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Abstract— In this work, we classify the stress state of car
drivers using multimodal physiological signals and regularized
deep kernel learning. Using a driving simulator in a con-
trolled environment, we acquire electrocardiography (ECG),
electrodermal activity (EDA), photoplethysmography (PPG),
and respiration rate (RESP) from N = 10 healthy drivers
in experiments of 25min duration with different stress states
(5min resting, 10min driving, 10min driving + answering
cognitive questions). We manually remove unusable segments
and approximately 4h of data remain. Multimodal time and
frequency features are extracted and employed to regularized
deep kernel machine learning based on a fusion framework.
Task-specific representations of different physiological signals
are combined using intermediate fusion. Subsequently, the
fused multimodal features are fed a support vector machine
(SVM) and a random forest (RF) for stress classification. The
experimental results show that the proposed approach can
discriminate between stress states. The combination of PPG
and ECG using RF as classifier yields the highest F1-score
of 0.97 in the test set. PPG only and RF yield a maximum
F1-score of 0.90. Furthermore, subject-specific cross-validation
improves performance. ECG and PPG signals are reliable in
classifying the stress state of a car driver. In summary, the
proposed framework could be extended to real-time stress state
assessment in driving conditions.

I. INTRODUCTION

Stress is defined as the sensation of being overwhelmed
or unable to cope with mental or emotional pressure. Driver
stress occurs when environmental stresses such as poor
visibility, road conditions, delays, and personality factors
combine. This can lead to erroneous decisions and serious
injuries. It is reported that the road automobile accidents
claim the lives of approximately 1.3 million people every
year [1]. Acute stress disorder affects one out of every five
accident victims. After the occurrence of stress, one out of
every four people experiences psychiatric issues, including
post-traumatic stress disorder [2][3]. Taking the National
Travel Survey of England as an example, the average person
spends more than 36 minutes each day driving [3]. This
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offers the possibility to transform vehicles into personalized
diagnostic spaces [4] for healthcare monitoring based on
biosignal sensors.

In the majority of related works, single modalities such as
ECG, EDA, PPG, or RESP only are considered for measuring
stress [5], [6]. However, different physiological responses
can be observed across individuals which are subject to
similar stress conditions. Thereby, stress assessment using
single modalities might fail and it has been reported that the
combination of modalities can improve the quantification of
the stress states [5]. In a recent study, multimodal signals
and the fusion of their features achieved a more robust
model to classify human stress [7]. However, multimodal
fusion is associated with several technical challenges such
as the synchronized acquisition of the signals. In a real-life
scenario, there is a delay between the data obtained from
sensors which causes the fusion of asynchronous samples,
resulting in the degradation of model performance [8].

In this work, we propose a fusion approach to combine
multimodal and heterogeneous data to differentiate various
stress state in drivers. In particular, we have two research
questions:
RQ1: Can the fusion of multimodal biosignals improve the
performance of stress state assessment in drivers?
RQ2: How accurate are the fused multimodal features using
state-of-the-art machine learning approaches?

II. MATERIALS

1. Study Population: In this study, multimodal data of N =
10 healthy driver volunteers (gender: 5 females, age:25.5±
2.3 years, weight: 72.4 ± 10.6 Kg) was recorded, namely
ECG, EDA, PPG, and RESP using commercially-available
sensors. All participants gave written consents.

2. Study Design: We acquired the multi-modal signals
namely ECG, PPG, EDA, RESP using non-invasive sen-
sors (Biosignalplux, Plux, Lisbon, Portugal) in a simulated
driving experiment. The signals are digitized at 512Hz per
channel on 16 bit resolution. The study used single lead
ECG sensor placed on chest whereas PPG and EDA sensor
are placed on the non-dominate hand. The RESP signals are
obtained using belt-type inductive respiration sensor placed
around the chest. The CARLA driving simulator mimics
real-world driving in the Logitech driving setup [9]. All
volunteers had the following conditions: i) resting (5 min),
ii) normal driving (10 min), and iii) answering cognitive
questions while driving (10 min). Each subject performed
the experiment for a total time period of 25 minutes.
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III. METHODS

The overall architecture of the proposed approach is depicted
in Fig. 1. Below, we provide a brief discussion of all the
modules included in the approach, along with their respective
parameter settings.

A. Dataset Preprocessing and Feature Extraction: The
acquired signals are preprocessed using the Neurokit2 tool-
box [10] as mentioned below.

1) ECG: Fifth-order Butterworth filter with only the low-
cut Frequency (LF) of 0.5 Hz is used.

2) RESP: Second-order Butterworth filter is used with a
high-cut Frequency (HF) of 3 Hz and a LF of 0.05 Hz.

3) EDA: It uses Butterworth B/A (Numerator (B) and
Denominator (A) Polynomials) filter for cleaning the
signal. HF is taken 0.02 along with the Order 4.
Then smoothing of signal is performed by using the
convolution method along with the boxzen kernel [10].

4) PPG: Second-order Butterworth filter with HF of 40Hz
is used.

Multimodal features are extracted from the signals (see Tbl.
I). We consider the whole timeline of baseline (5min), normal
(10min), and cognitive (10min) as a separate window each.
We also consider each trial as individual signal vector, each
of the subjects had three trials.

B. Multiple kernel learning (MKL): MKL is a prominent
technique for fusing features at the feature level. It applies
the kernel method to map non-linearly separable features
from various modalities to unique high-dimensional feature
spaces and consider the combination of several kernels with
criterion, thus improving classification performance.

C. Neural-Network based Regularized Deep Kernel Ma-
chine Optimization (NRDKMO): The proposed NRDKMO
learns a representation for a single ensemble embedding
individually. It consists of an embedding layer and the
potential feature learning layer (PFLL) to obtain the valuable
features for the fusion of data modality. The embedding
layer uses a kernel matrix (KM) generated by a kernel
function to assess the similarity between the samples. PFLL
uses the outcome of embedding layer as input and learns
valuable features using a multilayer fully connected network
(mFCN). A single multilayer FCN significantly reduces the
computation’s time and space complexity [8].

1) Embedding Layer: In this layer, we assume a KM
generated by the kernel M ∈ Rn×n, where Mi,j = m(yi, yj)
and n is the number of input samples. The similarity between
the sample yi and all other samples yj is represented by
the mi row of the KM, which is regarded as an embedding
for the sample yi. The values of the KM are sparse in the
ideal scenario because samples from the same class have
larger values, while samples from other classes have small
values close to zero. Furthermore, as the sample size grows,
the number of embedding dimensions grows also. Therefore,
the original embedding is inappropriate for inference tasks
due to its sparsity and large dimensionality. As a result, it
is challenging to attain reasonable accuracy by developing a
model straight from the original embedding.

For a given KM M ∈ Rn×n, we intend to find an
approximation matrix M

′

q with a rank considerably lower
than the number of samples for a given KM. We first define
matrix P ∈ Rn×s, which consists of s columns randomly
chosen from the matrix M, using the Nyström method [11],
an effective way for generating low-rank matrix approxima-
tions. These randomly chosen s columns will be utilized to
determine an approximate kernel map DE ∈ Rn×q , with
M ≈ (DE)(DET ) and s << n and q ≤ s. Following the
reconfiguration of the KM M , M and P can be written as

M =

[
Q UT

U V

]
and P =

[
Q
U

]
(1)

where Q ∈ Rs×s represents the matrix comprising the
intersection of P with the corresponding s rows of M . After
rearranging the M , the remaining components are U and
V . Q is a PSD because the KM M is also a PSD. Then
the Nyström method constructs a rank-q approximation for
a given q ≤ s. It can be represented as M

′
q = PQ

′

q + PT .
Here Q

′

q is the truncated singular value decomposition’s
(TSVD) best-q approximation of Q. The mapping func-
tion is then obtained and can be represented as DE =

P (αQ′
q
λ
−1/2

Q′
q

). The top q eigenvalues and eigenvectors of Q

are αQ′
q

and λ
−1/2

Q′
q

. Instead of using approximated kernels

M
′
q , we directly employ the approximate mappings DE to

reduce the number of dimensions. Actually, the RKHS will
construct completely distinct representations based on the
mapping functions generated from various samples. As a
result, we model the characters of distinct regions in the
input space using alternative representations and compute
various mapping functions DE1, DE2,..., and DEp from the
distinct sample subsets obtained by using the multiple ran-
dom sampling process. Finally, the embedding layer employs
an ensemble technique to enhance the j-dense embedding
obtained by j mapping functions. Thus, an ensemble dense
embedding generally takes the following form:

DEens =

j∑
i=1

βiDEi (2)

where βi is the ensemble weight which is defined as the
reciprocal of the number of embeddings.

2) Potential Feature Learning Layer (PFLL): The embed-
ding obtained from the embedding layer in the NRDKMO
model is forwarded to an FCN in the potential feature
learning layer to learn the valuable features for the corre-
sponding task. So, the valuable features (PFL) learned by
NRDKMO can be represented as PFL = FCN(DEens).
Here FCN(.) is the multilayer FCN present in the PFLL.

D. Intermediate Fusion: Upon the learning of potential
features from the NRDKMO model, the features are fused
into a final representation set using intermediate fusion. The
final representation set consists of 2d − 1 representation,
where d is the total number of psychological signals. Then
each representation is sent to the SVM and RF classifiers to
predict the stress state of a car driver.

E. Hyperparameters and metrics: SVM classifier kernels
are: (RBF, Linear, Poly2, and Poly3), Number of dense
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Fig. 1. The proposed framework’s pipeline. It is important to note that the abbreviations used are as follows: NRDKMO stands for Neural-Network
based Regularized Deep Kernel Machine Optimization, PFLL represents Potential Feature Learning Layer, and DE denotes Dense Embedding.

TABLE I
FEATURES USED IN THE EXPERIMENT [8]

Signal Number of features Feature set
ECG 81 Mean, Standard Deviation(SD), Skewness, Kurtosis,Power Spectral Density(PSD)

(log(Px(f)), f ∈ [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.6], [0.6, 1.0], [1.0, 1.5], [1.5, 2.0],
[2.0, 2.5], [2.5, 5.0]), Heart Rate Variability (Time, Frequency, and Non-linear Domain)

RESP 15 Mean, SD, Skewness, Kurtosis, PSD (log(Px(f)), f ∈ [0.0, 0.1], [0.1, 0.2], [0.2, 0.3],
[0.3, 0.4], [0.4, 0.5], [0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]), Main Frequency
(Frequency at which PSD reaches its maximum value (f ∈ [0.16, 0.6]))

EDA 5 Mean, SD, Number of peaks, Maximum rise time, Maximum Amplitude
PPG 15 Mean, SD, Skewness, Kurtosis, PSD (log(Px(f)), f ∈ [0.0, 1.0] with range varying from step size difference of 0.1

Main Frequency (Frequency at which PSD reaches its maximum value (f ∈ [0.16, 0.6], ))

TABLE II
STRESS CLASSIFICATION ON SAMPLE AND SUBJECT BASED LOO CV USING SVM AND RF CLASSIFIERS. THE SYMBOL ‘+’ INDICATES

CONCATENATION OF FEATURES. BEST RESULTS OBTAINED FROM A SINGLE AND FUSION OF 2, 3, AND 4 SIGNALS ARE HIGHLIGHTED IN BOLD.

SVM RF
Sample based Subject based Sample based Subject based

Signals Acc Pr F1-score Re ROC Acc Pr F1-score Re ROC Acc Pr F1-score Re ROC Acc Pr F1-score Re ROC
ECG 0.80 0.80 0.80 0.80 0.85 0.83 0.83 0.83 0.83 0.88 0.80 0.80 0.80 0.80 0.85 0.80 0.80 0.80 0.80 0.85
EDA 0.43 0.43 0.43 0.43 0.58 0.60 0.60 0.60 0.60 0.70 0.60 0.60 0.60 0.60 0.70 0.67 0.67 0.67 0.67 0.75
RESP 0.60 0.60 0.60 0.60 0.70 0.70 0.70 0.70 0.70 0.78 0.60 0.60 0.60 0.60 0.70 0.73 0.73 0.73 0.73 0.80
PPG 0.80 0.80 0.80 0.80 0.85 0.87 0.87 0.87 0.87 0.90 0.90 0.90 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.93
ECG + EDA 0.80 0.80 0.80 0.80 0.85 0.87 0.87 0.87 0.87 0.90 0.83 0.83 0.83 0.83 0.88 0.83 0.83 0.83 0.83 0.88
ECG + RESP 0.83 0.83 0.83 0.83 0.88 0.87 0.87 0.87 0.87 0.90 0.87 0.87 0.87 0.87 0.90 0.87 0.87 0.87 0.87 0.90
ECG + PPG 0.93 0.93 0.93 0.93 0.95 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98
EDA + RESP 0.80 0.80 0.80 0.80 0.85 0.83 0.83 0.83 0.83 0.88 0.70 0.70 0.70 0.70 0.78 0.73 0.73 0.73 0.73 0.80
EDA + PPG 0.77 0.77 0.77 0.77 0.83 0.87 0.87 0.87 0.87 0.90 0.80 0.80 0.80 0.80 0.85 0.90 0.90 0.90 0.90 0.93
RESP + PPG 0.87 0.87 0.87 0.87 0.90 0.90 0.90 0.90 0.90 0.93 0.87 0.87 0.87 0.87 0.90 0.83 0.83 0.83 0.83 0.88
ECG + EDA + RESP 0.87 0.87 0.87 0.87 0.90 0.87 0.87 0.87 0.87 0.90 0.90 0.90 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.93
ECG + EDA + PPG 0.87 0.87 0.87 0.87 0.90 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98
ECG + RESP + PPG 0.90 0.90 0.90 0.90 0.93 0.97 0.97 0.97 0.97 0.98 0.93 0.93 0.93 0.93 0.95 0.97 0.97 0.97 0.97 0.98
EDA + RESP + PPG 0.87 0.87 0.87 0.87 0.90 0.97 0.97 0.97 0.97 0.98 0.80 0.80 0.80 0.80 0.85 0.83 0.83 0.83 0.83 0.88
ECG + EDA + RESP + PPG 0.93 0.93 0.93 0.93 0.95 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98

embedding(p): 3, Size of dense embedding(n): 10, Regu-
larization technique: Dropout(0.1), Loss: categorical cross
entropy, Optimizer: Adam, Learning rate: 1e−3, Batch size:
8, Epochs: 500. In RF Classifier, max depth of tree: 3,
number of estimators: 200. Perforamcne metrics considered
are accuracy, precision, recall, F1-score, and ROC curve
using Leaving-one-out (LOO) cross-validation on both the
sample-based and subject-based features.

IV. RESULTS

Our experiments are based on evaluating different kernels
in the KM and SVM classifier as described in sec. III.
Moreover, three types of feature combinations were applied
to the features obtained from the representation learning on

the different physiological signals, namely, concatenation,
summation, and multiplication. Tbl. II contains the best
results obtained from the RBF kernel and concatenation of
features. In the case of individual signals (without fusion),
PPG outperforms ECG, EDA, and RESP for both, sample
and subject-based, validation. Analyzing the results of the
multi-modal fusion answers RQ1 by clearly demonstrating
that the fusion of different improves stress state classification
(see Tbl. II). The use of MKL results in the approach
to be not sensititve to synchronization of signals. It also
demonstrates the robustness of the approach as the fusion
of different psychological signals never degrades the classi-
fication performance, which answers RQ2.
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Fig. 2. Confusion matrices of ECG, EDA, RESP, PPG, ECG+PPG, ECG+EDA+RESP+PPG for subject-based LOO CV using the RF classifier
for all the 10 subjects. B represents baseline, i.e. the first part of the experiments while the subject is sitting, N represents normal driving, and C
represents driving combined with cognitive stress.

Analyzing F1-score in sample-based LOO, the fusion of
ECG + PPG features shows an improvement of 16.25%,
16.28%, 55.00%, 16.25% using SVM and 21.25%, 61.67%,
61.67%, 7.78% using RF for ECG, EDA, RESP, and PPG
signals, respectively. In subject-based LOO, the fusion of
features shows an increment in F1-score of 16.87%, 61.67%,
38.57%, 11.49% using SVM and 21.25%, 53.97%, 25.97%,
7.78% using RF for ECG, EDA, RESP, and PPG signals
respectively.

Subject-based LOO has performed better than sample-
based LOO on most of the fusions for both the SVM and
RF classifiers. Tbl. II shows that PPG and ECG signals
better classify stress than RESP and EDA. PPG and ECG
outperform RESP and EDA by 86.04% and 33.33% in terms
of F1-score for SVM Sample-based LOO. A similar trend
can be observed for other cases as well. Additionally, PPG
outperforms ECG by 12.50% for RF for the sample-based
and subject-based LOO and 4.82% for SVM in case of
Subject-based LOO.

The confusion matrices of ECG, EDA, RESP, and PPG
and their combination with and without fusion for RF are
presented in Fig. 2. On the one hand, it can be observed that
EDA and RESP fail to correctly predict the cognitive and
normal stress level resulting in a degraded performance (see
Fig. 2). On the other hand, ECG and PPG differentiate the
baseline and normal stress level successfully but they face
problems in correctly predicting the cognitive stress level.
This problem can be mitigated by fusing ECG and PPG,
resulting in 90% accuracy for cognitive stress classification.
It can also be observed that features obtained from ECG and
PPG dominate the fusion even when combined with other
signals as the confusion matrix of ECG + EDA + RESP +
PPG is exactly the same as in case of ECG + PPG. The
findings in Tbl. II provide further evidence to support this
argument. One possible explanation for this phenomenon is
the relatively small sample size of only 30 data samples. As
the number of data samples increases, the impact of EDA and
RESP on the results is expected to become more prominent.
Moreover, it is noteworthy that the confusion matrix of EDA
+ RESP + PPG differs from that of PPG alone, and a similar
observation can be made regarding the confusion matrix
of ECG + RESP + PPG compared to ECG. Notably, the
fusion of ECG and PPG has yielded better results than any
other fusion method. The maximum F1-score achieved by
ECG+PPG is 0.93 and 0.97 for SVM and RF for Sample-
based LOO and 0.97 for both SVM and RF for Subject-based

LOO. ECG+PPG outperforms RESP+EDA by 16.25% and
38.57% for SVM and RF for Sample-based LOO and 16.87%
and 32.88% for SVM and RF for Subject-based LOO.

V. CONCLUSION & FUTURE WORK

In this paper, we considered multimodal psychological sig-
nals to classify different stress levels in a driver: ECG,
EDA, RESP, and PPG. The multimodal fused features are
more effective than single modality in stress level prediction.
We observed that the performance improves with 16.25%,
116.28%, 55.00%, 16.25% using SVM as classifier, and
21.25%, 61.67%, 61.67%, 7.78% for RF. RF outperforms
the SVM when it comes to sample-based validation. The
proposed method can be extended to other heterogeneous
data and is found to be insensitive by data synchroniza-
tion issues. In the future, other signals could be added to
the setup, e.g. camera-based modalities. Regarding signal
processing, convolutional neural networks with an attention
mechanism will be explored to pay closer attention to the
features extracted from the intermediate fusion.

REFERENCES

[1] “Road traffic injuries,” Who.int. [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
[Accessed: 08-Apr-2022].
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