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INTRODUCTION
The American Association of Physi-
cists in Medicine Task Group (TG)
273 has been charged with developing
recommendations on best practices for
the development and performance
assessment of computer-aided decision
support systems. The TG report [1]
addresses broad issues common to
the development of most, if not all,
computer-aided diagnosis (CAD) and
artificial intelligence (AI) applications
and their translation from the bench
to the clinic. The goal was to bring
attention to issues such as proper data
collection and training and validation
methods for machine learning (ML)
algorithms, aiming to improve gener-
alizability and reliability and thus
accelerate the adoption of CAD-AI
systems for clinical decision support.
The report focuses on several devel-
opmental stages of CAD-AI: data
collection, reference standards, model
development, performance assess-
ment, and translation to the clinic.

CAD is the use of computer-
analyzed information to assist in
medical decision making. Traditional
ML CAD was introduced into radi-
ology clinical practice more than two
decades ago. In recent years, rapid
advances in ML and deep learning
techniques have given rise to the
development of CAD tools incorpo-
rating AI and dramatically increased
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interest in these methods for clinical
decision support.
DATA COLLECTION AND
ETHICS
Proper data collection methods are
critically important to the successful
training, validation, and implementa-
tion of CAD-AI algorithms. Improper
collection and manipulation of data
(eg, improper data augmentation) can
lead to an overestimation of perfor-
mance or lack of generalizability.

Data collected should reflect the
intended use and population to allow
for the replication of results in a real-
world clinical setting. Population de-
mographics, ethics, case sampling
strategies, and sample sizes must be
carefully considered. Training data
could be collected with methods such
as stratified sampling for improved
case balance (eg, cases with or without
disease or different racial/ethnic
groups). Improper data collection
practices may introduce bias and
create misleading model performance,
especially in subpopulations that may
not be appropriately represented in the
study data set. It is also of critical
importance to use multi-institutional
data with diverse patient de-
mographics and equipment and pro-
tocol variability for training to
improve model generalizability. Public
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data sets from multiple sites help
alleviate bias due to limited data di-
versity at any individual site. To create
public data sets, care must be taken to
ensure transparency on inclusion and
exclusion criteria, image acquisition
parameters, and proper deidentification
of protected health information. Image
quality and reference standard integrity
should be verified before a data set is
released. Effective methods to preserve
sequestered data for testing with unseen
cases are important for reliable evalua-
tion and fair comparison of CAD-AI
algorithms.

Data collected from different
clinical sites can vary, potentially
leading to undesirable systematic var-
iations in the CAD-AI output.
Harmonization can be used to reduce
these variations retrospectively after
acquisition while preserving the
biological variability captured in the
images. Although harmonization
methods usually cannot address the
issue of systematic variations among
patient subpopulations, they aim to
reduce the systematic variations due
to differences in image acquisition
equipment, protocols, reconstruction,
and postprocessing among data
collection sites. Harmonization
methods include image- and feature-
domain harmonization. Image-domain
harmonization includes postprocessing
of image data, and feature-domain
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harmonization includes statistical
normalization techniques.

Rapid advances in image acquisi-
tion hardware and software can lead to
data set obsolescence. To create an
enduring image data set, data collection
and management should be considered
a continuous process to ensure that the
images were acquired with equipment
that is still technically relevant and in
accordance with appropriate image
acquisition protocols.

Data augmentation is a collection
of task-dependent techniques used to
improve performance and generaliza-
tion of CAD-AI by increasing the
training set size, usually by adding
altered training data (eg, rotation or
scaling) or by introducing synthetic or
generative data. Any such changes
should not modify the appearance of
the image in a manner that distorts
underlying anatomy and biology
beyond clinical reality. Data augmen-
tation is not equivalent to increasing
the number of independent cases in
the data set, and proper validation of
such trained models is crucial.
REFERENCE STANDARDS
A reference standard [1] is required to
train CAD-AI in a supervised learning
setting and to evaluate its performance.
The utility of a CAD-AI algorithm is
critically linked to the quality of the
reference standard used to develop it.
Methods for acquiring a reference
standard (annotations) include expert
labels, electronic health record, crowd
sourcing, and weak or noisy labels
[1]. An objective reference standard
supported by complete and reliable
clinical and pathological data is
preferred. When a subjective reference
standard cannot be avoided (eg,
lesion segmentation), independent
assessments by multiple domain
experts should be obtained, and
their variabilities should be evaluated.
Potential biases that may be
introduced when training or
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evaluating an algorithm with such
reference standards should be
assessed. Given this potential
variability in the reference standard,
the use of the terms “ground truth”
or “gold standard” is discouraged [1-5].
MODEL DEVELOPMENT
When developing a CAD-AI model, it
is important to consider factors that
will affect the robustness of a model
and minimize the risk of overfitting to
the training set, such as data sampling,
the levels of learning supervision, and
training strategies. Data sets should
generally be split into three nonover-
lapping partitions: training, validation,
and testing. It is of critical importance
to use an independent test set repre-
sentative of the intended use that has
not been employed in model training
or model optimization for final per-
formance evaluation. This test set
should be used only once to report the
final performance level; ideally, the
test set should be sequestered from
model developers because multiple
uses of the test set by the same
developer will introduce bias and thus
weaken generalizability.

The ML strategy (eg, transfer
learning, federated learning, and
continuous learning) must also be
considered before training a CAD-AI
model. These ML strategies provide
various levels of supervision: super-
vised, semisupervised, self-supervised,
unsupervised, and multiple instances.
Transfer learning can be implemented
by training a network on a source task
and then using the pretrained weights
to initialize the training for a target task,
rather than random initialization.
Transfer learning includes multitask
learning and domain adaptation.
Federated learning enables collabora-
tive training on decentralized data sets.
A continuous learning system adapts
over time to the changing environment;
although appealing, effective methods
should be implemented to monitor the
Journal of
performance of such systems in clinical
settings to safeguard its reliability.
PERFORMANCE ASSESSMENT
Selection of performance metric(s) de-
pends on the task and the reference
standard. Often multiple performance
metrics are appropriate and frequently
desirable. Common performance met-
rics include receiver operating charac-
teristic analysis, free-response receiver
operating characteristic analysis, sensi-
tivity, specificity, and Dice coefficient
for segmentation. Performance analysis
should include error estimates, assess-
ment of statistical significance, and
preferably assessment of reproducibility
(eg, technical, statistical, inferential).

The intended use of a CAD-AI
system must match the clinical envi-
ronment in which it will be deployed.
Multireader multicase studies with a data
set representative of the intended patient
cohort can be used to estimate the clin-
ical impact of a CAD-AI algorithm.
TRANSLATION TO THE CLINIC
Translation of a CAD-AI system to
the clinic requires approval by the
appropriate regulatory body, an effi-
cient user interface, acceptance testing,
adequate user training, and robust
postdeployment quality assessment
(QA) procedures to monitor the con-
sistency of performance over time.

The human-machine interface can
impact the usefulness and acceptance of
a CAD-AI tool for clinical use. The
“black box” nature of AI software
makes it difficult to understand the
capabilities and limitations of an algo-
rithm. Explainable AI is a rapidly
evolving ML topic that seeks to increase
the confidence of physicians using
CAD-AI tools. The explanation must
be consistent with medical knowledge
or supported by clinical evidence. The
most common approaches at present
include generating visual heat maps,
providing examples of similar lesions or
cases, and providing semantic textual
the American College of Radiology
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explanations or cues. However, these
approaches often cannot meet key re-
quirements for utility and robustness.
Additional development and validation
are need before clinical use. For clinical
tasks more complicated than lesion
detection, the CAD-AI tool may need
to provide explanations or references
that correlate the recommendation with
the patient’s medical conditions or
other clinical data [1].

Acceptance testing must precede
clinical use of any CAD-AI tool.
Manufacturers must provide detailed
guidance on system installation, accep-
tance testing, and periodic QA. They
should also provide specifications of
performance levels and tolerance limits.

Proper use of a CAD-AI tool in the
clinical workflow must be clearly un-
derstood. An initial user training phase
followed by an adjustment phase is
recommended as an integral part of
CAD-AI deployment. During the
adjustment phase, physicians should
evaluate the performance of the tool in
their patient population without being
Journal of the American College of Rad
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influenced in their clinical decisions to
allow the physician to gain an appro-
priate level of confidence in the CAD-
AI tool. More advanced validation in-
volves prospective clinical assessments
of the impact of CAD-AI on clinical
outcomes using well-designed clinical
trial protocols.

Prospective surveillance and peri-
odic QA are recommended after initial
clinical implementation. Use of phan-
toms for QA may be possible for some
specific applications, although, in gen-
eral, QA for CAD-AI will require hu-
man data. A fixed data set may be used
to monitor changes in the CAD-AI
system, but shifts in the imaging char-
acteristics will necessitate continuously
updated clinical data. Practical and
effective QA procedures and metrics
should be established as an integral part
of clinical translation of CAD-Al.
CONCLUSION
The recommendations in the TG-273
report cover essential elements of
iology
CAD-AI systems. Considering the
best practices during system develop-
ment, validation, and deployment
can help improve the generalizability
and successful clinical translation of
such systems.
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