, split between 32 normal and 31 abnormal cases.
The proposed method demonstrated high accuracy in its results, achieving an overall accuracy rate of 96%, 100%
sensitivity rate, and a specificity of 92%.

In 2021, Sánchez-Cause et al.9 developed a classification method for multi-view infrared images. Their
method involved using both frontal and side views as inputs in a CNN. This approach combined features from
the different views within the CNN, resulting in a unified prediction. The method achieved an overall accuracy
of 97%, with a sensitivity of 83% and a specificity of 100%.

Mammoottil et al.10 proposed a comprehensive classification method that incorporates a multi-angle ap-
proach, including angular and frontal views, in conjunction with clinical data like age and symptoms. Their
method utilized a CNN for the spatial analysis of images, which was then integrated with clinical data pro-
cessed through a separate neural network. This approach, combining diverse image angles with relevant clinical
information, yielded an accuracy of 93.8%, with a specificity of 96.7% and a sensitivity of 88.9%.

Ensafi et al.11 conducted an evaluation of several pretrained deep learning models for detecting breast cancer
in infrared images. They tested models including VGG16, VGG19, EfficientNetB0, Resnet50, DenseNet121,
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and DenseNet201, applying them to images captured from multiple views such as angular and frontal. The
DenseNet201 model demonstrated the best performance in their study, achieving an accuracy of 93%, along with
a sensitivity and specificity of 93% and 95%, respectively.

Pramanik et al.12 developed a new method for detecting breast cancer using side view infrared images. Their
approach focuses on creating two specific types of feature images: magnitude features of breast thermogram
(MFBT) and orientation features of breast thermogram (OFBT). These images are processed to produce a 36-
element feature vector, which forms the basis for training a feed-forward artificial neural network. The network
operated on a gradient descent training rule. The authors reported that this method was highly effective,
achieving a classification accuracy of 98.6%. It demonstrated a sensitivity of 100% and a specificity of 97.8%.

2.1 Our Contributions

The majority of existing literature predominantly focuses on the combined use of angular and frontal views in
breast cancer detection, a method previously established as effective. However, there remains a significant gap
in understanding the standalone efficacy of the lateral and oblique view. Furthermore, conventional approaches
in this domain often rely on CNN or textural features for classification. Our paper makes key contributions in
this context:

• A comprehensive analysis of the effectiveness of using only the angular view in breast cancer detection,
exploring its impact on classification accuracy.

• The development of a novel classification technique that leverages radiomic features, providing a new
perspective in breast cancer detection methodologies.

• The development of an advanced classification approach using CNN and radiomic features, aiming to
enhance diagnostic precision and reliability.

3. MATERIALS AND METHODS

We developed a methodical approach that encompasses a series of steps designed to preprocess images, extract
features, and utilized these features for training a classification algorithm (Figure 1). The process begins with the
input of angular images into our preprocessing algorithm. This algorithm is responsible for converting colored
images into grayscale and implementing the BM3D denoising technique to enhance image quality.

Subsequently, we employed a U-Net CNN to precisely segment the region of interest. This step ensures the
exclusion of irrelevant elements such as background clutter and abdominal regions, focusing solely on the areas
pertinent to breast cancer detection.

The feature extraction phase of our method involves two distinct strategies. The first strategy is centered
around the extraction of radiomic features, coupled with the evaluation of various fusion techniques applied
across all four angles. The second strategy delves into feature extraction using a DenseNet CNN. Similar to the
first strategy, this also involves generating and evaluating features for all four image angles, with different feature
fusion techniques.

We evaluate our classification model across all possible combinations of feature extraction and fusion tech-
niques. The culmination of this process is the identification and reporting of the most effective combination,
ensuring optimal accuracy and reliability in breast cancer detection through our proposed method. In this
section, we discuss each of these steps in depth.

3.1 Dataset Description

This paper utilizes infrared images from the publicly available database for mastology research with infrared
images (DMR-IR).13 The DMR-IR repository contains infrared images obtained through both dynamic and
static protocols. The dynamic approach involves capturing a series of 20 frontal images at regular intervals
following body cooling to a specific temperature. In contrast, the static method captures single images from
distinct angles once thermal stability is reached. The static protocol produces a total of five images, comprising
one frontal view (at 0◦, two oblique images (at right 45◦ and left 45◦), and two lateral images (at right 90◦ and
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Figure 1. The workflow of infrared preprocessing and information flow.

left 90◦). Given our focus on side view performance, we specifically utilized lateral and oblique images from
the static protocol (Table I). We cleaned the dataset by removing samples with unknown diagnoses, patients
with missing thermal matrices or angles, extremely blurry images, incorrect labels, those not adhering to the
acquisition protocol, and duplicated images.

Table 1. Distribution of healthy/sick patients after data cleansing for each of the multi-view combinations.

Views Total Patients Healthy Patients Sick Patients
Oblique Views (R 45 and L 45) 264 152 112
Lateral Views (R 90 and L 90) 283 168 115

All Angular Views (R 90,R 45,L 45,L 90) 256 149 107

3.2 Image Preprocessing

In the DMR-IR dataset, images vary between color-coded and grayscale formats. To achieve uniformity, we
implemented a matrix-to-image conversion that normalizes image data within a 0 to 255 range. For image
enhancement, we applied two techniques: block matching 3D filtering (BM3D) for denoising and contrast limiting
adaptive histogram equalization (CLAHE) method to improve contrast (Figure 2). BM3D is denoising method
which employs block matching and collaborative filtering for effective noise removal. We used the bm3d.bm3d
function with sigma psd=0.2, which estimates the noise standard deviation, where a lower value is indicative of
enhanced noise reduction. To ensure thorough noise elimination while maintaining image detail, we utilized all
stages of the BM3D pipeline.14
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(a) L90 (b) L45 (c) R45 (d) R90

(e) L90 enhanced (f) L45 enhanced (g) R45 enhanced (h) R90 enhanced

Figure 2. Images before and after image preprocessing for patient ID 222 of the DMR-IR Database belonging to the
healthy category.

To enhance the dataset, we focused on segmenting the region of interest (ROI) to accurately extract key
anatomical features, thereby improving the accuracy of our analyses (Figure 3). For segmentation, we adapted
a U-Net based method originally developed by Carvalho et al.15 While the original model used a 64× 64 input
size for angular images, we found this insufficient for our needs. Consequently, we employed a modified U-Net
model with an increased input size of 256× 256, allowing for more detailed extraction of segmentation masks.

Our customized U-Net comprises 18 convolutional layers, each followed by batch normalization. The archi-
tecture is divided into two segments: the first 10 layers are dedicated to down-sampling, utilizing max pooling
with a 2x2 window size. The subsequent layers focus on up-sampling, also employing a 2x2 window size. We used
the rectifier linear unit (ReLU) as the activation function. During the down-sampling phase, the convolutional
layers were configured to extract filters in a hierarchical manner: starting with 256 filters, then reducing to 128,
64, 32, and finally 16 filters.

Similarly, during up-sampling, we extract 16, 32, 64, 128, and 256 filters. All filters have a size of 3x3.
Finally, the output layer consists of a single convolutional layer with a 1x1 size, using the Sigmoid activation
function. We trained this architecture using the Adam optimizer with a learning rate of 1e-3 and employed the
Sørensen-Dice Loss function. To avoid overfitting, an early stopping mechanism was implemented, which halts
training if the validation loss does not improve for 10 consecutive epochs. Despite the limited availability of a
gold standard for angular images, our model achieved segmentation masks with an Intersection over Union (IoU)
of 85.43%, accuracy of 92.91%, and a Dice Score of 91.97%.

(a) (b) (c)

Figure 3. (From left to right) a. Original grayscale lateral right 45° image of patient ID 31 (Healthy) from the DMR
Database; b. corresponding gold standard segmentation mask; c. segmentation result using U-Net.
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3.3 Feature Extraction Strategies

We evaluated two distinct classification strategies using all four side views: (i) feature extraction and fusion,
and (ii) pre-trained convolutional neural networks (CNNs). The first strategy extracts and combines radiomic
features from the side views to form a unified representation. In total, we extracted 93 radiomic features using
the PyRadiomics Framework,16 which comprises the following features: 18 first-order statistics, 24 gray level
co-occurrence matrix, 16 gray level run length matrix, 16 gray level size zone matrix, five neighboring gray
tone difference matrix, and 14 gray level dependence matrix. We also extract 126 features using the Mahotas
Framework,17 in particular 36 local binary patterns, 36 Zernike moments, and 54 threshold adjacency statistics.
For each angular image, the final feature vector has 219 entries.

The second strategy encompasses a DenseNet CNN to extract features from each side. We first fine-tuned
the pretrained CNN model using infrared images. Then, we extracted the CNN’s feature maps for each side view
image using the second last available convolutional layer of the DenseNet architecture. This approach generates
1024 features per image.

After extracting the features using the strategies, we combined the image angles using different fusion tech-
niques: sum, product, concatenation, and max. This fusion strategy enabled us to explore various combinations
of the features, allowing the models to capture more complex patterns and relationships within the data.

Finally, we used analysis of variance (ANOVA) to select the best features, identifying those that most effec-
tively differentiate between cancerous and non-cancerous thermal images. This selection process streamlined the
dataset, focusing on essential characteristics, and paved the way for more accurate and efficient classification in
our deep neural network models for breast cancer detection.

3.4 Classification Methodology

The classification methodology uses a fully-connected neural network (FCNN). The network consists of 86 hidden
layers, each containing five neurons, followed by an output layer with two neurons. Within the hidden layers,
the rectified linear unit (ReLU) activation function is applied to introduce non-linearity and enable the network
to capture complex relationships within the data. In the output layer, we use the softmax activation function to
produce probability distributions for the binary classification task. Besides, we used the Adam optimizer with
the default learning rate and the binary cross-entropy loss function. We set the maximum number of training
epochs to 1,000, but due to the early stopping criterion, our training typically concludes around 250 epochs. This
helps to prevent over-fitting and ensures efficient training. We set the batch size to 32, balancing computational
efficiency and gradient estimation accuracy.

For strategy two, we utilized two FCNN architectures, one for concatenated features and one for the other
fusion techniques. The FCNN for concatenated features requires a different architecture since its input size
is larger. To concatenate all four side images, we compose a FCNN of eight layers. The first layer had 4096
neurons, responsible for receiving the 1024 features from each side image. The six hidden layers had 2048, 1024,
1024, 256, 128, and 64 neurons using the ReLU activation function. A dropout layer follows each hidden layer,
randomly turning off 20% of the neurons. The output layer with two neurons represents the two classes and uses
the softmax activation function.

The FCNN architecture for the other fusion techniques had seven layers. The input layer receives the 1024
features obtained after the fusion of each side. Further, we have five hidden layers, with 512, 256, 128, 64, and
64 neurons using the ReLU activation function. Similar to the concatenated approach, we use dropout layers
and a binary output layer with the softmax activation function for binary classification. We designed these
architectures empirically to optimize the classification performance.

4. EXPERIMENTAL DESIGN

To make the experiments and develop this research, we utilized a Linux Ubuntu server equipped with two Intel
Xeon Silver processors, 192 GB of DDR4 RAM, and two NVIDIA RTX A4000 graphics cards. The development
used Python 3.10, with OpenCV 4 and Tensorflow 2.10.
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In our experiments, we used the k-fold cross-validation protocol, with k = 10. This protocol divides the
dataset into ten parts. In each iteration, nine parts are used for training the model and one part for testing.
This procedure is repeated ten times, with each part being used once as the test set.

To ensure the validity of the validation process, patient data were carefully separated to prevent any over-
lap between training and testing datasets across all iterations. This method ensures unbiased evaluation and
generalizability of the model’s performance.

To quantitatively evaluate our method’s efficiency, we utilized five metrics: accuracy, precision, recall, speci-
ficity, and area under the curve (AUC). Accuracy measures the overall correctness of the model by calculating the
proportion of true positives and true negatives. Precision assesses the ratio of true positives among all positive
predictions, while recall, or sensitivity, evaluates the model’s ability to correctly identify actual positives. Speci-
ficity focuses on correctly identifying true negatives, ensuring the model’s precision in negative case detection.
Lastly, the AUC, derived from the ROC curve, provides an aggregate measure of performance across various
thresholds, with higher values indicating better diagnostic accuracy.

5. RESULTS

In our study, we conducted a series of experiments with the radiomics and mahotas features to assess the
performance of our classification model (Table 2). These experiments were categorized based on the type of image
used: lateral images, oblique images, and a combination of all angular images. For each category, we employed
different feature selection and fusion techniques, namely no feature selection (No FS) with concatenation, and
ANOVA. The performance of each experiment was evaluated using several metrics, including accuracy, precision,
recall, specificity, and AUC. The results demonstrated that the combination of all angular images with NoFS
and sum fusion yielded the highest accuracy, precision, and AUC, indicating its effectiveness in the classification
task. Conversely, the experiments with lateral and oblique images showed slightly lower performance metrics, yet
provided valuable insights into the specific advantages of each imaging perspective and feature fusion technique.

Table 2. Experiments with radiomics and mahotas features.

Experiment FS and Fusion Accuracy Precision Recall Specificity AUC
Lateral Images No FS and Concat 87.30% 90.57% 87.96% 85.51% 91.58%
Oblique Images ANOVA and Sum 85.17% 86.06% 89.08% 79.05% 90.31%
All Angular No FS and Sum 90.21% 93.01% 89.63% 90.28% 92.60%

The DenseNet features extracted from all four side images, combined with ANOVA feature selection and the
sum fusion technique, achieved the highest performance (Table 3). The average accuracy, sensitivity, and AUC
is 97.74%, 98.61%, and 99.17%, respectively. Hence, the second strategy is the most effective for the proposed
problem in contrast to the best configuration for the first strategy.

Table 3. Experiments with DenseNet features.

Experiment FS and Fusion Accuracy Precision Recall Specificity AUC
Lateral Images ANOVA and Concat 95.38% 95.43% 97.15% 95.45% 98.64%
Oblique Images ANOVA and Sum 97.73% 98.01% 98.60% 95.25% 99.17%
All Angular ANOVA and Concat 97.69% 97.57% 98.75% 96.18% 98.60%

To deeply describe the results of the second strategy, Table 4 presents the per-fold outcomes for our DenseNet-
based approach. The model demonstrates good consistency and effectiveness across all evaluation metrics. In
eight out of ten folds, it achieved a score of 100% in terms of accuracy, precision, recall, specificity, F1-score,
and AUC. The two remaining folds, while not attaining the 100% mark, still exhibited strong performances with
accuracies of 92.31% and 88.89%, and AUCs of 95.63% and 96.05%, respectively. The mean values across all
folds—97.74% for accuracy, 98.61% for sensitivity, and 99.17% for AUC—further underscore the robustness and
reliability of our model in processing oblique images. Additionally, the low standard deviation values highlight
the model’s consistent performance across different subsets of data.
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Table 4. Detailed K-Fold cross validation results for our best performing experiment on oblique images using strategy 2.

Fold Accuracy Precision Recall Specificity F1-Score AUC
0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1 88.89% 86.36% 100.0% 62.5% 92.68% 96.05%
2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
4 96.15% 100.0% 92.31% 100.0% 96.0% 100.0%
5 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
6 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
7 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
8 92.31% 93.75% 93.75% 90.0% 93.75% 95.63%
9 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Mean 97.74% 98.01% 98.61% 95.25% 98.24% 99.17%
Std. Dev. ±3.82 ±4.31 ±2.81 ±11.32 ±2.79 ±1.67

6. DISCUSSION

While the method presents significant advantages, there are also some limitations that must be acknowledged.
The method’s reliance on lateral and oblique images represents both a strength and a challenge. While the
angular views enhance accuracy in breast cancer detection, their utilization may necessitate specific expertise
in imaging. Unlike traditional imaging approaches, lateral and oblique views require specialized calibration
and alignment processes that may not be readily available in all medical settings. This potentially limits the
accessibility.

However, angular images offer distinct advantages to clinicians. They provide a different perspective that
may reveal details not visible in frontal views, therefore enhancing the diagnostic process. By implementing
various angles and views, clinicians can gain a more comprehensive understanding of the underlying pathology.
This additional information can complement the frontal diagnosis, revealing aspects that might be obscured or
overlooked from a frontal view alone. Therefore, the integration of angular images, despite initial challenges,
could be a vital step toward more accurate and personalized breast cancer detection.

Given that oblique images achieve a 97.74% accuracy rate, they indeed hold significant potential for detecting
breast cancer. While this is slightly lower than the 98% accuracy achieved by frontal images alone,18 it’s still a
high level of accuracy and suggests that angular images can be quite effective in identifying breast cancer. Still,
the true potential lies in the combined use of both angular and frontal images. When used together, they can
provide a more comprehensive analysis, potentially leading to even higher accuracy and reliability in diagnosis.
The complementary perspectives offered by both types of images can enhance the detection of tumors that might
be less visible in one view but more apparent in another.

For future work, we intend to reduce the method’s complexity by implementing state-of-the-art algorithms,
such as transformers, and evaluate other approaches, such as 3D CNNs.

7. CONCLUSION

This study delved into the potential of lateral and oblique thermal images for breast cancer detection, specifically
exploring their diagnostic effectiveness when used in isolation. Throughout our experiments we detected that
Oblique images with DenseNet features are the best angle for imaging besides frontal. Leveraging the DMR-
IR database, a specifically designed preprocessing pipeline, and a deep neural network approach, our findings
highlight the value of these views, thereby contributing to the evolution of breast cancer detection techniques.
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