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Abstract—Thyroid disorders are a complex group of diseases
that require an accurate diagnosis for effective treatment. Fine-
needle aspiration biopsies can assist in detecting many thy-
roid diseases. These materials can be analyzed visually using
traditional computer vision methods, despite the limitations of
complex samples. To address this problem, we propose a novel
approach that uses hyperspectral imaging (HSI) to analyze thy-
roid biological samples. HSI measures the absorbance of infrared
light by biological samples using a micro Fourier transform
infrared spectroscopy (micro-FTIR) and converts this data into
hyperspectral images. In this study, we used HSI to train and
validate a recurrent neural network to classify thyroid samples
as healthy, cancerous, or goiter. Our experiments, based on the
k-fold cross-validation, achieved an overall accuracy of 96.88%,
a sensitivity of 96.87%, and a specificity of 98.45%. These results
demonstrate the potential of hyperspectral imaging as a tool to
assist pathologists in the diagnosis of thyroid disease.

Index Terms—classification, computational pathology, deep
learning, hyperspectral imaging, thyroid cancer

I. INTRODUCTION

The thyroid is a gland located in the anterior neck and it

is responsible for producing hormones such as T3, T4, and

calcitonin. It contributes to the body’s metabolism, growth, and

concentration of electrolytes in the serum [1]. Uncontrollable

growth of cells able to avoid cellular apoptosis and invade

distant organs characterize Thyroid cancer [2].

In 2023, the American Cancer Society estimates 43,720 new

cases of thyroid cancer, of which 12,540 are in men and 31,180

are in women. For the same period, 2,120 deaths are expected,

which represents an increase of 0.6% from the previous year

[3].

This disease usually appears as a lump in the neck, some-

times growing quickly, along with pain in the front of the

neck, hoarseness, swelling, and difficulties in swallowing and

breathing [4]. After the first symptoms, the patient may be

guided to undergo image tests to find suspicious areas, but the

actual diagnosis is only made using biopsy, of which a small

portion of the suspicious area is removed using fine-needle

aspiration and studied in the laboratory [5]. Inflammatory

and autoimmune diseases, such as Goiter and Thyroiditis also

affect the thyroid and may be histologically detected [6].

Traditional computer vision methods use digital images ac-

quired from sample slides stained with hematoxylin and eosin

(H&E) [7], [8]. These methods represent the image’s content

in a format of feature vector and use machine learning to find

patterns and build a classification model. These methods tend

to perform well on small samples but they have difficulties

when the samples are larger and contain different pathologies.

Different from the traditional digital image acquisition

process, hyperspectral imaging (HSI) uses a special camera

called a spectrometer to generate images, characterized by

their large number of channels [9]. Using a light source, the

spectrometer measures how the biological material interacts

with the light at different frequencies, including those not

visible to humans. Some of the most common measurements

are reflectance, transmittance, emission, and absorbance. The

absorbance spectra can provide information about the molecu-

lar and histochemical composition of the tissue, which can be

used for diagnostic purposes. In medical applications, HSI has

been successfully applied to detect breast cancer [10], ovarian

cancer [11], and thyroid cancer [12].

Over the literature, other researchers approached thyroid

tissue characterization using hyperspectral imaging. In 2017,

Halicek et al. [12] developed a convolutional neural network

(CNN) to differentiate head and neck cancer using hyperspec-

tral imaging. Their method consists in obtaining HSI from
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tissues, such as healthy thyroid and squamous-cell carcinoma

using reflectance spectroscopy over a bandwidth from 450

to 900cm−1. Overall their method achieved an accuracy of

80%, a sensitivity of 81%, and a specificity of 78% in

classifying the tissue between healthy and cancer. For thyroid-

only experiments, his method based on CNNs achieved an

overall accuracy of 90%, a sensitivity of 83%, and a specificity

of 93%.

Later on, Lu et al. [13] developed a work for head and neck

cancer detection on histological samples. The authors acquired

HSI from 36 patients using a reflectance spectrometer over a

bandwidth of 450 to 900 cm−1, with a 5cm−1 interval. Several

conventional machine learning methods were benchmarked

to check the best classification method for this data. The

ensemble linear discriminant analysis (LDA) achieved the

highest results for thyroid tissue, with an accuracy of 91%,

a sensitivity of 91%, and a specificity of 93% in classifying

them between cancer and healthy tissue.

In 2020, Maktabi et al. [14] developed an automatic classifi-

cation method to detect goiter and healthy tissue. Their method

is based on reflectance spectroscopy which was acquired in the

spectral range of 500 to 1000cm−1. Using a support vector

machine, they obtained a patient-based accuracy of 68%.

Edwards et al. [15] evaluated HSI to predict the aggres-

siveness of papillary thyroid carcinoma using multiparametric

radiomics. They extracted 120 features to represent the HSI

content in a form of a feature vector. This feature vector is used

to train and benchmark several conventional machine learning

methods, of which the linear support vector machine (SVM)

and the quadratic discriminant analysis (QDA) achieved the

highest results. Both classifiers achieved an accuracy of 83%

and an area under the curve (AUC) of 85%.

Recently, Tran et al. [16] developed a deep learning-

based method to detect thyroid carcinoma on whole histo-

logical slides. They acquired 33 HSI from 23 patients us-

ing reflectance spectroscopy over the wavelength of 467 to

721cm−1. The classification was performed using a VGG-19

network and achieved an overall accuracy of 93.80%, an F1-

Score of 86.72%, and an AUC of 96.60%.

Therefore, this paper addresses thyroid tissue classification

using HSI acquired with absorbance spectroscopy in the

infrared spectrum (micro-FTIR Spectroscopy). The proposed

method uses a deep learning-based algorithm, called recurrent

neural network (RNN), to detect patterns over the infrared

spectrum and develop a classification model for further appli-

cations.

A. Our Contributions

The majority of the articles explore thyroid tissue classifi-

cation using reflectance spectroscopy methods over a visible

spectrum bandwidth. Reflectance spectroscopy measures how

much light is being reflected by the material when exposed

to light. Also, most papers approach a binary classification

problem, between cancer and healthy tissue, or goiter and

healthy tissue. Although they reach good results in their

proposal, it is common to observe slides with multiple di-

agnoses, mostly containing all three types above mentioned.

There is still a gap in this research field, which includes (i)

investigating the performance of HSI acquired using other

optical methods, such as absorbance and transmission; (ii)

studying other spectral ranges, such as infrared from 700 to

1800cm−1; and (iii) exploring deep learning methods, such as

fully-connected neural networks and recurrent neural networks

to detect patterns over the spectral information. Therefore, the

main contributions of this paper are stated below:

• HSI acquisition process using absorbance spectroscopy

over the infrared spectrum (micro-FTIR), from 750 to

1800cm−1.

• Multi-classification model for cancer, healthy, and goiter

tissue.

• Development of a custom recurrent neural network

(RNN) architecture to detect patterns over the spectrum.

II. METHODOLOGY AND DEVELOPMENT

Our method involves the classification of each HSI voxel

and the generation of a classification map that identifies all

the present classes in a given sample. It was implemented

in several steps (Figure 1). First, we acquired micro-FTIR

HSI data and processed it to remove unwanted information

(Fig. 1, Steps 1-4). Then, we created a descriptive database

by collecting the spectra from the region of interest and

separated it into a training and testing dataset (Fig. 1, Step

5). After that, we improved the data variability using data

augmentation (Fig. 1, Step 6). Finally, we trained a recurrent

neural network to detect patterns in the spectra and classify

the samples. To explain these steps in detail, this section is

divided into three parts: (i) data acquisition, (ii) preprocessing

and data augmentation, and (iii) classification methodology.

These parts provide a comprehensive description of each step

of our method, along with the explanation behind the choices

we made.

A. Data Acquisition

We obtained thyroid biopsies from a specialized company

(US Biomax Inc., Rockville, USA) that acquires histological

material and provides histochemical analysis services. We

acquired sample slides with healthy, cancer, and goiter thyroid

tissue. The biopsies are pre-labeled by two Biomax patholo-

gists and confirmed by two pathologists from the Department

of Pathology, School of Medicine of Ribeirão Preto and the

Pathology Service from the Clinical Hospital, Ribeirão Preto.

In total, we acquired 60 samples from 60 different patients,

20 of each tissue type.

The HSI was acquired using a micro-FTIR spectrometer

(Perkin Elmer Spotlight 400) connected to a microscope.

This system measures the intensity of absorbance over the

infrared spectrum (E.g., Figure 2) ranging from 778cm−1

to 1800cm−1, using the spectral mapping technique. The

measurements were taken every two frequencies, resulting in

512 intensity readings for each pixel. The system provides

4cm−1 spectral resolution and 6.25μm spatial resolution. The
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Fig. 1. Overview of the proposed method.

HSI was acquired in a controlled environment with dry air,

and the relative humidity was kept below 5%.

Fig. 2. Absorbance intensity over the infrared spectrum collected using micro-
FTIR spectroscopy.

B. Preprocessing and Data Augumentation

The raw HSI was preprocessed to reduce noise and the

influence of humidity. To do so, we calculated the second

derivative of the signal and applied the Savitzky-Golay filter,

with a window with size 11 and a second-order polynomial.

The Savitzky-Golay filter is a digital filter that smooths data

points in a spectrum using a polynomial fitting approach [17].

We opted to utilize this filter based on its effective spectral

smoothing and its function here is to remove noise and thin

bands of water, among the region of 1350 and 1800cm−1.

We remove unwanted thyroid structures, such as colloids,

that may not contain cancer, healthy, or goiter signal. To do

so, we observed that the cellular information is visible as high

frequencies on grayscale images. Therefore, to remove such

structures and to keep only the region of interest (ROI), we

developed a binary mask (Figure 3) using a high-pass filter

based on a fast Fourier transform (FFT) algorithm along with

the opening morphological operation to remove noisy pixels

and enlarge the cellular thickness in the mask.

In order to improve generalization in the network and

consequently the effectiveness of applying the classification

model to real-world problems, we used a data augmentation

technique to increase the data variability. The technique relies

on adding Gaussian noise to the data used in the training

dataset, doubling its size, and increasing the robustness of the

method. Adding noise to the input of a neural network can

(a) (b)

(c) (d)

Fig. 3. H&E samples and their respective HSI binary masks.

be considered a type of data augmentation [18]. The Gaussian

noise was implemented using the NumPy framework and may

be calculated using the equation

P (x) =
1

σ
√
2π

e−(x−μ)2/2σ2

(1)

where σ is the standard deviation, μ is the mean, and the σ2

is the variance.

We developed a voxel dataset containing 104,107 spectra

from a total of 60 hyperspectral images, not including the

augmented data. It is important to notice that the data augmen-

tation is only applied to the training dataset and the separation

between training and test subsets considers different patients

among them. Therefore, no patient is repeated in between the

subsets. Besides, the number of entries in each class during

the training process is balanced based on the number of voxels

in the minority class.

C. Classification Methodology

Due to the nature of the problem, in which a variable

(intensity) changes over the frequencies, the recurrent neural

network (RNN) was the deep learning architecture that bests
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suits the proposal. RNN is a special type of neural network

that can take advantage of this type of data [19]. Therefore,

this neural network is able to detect the pattern of changes in

absorption intensity along the frequencies of the spectrum.

There is a common problem with RNN called vanishing

gradient. This problem occurs during the detection of patterns

using a very large sequence. While the algorithm detects

patterns throughout the sequence, the intensity values seen at

the beginning of the training can be forgotten, reducing the

classification model’s effectiveness. Long short-term memory

(LSTM) is a specific type of recurrent layer that includes a

memory module, capable of reducing the vanishing gradient

problem.

The LSTM-RNN architecture developed for this work con-

sists of two LSTM layers with 256 and 128 units, respectively.

Each LSTM layer is followed by a dropout layer that randomly

turns off 20% of the neurons to reduce the risk of overfitting

and improve the model’s generalization. The input for the

neural network is the entire spectrum, which includes 512

intensity values for each observed frequency. After the LSTM

layers, we used a dense layer with 512 neurons, and the ReLU

activation function is used to aid in pattern recognition. A

dropout layer of 20% follows the dense layer. Finally, the out-

put layer contains three neurons representing cancer, healthy,

and goiter classes, using the softmax activation function.

We used the categorical cross-entropy function along with

the Adam optimization algorithm to calculate the loss between

the predicted and expected values during training. The model

was trained for 200 epochs, which were found to be sufficient

for convergence to the best result. To fit into the available

two GPUs’ memory, we optimized the batch size to 1000.

The architecture was designed empirically with the goal of

maximizing the efficiency of the classification model.

III. EXPERIMENTS AND RESULTS

To implement the method we used Python programming

language, in version 3.9, along with Tensorflow 2.10 [20] and

Scikit-Learn 1.2 [21]. The development and experiments run

into a server with Linux Ubuntu 22.04, two Intel Xeon Silver

processors, 192 GB of RAM DDR4, and two NVIDIA RTX

A4000 graphics card.

The experiments were conducted in an inter-patient k-fold

cross-validation protocol. The whole spectrum database was

divided into ten parts (K = 10) of which, each experiment

used nine parts for training (K−1) and one part for testing. As

the experiment is inter-patient, there were exclusive patients

in between the subsets, therefore no patients were in training

and testing subsets at the same time. Additionally, to validate

externally, one patient of each class was carried from both test

and train separation to visually validate the model.

To evaluate the effectiveness, we measured the accuracy,

sensitivity, specificity, precision, and AUC for each itera-

tion (Table 1). Overall, the majority of the folds achieved

accuracies above 95%, with the highest accuracy reaching

99.42% in folds 3 and 99.34% in fold 4, and the lowest

at 89.01% in fold 8. The average accuracy across all folds

was 96.88%, indicating the network’s strong ability to extract

relevant information and build an efficient classification model.

TABLE I
LSTM-RNN PERFORMANCE OVER THE K-FOLD CROSS-VALIDATION.

Fold Accuracy Precision Sensitivity Specificity AUC
0 94.54% 94.61% 94.54% 97.30% 97.94%
1 99.73% 99.77% 99.73% 99.89% 99.95%
2 98.51% 98.52% 98.50% 99.26% 99.47%
3 99.42% 99.42% 99.42% 99.71% 99.91%
4 99.34% 99.34% 99.34% 99.67% 99.89%
5 98.99% 98.99% 98.98% 99.50% 99.73%
6 95.20% 95.32% 95.17% 97.66% 98.30%
7 96.86% 96.86% 96.86% 98.43% 99.07%
8 89.01% 89.04% 88.98% 94.52% 95.57%
9 97.21% 97.22% 97.21% 98.61% 98.94%

Mean 96.88% 96.90% 96.87% 98.45% 98.87%
Std. Dev. ±3.13 ±3.11 ±3.13 ±1.55 ±1.28

To assess the generalization ability of the developed RNN-

based classification model on samples not seen in the train-

test separation, we performed a validation experiment on three

independent samples, one from each class. These samples were

obtained from patients that were not included in the training or

test subsets. Figure 4 displays the H&E images of the samples

and their corresponding classification maps, where green, blue,

and red pixels represent healthy, goiter, and cancer spectra,

respectively, detected by the classification model. The results

show that the classification model achieved an average ac-

curacy of 96%, indicating its high performance in identifying

thyroid tissue classes. This validation experiment demonstrates

the potential of the RNN-based model for diagnosing thyroid

diseases in a real-world application.

A. Discussion

Compared to other deep learning approaches, the RNN

architecture is particularly well-suited to the natural shape of

the data. Its ability to take advantage of the structure of the

data allows it to capture patterns in the way that absorption

intensity changes across the spectrum. This is the main reason

why we chose to use RNN in our approach to solving the

problem.

Due to the LSTM-RNN complexity and the number of

frequencies used, the training time was not short, around 2

hours and 30 minutes for each fold on the such hardware

configuration. This would be a disadvantage of such a robust

method. On the other hand, with the capacity of representing

the data as its original shape, with all the frequencies, we

were able to create a classification method that generalized

well. Additionally, the data augmentation method played an

important role in improving performance, as we observed an

increase of around 7% in accuracy and 9% in sensitivity when

we added Gaussian Noise to increase the number of training

samples.

IV. CONCLUSION

In this paper, we have demonstrated the potential of hy-

perspectral imaging for the accurate and efficient diagnosis

of thyroid diseases. Considering the limitations of traditional
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Classification maps of three tissue samples from different patients:
(a) cancerous tissue, (c) healthy tissue, (e) goiter tissue, and (b), (d), and (f)
their corresponding classification map. Green pixels indicate healthy tissue,
blue pixels indicate goiter, and red pixels indicate cancer.

computer vision methods, such as samples with multiple diag-

nostics and diseases with similar aspects, hyperspectral images

are capable to represent these tissues using their histochemical

composition by measuring how they interact with light. The

absorbance spectroscopy over the infrared spectrum showed as

an effective way to differentiate the samples between healthy,

cancerous, and goiter contributing to improving the accuracy

and speed of thyroid disease diagnosis, and treatment. In future

work, we intend to incorporate the proposed AI model into a

diagnostic tool that will aid pathologists in the detection and

classification of thyroid diseases.
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