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ABSTRACT

Approximately 37 million falls occur each year worldwide requiring medical attention. Victims are often helpless
and not able to call for help, which is a risk for elderly persons living alone. To detect falls at home, several
approaches have been proposed. Video cameras are used increasingly. Recently, high accuracy in real-time
human pose estimation in videos has been achieved by novel machine learning techniques. In this work, we
propose a multi-camera system for video-based fall detection. We augment human pose estimation (OpenPifPaf
algorithm) by support for multi-camera and multi-person tracking and a long short-term memory (LSTM)
neural network to predict two classes: “Fall” or “No Fall”. From the poses, we extract five temporal and spatial
features which are processed by the LSTM. For evaluation of identification and tracking with multiple cameras,
we used videos recorded in a smart home (living lab) with two persons walking and interacting. For evaluation
of fall detection, we used the UP-Fall Detection dataset and achieve an F1 score of 92.5%. We observed a
tendency towards false positive classifications due to lack of activities in publicly available datasets that look
similar to falls but stem from normal activity. Moreover, the lack of variation in the activities also results
in a higher amount of false positives. This requires the acquisition of more balanced datasets in future work.
In conclusion, real-time fall detection from multiple camera inputs and for multiple persons is feasible using a
LSTM neural network combined with features obtained via human pose estimation. Source code is available at
https://github.com/taufeeque9/HumanFallDetection.

Keywords: Video processing, multiple cameras, fall detection, human pose estimation, machine learning, long
short-term memory, neural networks, deep learning

1. INTRODUCTION

According to the World Health Organization (WHO), 37 million falls occur each year and require medical
attention.1 Approximately 650.000 people die on fall-related injuries, making it the second leading cause of
deaths.1 If a fall occurs, victims are often helpless and unable to call for help which is a safety risk since more
than 30% of elderly people in Europe live alone. Thereby, current research aims for developing methods for
unobtrusive home monitoring.2

Several approaches have been proposed for automatic fall detection at home.3,4 The majority of methods use
wearable sensors (e.g., accelerator, gyroscope), ambient sensors (e.g., microphone, pressure sensor, radar sensor),
and cameras (e.g., color, depth, thermal). However, these approaches are often invasive (wearable technology),
inaccessible (depth cameras) or expensive. This has led to the rise in popularity of video-based systems as
depicted in Fig. 1. Home cameras are cheap, provide contextual information (e.g., room dimensions, furniture)
and have the advantage that they cannot be forgotten or discarded like ambient sensors or wearables.

Historically, fall detection algorithms can be classified into three main categories. The first one is based on
decision-based approaches. Albawendi et al.5 extract best-fit approximated ellipse around the human body and,
in addition, projection histogram features. Hazelhoff et al.6 use Principal Component Analysis to determine
the direction of the main axis of the body and the ratio of the variances in x- and y-direction followed by
Gaussian multi-frame classifier. The main drawback of these approaches is that they rely too much on predefined
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Figure 1: Principle of video-based fall detection systems

thresholds and cannot generalize well to unseen data. The second category of approaches are those which make
use of handcrafted features extracted directly from raw images (e.g., position of the bounding box of a person,
angle between the person’s body and the vertical axis) along with traditional machine learning algorithms (e.g.,
Nearest Neighbor, Logistic Regression, Random Forest). For example, Miguel et al.7 extract three features
from optical flow images which are fed into a k-nearest neighbor algorithm. However, the features used by such
approaches are unable to capture enough details about the posture of the person to make an informed decision.
In addition, they do not handle time series data well. The third category represents end-to-end Deep Learning
systems. The work proposed by Núñez-Marcos et al.8 was one of the first papers implementing an end-to-end
Deep Learning system with a stack of optical flow images being applied to a Deep Neural Network achieving
high accuracy on different fall detection datasets. However, on the downside, is the risk of the model overfitting
the training data and being sensitive to image parameters (e.g., brightness, contrast)

One of the biggest hurdles in the way of the success of video-based fall detection is the lack of adequate
datasets. Videos of falls occurring in natural environments are very difficult to obtain. Therefore, instead of
natural falls, datasets often contain videos of people enacting falls in laboratory environments. As a consequence
trained models are often unable to generalize to real-world scenarios. Due to the controlled environment, recorded
falls often lack variation in terms of the posture during the fall, as well as the angle from which the fall is captured.
In addition, there are many activities that are similar to falls (e.g. kneeling, jumping) and therefore, are likely
to be misclassified as datasets do not capture the full variety of activities.

Recently, machine learning techniques have advanced human pose estimation by enabling the detection of
multiple human poses with high accuracy in real-time.9 These techniques represent a human body by certain
keypoints (e.g., ears, eyes, shoulders, elbows, knees) and have been applied already for human fall detection.
Adhikari et al.10 used the raw keypoints for training a LSTM neural network. Zhang et al.11 reduced the
pose information to an “inverted pendulum model” consisting of five keypoints (head, neck, buttocks, left/right
knee) and analyzed temporal and spatial features connecting the keypoints in adjacent frames. Using this
representation, they use the rotational energy and generalized force of motion as input for a logistic regression
classifier. Both works report high precision and recall.

In this work, we aim to address certain limitations of prior work, namely over-fitting fall detection datasets,
inability to distinguish between subjects in multiple cameras and high hardware requirements. Therefore, we
propose a new methodology for video-based fall detection. As a proof of concept we developed an open-source
algorithm∗ and, to the best of our knowledge, that work is the first open-source source algorithm to

• use pose information along with a state of the art neural network architecture to detect fall in videos,

• identify and track multiple subjects, along with coupling features from multiple uncalibrated cameras,

• have low hardware requirements so that it can also run without a graphics processing unit (GPU)

2. MATERIAL AND METHODS

In this section, we introduce our multi-camera, multi-person and real-time fall detection system followed by
details on the dataset used for evaluation.

∗The source code of the application is available at https://github.com/taufeeque9/HumanFallDetection
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Figure 2: An overview of our proposed algorithm pipeline

2.1 Algorithm

Fig. 2 displays the algorithm pipeline with ellipsis denoting the input/output and rectangles indicating algorith-
mic steps which are presented in the following subchapters. The whole pipeline was implemented in Python3.

2.1.1 Human pose estimation

The inputs for this stage are the videos from each camera. We analyze each video as a sequence of images
and process frames sequentially one after the other. Keypoints of human poses are extracted from each frame
using the publicly-available, bottom-up human pose detector OpenPifPaf.12 Its advantage lies within superior
performance on low-resolution images as well lower hardware requirements compared to other state-of-the-art
algorithms.9 For each frame obtained from each camera, a list of keypoint sets is obtained with each keypoint
set representing the position of joints of a single person.

2.1.2 Subject identification and tracking

Fig. 3 depicts the algorithm used for subject identification and tracking. In this work, we use two cameras only.
However, the approach can be generalized to multiple cameras. At the end of the first stage, we obtain a list
of keypoint sets for each camera, with each keypoint set corresponding to a different person. In the case that
there are multiple people in the frames, if we are given any keypoint set from a camera, we do not know which
keypoint set from the other cameras corresponds to the same person.

In this stage, we create a mapping between keypoint sets using a two-step procedure. At first, the list of
keypoint sets is obtained with each set being mapped to the keypoint set of the same person in the previous
frame. We use the spatial Euclidean distance between keypoints in consecutive frames as distance measure.
Subsequently, we map the person-specific keypoint set from the first camera to the one with highest similarity in
the second camera using a customized Gale-Shapley algorithm.13 This matching approach correlates HSV (hue,
saturation, value) color histograms.

2.1.3 Feature extraction

Once we have the mapped set of keypoints for each person in a video, five features for fall detection are extracted.
These are based on temporal as well as spatial features and are independent of the pose detection algorithm. We
derive three features from angle θ between the axis of the upper body and the vertical axis: (i) log(|θ| + 1), (ii)
θ′2 where θ′ denotes the first-order derivative of θ, and (iii) the lagrangian force on the person.11 Additionally,
we derive a bounding box from the head/knee keypoints and the outermost keypoints on the along the the axes
of the image. From that bounding box we use the (iv) aspect ratio and (v) its derivative w.r.t. time as additional
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Figure 3: Concept of subject identification and tracking in multiple cameras (given here for two cameras)

features for classification. The set of these five features for each person forms the feature vector Xn where n
represents a time step. Using this set of features we ensure to incorporate features that vary in different ways
with respect to time. Features (iii) and (iv) correspond to the position of the subject (0th order derivative w.r.t.
time). Features (i) and (ii) correspond to the velocity/angular-velocity of the subject (1st order w.r.t. to time),
and feature (v) corresponds to acceleration of the subject (2nd order derivative w.r.t. time).

2.1.4 LSTM classification and training

Once we have the features of each person from both cameras, we predict whether a person has fallen or not
using an LSTM neural network architecture depicted in Fig. 4. At every time step n, the LSTM network uses
the features Xn extracted from the current frame to predict whether the person has fallen. During deployment,
we store the hidden states for each person that has been observed. When a new frame is observed, for each
person, their feature vector Xn along with their hidden state (hn−1, h

′
n−1) is fed to the LSTM network that

gives the updated hidden state (hn, h
′
n) along with the probability vector yn that contains for each activity, the

probability that the person is performing that activity. If the probability of the ”falling” activity is highest in
the prediction, a fall is detected for that frame.

The network is trained on data in the form (X,Y ) where X is the set of features for a person from consecutive
frames acquired over a period of two seconds from the dataset and Y is the activity label (Tbl. 1) of the last
frame. Hence the model takes in the feature vector Xn of a person and learns to predict a probability distribution
over 7 different classes, one being the ”Fall” class and the rest are the ”No Fall” classes represented separately.
The hidden state of the model is initialized with the zero vector when the model takes in the features from the
first frame of the video clip.

Implementation Details

We implemented the architecture of the network using the PyTorch library.14 The LSTM architecture given in
Fig. 4 consists of two LSTM layers each having 48 hidden nodes with hidden states of dimension 256. The output
of the LSTM layer is then passed through a fully-connected layer that transforms the hidden representation from
256 to 7 nodes. This is then followed by the softmax layer that gives the probability of each activity. We used
a weighted Cross Entropy loss function with each label’s term in the loss function being weighted by its rarity.
If a label has a relative frequency f , then the loss coming out of that label has a weight 1/f . This ensures that
the resultant network is trained in a balanced way, giving equal importance to the classes “Fall” and “No Fall”
irrespective of the number of videos present in the dataset.

We speed up the training process by using mini-batches of size 64. All the models were trained using the
Adam optimizer15 provided by PyTorch with a learning rate of 0.0001. The model is regularized by using an L2
weight decay of 0.01 on all the weight parameters. The model is additionally regularized by applying dropout
with a drop-probability of 0.1 on the LSTM layer. All hyperparameters were obtained by performing a grid-search
over the hyperparameter space.
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Figure 4: LSTM neural network architecture

2.1.5 Post Processing

During evaluation of the proposed LSTM network we observed a rather high amount of false positive fall de-
tections due to actions being performed resulting in similar postures than falls (e.g. bending down abruptly).
Hence, we implemented a post processing stage performing three sanity checks on frames that have been classified
as falls by the LSTM Network. First, it checks whether the next K frames have also been classified as falls. K
depends on the frame rate and we found a value corresponding to approximately 0.5s being adequate. Second,
we check whether the angle between the person’s body and the vertical θ > 45◦ in at least one of the cameras
and, third, we compare if the person’s height (distance from head to feet) is significantly smaller (< 66%) than
the moving exponential average value. If a frame was classified as ”Fall” by the LSTM classifier and is rejected
during post processing, the frame is re-labelled as ”Fall Warning” (Fig. 2).

2.1.6 Dataset

We used the UP Fall Detection Dataset16 to train and evaluate the proposed method. It consists of videos
from two cameras of 17 subjects performing 11 different activities with three trials for each activity. Tbl. 1
summarizes all the activities along with the duration that each activity lasts for in the dataset. We grouped the
activities 1-5 in one ”Fall” class and kept the remaining classes of ”No Fall” activities as they are.

Since this dataset does not contain multiple persons interacting with each other, we recorded videos in a smart
home environment for evaluating subject tracking. We synchronized two perpendicular off-the-shelf cameras and
record two persons walking and interacting in a typical living room shown in Fig. 5b.

Table 1: Activities in UP Fall Detection Dataset and our classification in ”Fall” and no ”No Fall” events

ID Description Dur. (s)

1 Falling forward using hands 10

2 Falling forward using knees 10

3 Falling backwards 10

4 Falling sidewards 10

5 Falling sitting in empty chair 10

(a) ”Fall”

6 Walking 60

7 Standing 60

8 Sitting 60

9 Picking up an object 10

10 Jumping 30

11 Laying 60

(b) ”No Fall”
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Table 2: Results with the roman literals defining the features used for classification (chapter 2.1.3)

Methods/Metrics LR i-ii) LSTM i-ii) LSTM i-iii) LSTM i-iv) LSTM i-v)
Accuracy 92.61 97.85 97.70 98.28 98.22
Precision 66.06 83.24 82.90 88.04 89.76
Recall 54.45 90.54 90.01 91.48 95.62
F1 Score 60.65 86.63 85.61 89.61 92.56

3. RESULTS

3.1 Metrics

Within the UP Fall Detection Dataset each frame of every video is assigned a label from the activities given in
Tbl. 1. Therefore, we convert the multi-class labels to binary ”Fall” vs. ”No Fall” labels as shown in Tbl. 1 and
define the following metrics for evaluation:

• Accuracy: The ratio of correctly classified frames to all classified frames.

• Precision: The ratio of correctly classified ”Fall” frames to all frames classified as ”Fall”.

• Recall: The ratio of correctly classified ”Fall” frames to all frames with ground-truth label of ”Fall”.

• F1 Score: The harmonic mean of precision and recall.

3.2 Evaluation

Tbl. 2 shows the results of using different models with different number of features on the UP Fall detection
dataset. The results are obtained by performing 5-fold cross-validation. We obtain the best results using all five
features with the LSTM network. As reference, we applied the logistic regression (LR) classifier proposed by
Zhang et al.11 As can be seen, the LSTM clearly improves all metrics. Additionally, it can be observed that
increasing the number of features applied increases the overall performance. The best scores are obtained using
all five features resulting in a F1 score of 92.56% with Fig. 5a showing example results of this configuration.
We did not quantify the results of person identification and tracking in our video recordings but observed a high
level of agreement with Fig. 5b showing an example.

4. CONCLUSION

In this work, we proposed a new methodology for video-based fall detection using videos recorded with uncali-
brated cameras. We extended recent works10,11 by adding multi-camera capabilities, subject identification and
tracking. In a proof of concept, we obtained good results on the UP Fall Detection Dataset. By using LSTM we
expect to improve the performance of the LR classifier proposed in11 but unfortunately we could not verify that
as the authors did not respond to our requests in providing their dataset. Using the UP Fall Detection Dataset16

instead, we observed the problem of the imbalanced datasets: 36% of videos (5/11 activities) show falls which
is not realistic. Therefore, significantly larger datasets containing a realistic share of videos showing a fall are
required. Due to different labelling and frames-per-seconds we could not train the LSTM on other datasets17,18

which is an avenue for the future. As we used the efficient OpenPifPaf algorithm12 for pose estimation, our
proposed algorithm runs in real-time on off-the-shelf computers with rather low-processing power and does not
require a GPU. At times, we observed that OpenPifPaf was unable to detect keypoints correctly once the person
had fallen on the ground. Replacing the pose detection algorithm with a more accurate algorithm could increase
performance (Tbl. 2) at the cost of higher processing power being required.

Our results raise several avenues for future work. To overcome the limitations of existing datasets recorded in
laboratory environments, we will use the smart home (living lab) environment located at the Peter L. Reichertz
Institute (Fig. 5b) to generate a large-scale, multi-camera video dataset representing realistic fall conditions and
more realistic probabilities of fall occurrence. Furthermore, including information from the surrounding (e.g.
furniture) acquired from the video via object detection could increase the value of the proposed method.
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(a) Example frames of a video from the dataset processed by the proposed method. The second frame was
classified by the LSTM as ”Fall” and changed to ”Fall Warning” by the post-processing stage (chapter 2.1.5).

(b) Example frames of a video recorded in the smart home (living lab) environment. Subject identification
and tracking in two cameras is shown in two frames several hundred frames apart. Each person is shown with
different colors (gray/pink).

Figure 5: Demonstration of video data processed by the proposed algorithm.
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detection dataset: A multimodal approach. Sensors. 2019;19(9):1988.

[17] Auvinet E, Rougier Cea. Multiple cameras fall dataset. Université de Montréal; 2010. 1350.
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