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Abstract: The World Health Organization (WHO) recognizes the environmental, behavioral, physio-
logical, and psychological domains that impact adversely human health, well-being, and quality of
life (QoL) in general. The environmental domain has significant interaction with the others. With
respect to proactive and personalized medicine and the Internet of medical things (IoMT), wear-
ables are most important for continuous health monitoring. In this work, we analyze wearables in
healthcare from a perspective of innovation by categorizing them according to the four domains.
Furthermore, we consider the mode of wearability, costs, and prolonged monitoring. We identify
features and investigate the wearable devices in the terms of sampling rate, resolution, data usage
(propagation), and data transmission. We also investigate applications of wearable devices. Web of
Science, Scopus, PubMed, IEEE Xplore, and ACM Library delivered wearables that we require to
monitor at least one environmental parameter, e.g., a pollutant. According to the number of domains,
from which the wearables record data, we identify groups: G1, environmental parameters only;
G2, environmental and behavioral parameters; G3, environmental, behavioral, and physiological
parameters; and G4 parameters from all domains. In total, we included 53 devices of which 35, 9,
9, and 0 belong to G1, G2, G3, and G4, respectively. Furthermore, 32, 11, 7, and 5 wearables are
applied in general health and well-being monitoring, specific diagnostics, disease management, and
non-medical. We further propose customized and quantified output for future wearables from both,
the perspectives of users, as well as physicians. Our study shows a shift of wearable devices towards
disease management and particular applications. It also indicates the significant role of wearables in
proactive healthcare, having capability of creating big data and linking to external healthcare systems
for real-time monitoring and care delivery at the point of perception.

Keywords: wearable devices; health monitoring; environmental domain; proactive medicine; per-
sonalized healthcare; IoMT; prediction and prevention

1. Introduction

For the year 2016, the World Health Organization (WHO) estimates that outdoor
air pollution caused death of 4.2 million people worldwide and that 91% of the world’s
population breath unhealthy air [1]. In particular, the WHO estimates that about 58%,
18%, and 6% of deaths in heart disease and stroke, in chronic obstructive pulmonary
disease (COPD) and lung infections, and in lung cancer occurred due to air pollution,
respectively [1]. In addition, WHO also estimates that 3.8 million people worldwide lose
their life due to indoor air pollutants caused by cooking with stoves running on solid or
biomass fuels or kerosene. Of these 3.8 million annual deaths, 27% were due to pneumonia,
27% due to heart disease, 18% due to stroke, 20% due to COPD, and 8% due to lung
cancer who are vulnerable to air pollutants [2]. These statistics indicate the significant and
intensive impact of environmental factors on human health.
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Air pollutants are toxic and hazardous gases such as carbon dioxide (CO2), volatile
organic compounds (VoCs), nitric oxide (NO), nitric dioxide (NO2), particular matter (PM),
ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), methane (CH4), ammonia (NH3),
teledyne (C7H4), hydrogen peroxide (H2O2), and ethanol (C2H5OH). Other environmental
factors that have an impact on health and wellbeing are, for instance, the amount of ultra-
violet (UV) radiation, the light intensity and daylight length, the sound level (SL), and air
conditions such as temperature (T), humidity (H), and pressure (P) [3–5]. In particular, UV
radiation is proven as major cause of skin cancer [6,7]. A high SL has detrimental effects
on sleep quality and the nervous system. Specifically, these effects are higher in patients
suffering from chronic diseases, such as heart disease and hypertension [8,9].

However, factors influencing health are not restricted to the environmental domain.
The WHO also recognizes behavioral, physiological, and psychological domains rele-
vant for quality of life (QoL) and health, impacting subjects with chronic diseases and
elderly people [10]. Furthermore, factors of the environmental domain affect the other do-
mains. [11]. Mobile health (mHealth) [12], electronic health (eHealth) [13], and the Internet
of medical things (IoMT) [14] shift the traditional methodology (i.e., symptom→ diagnosis
→ treatment) towards health protection (i.e., monitoring→ prediction→ prevention) [15].
This includes continuous, comprehensive, and simultaneous monitoring of all important
influencing domains effecting healthcare [16]. At present, the management of chronic
diseases is mostly reactive, which imposes additional costs and efforts on patient care
systems [17]. The new healthcare model is predictive, preventive, personalized, and partic-
ipatory (4P) [18]. Unlike the current reactive treatment, it proactively focuses on the causes
of diseases rather than its symptoms. Proactive healthcare may indicate symptoms of
diseases or disorders long before their onset. Therefore, humans are motivated to evaluate
(and, therefore, monitor) their lifestyle or health status, and to improve their QoL [17,19,20].
Applying proactive healthcare is economic, saves time, identifies chronic diseases at earlier
stages, and increases the quality of service to patients [21]. Wearable devices are capable of
monitoring environmental, behavioral, physiological, and psychological parameters [22].
The wearables can measure and interchange heterogeneous data from different domains,
based on wireless body area network (WBAN) [23]. Using wireless sensor network (WSN)
and WBAN approaches, more sensors are integrated which increases efficiency and flexi-
bility of data collection, processing, transmission, and analysis [24,25]. Recent advances in
semiconductor technology, such as shrinking the sensor’s size or diminishing its power con-
sumption, and information and communication technology (ICT) have increased the use of
wearable devices in health monitoring [26–28], as well as have proven a variety of bene-
fits [29–31]. Furthermore, increased convenience and less interference with daily activities
foster continuous rather than partial monitoring. This eases medical decision-making [32].

In this work, we consider wearable devices for simultaneous monitoring of parameters
from all four domains, emphasising on the environmental domain and its integration with
three other domains. Based on a literature survey, we aim at:

• introducing criteria, principles, and features of wearable devices in healthcare
and well-being,

• identifying groups of wearable devices regarding the domain(s) of monitoring (Gx)
such that “G” and “x” indicate the group and the number of monitoring
domains, respectively,

• identifying the applications of wearable devices,
• determining additional characteristics such as monitoring duration, costs, and conve-

nience of use, data usage (propagation), and based on that:
• discussing the evolution of wearables, and
• proposing requirements for future wearables.
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2. Materials and Methods

In this survey, we identify wearable devices for health monitoring in academia be-
tween 2009 and 2020 (April) from the databases Web of Science, Scopus, PubMed, IEEE
Xplore, and ACM Library.

2.1. Selection Criteria

The International Data Company (IDC) defines five categories of wearables: watches,
wristbands, clothing, ear wear, and others [33].Because of its direct and indirect impact to
the other domains, we highlight the environmental domain, in particular, air pollutants.
Accordingly, we include and exclude devices that are:

• Inclusion:

- worn on body, including wrist, waist, arm, foot, and chest,
- measuring at least one toxic/hazardous air pollutant,
- monitoring zero to more parameters from the behavioral, physiological, or psy-

chological domains,
- systems of wearables using WBAN,
- garments, boots, gloves, and helmets, and
- providing multiple carrying modes (e.g., attachments to bicycles, backpacks, etc.),

as well as wearability.

• Exclusion:

- handheld, portable, or stationary, and
- measuring behavioral, physiological, and/or psychological but not environmen-

tal parameters.

According to the WHO criteria, we differ and define four groups of wearables:

• G1–Environmental: devices measure at least a single toxic/hazardous air pollutant.
The number of parameters by each device is not restricted and may include physical
(UV, light, SL, and etc.), as well as air conditions (T, H, and P).

• G2–Environmental and behavioral: devices measure in the environmental and behavioral
domains simultaneously: The G1 requirements apply and additionally, at least one
single parameter from behavioral domain is recorded, e.g., physical activity. The do-
main includes parameters such as movement, gait, step counting, climbing, and body
posture. For example, a wearable equipped with VoC and accelerometer is a G2 device.

• G3–Environmental, behavioral, and physiological: devices meet requirements G2 and
measure at least one physiological parameter.The physiological domain includes pa-
rameters such as vital signs (e.g., heart rate, respiratory rate, blood pressure, and skin
temperature) and non-vital signs (e.g., skin conductance). Therefore, a G3 device has
to deliver a minimum three parameters from different domains.

• G4–All domains: devices measure parameters from environmental, behavioral, physi-
ological, and psychological domains.Psychological domain includes the mood and
emotion of a subject, measuring the parameters such galvanic skin response (GSR).

2.2. Methodology of Analysis

We analyze the devices and deliver descriptive and comparative statistics according
to four principles of group, continuous monitoring (duration/power and current con-
sumption), cost, and mode of wearability, features and specifications, and applications
(Figure 1).
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Figure 1. The methods of study and analysis.

2.2.1. Principle

In previous work, we have introduced complete, continuous, cost-effective, and con-
venient (C4) monitoring as evaluation criteria for the performance of wearable devices [22].
Here, we apply these principles to specify each wearable and provide technical details,
if available. The principles are:

• Completeness: recognizes the number of domains according to the WHO definition.
Due to missing integration of the psychological domain, so far, none of the wearables
are complete.

• Continuity: accomplishes the transition from only partial to ongoing patient moni-
toring. The period of monitoring is provided in hours or days, and information on
power (mW) and current (mA) consumption support an estimate of battery run-time.

• Cost-effectiveness: is important for users to participate in proactive medicine. The em-
bedded system design significantly impacts the cost of a prototype. If data is avail-
able, we compare to well-known products in market in terms of expense and bill of
material (BoM).

• Convenience: addresses the mode of wearability. Dimension, compactness, and weight
are important factors. In general, wrist-worn devices have a better convenience.

2.2.2. Features

We investigate the performance and efficiency of wearables, considering sampling
rates, resolution, data transmission (storage), and data usage (propagation). We present
this information as provided by the authors of identified papers.

• Sampling rate: is the number of measurements per second (Hz) for a particular sensor.
From the one side, increasing the sampling rate improves the real-time monitoring; but,
from the other, it dissipates more power and storage and reduces the run-time. Hence,
configuring a sensor’s sampling rate is a trade off and depends on the application.

• Resolution: the better the resolution the higher the reliability and effectiveness in data
fusion and decision-making. We also consider the limit of detection (LoD) as the lower
boundary, and the sensor’s coverage range.
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• Data management: includes the data acquisition, storage, transmission, and propaga-
tion. Disease diagnostics and decision-making depends on the fusion of individual
parameters and post-processing. Data management includes two steps:

1. Data transmission: for fusing, devices have to transmit the data using short- and
long-range protocols. We also consider devices that transmit data but store it
locally (Table 1).

– Short-range (SR): it addresses the protocols such as Bluetooth, Bluetooth Low
Energy (BLE), and Zigbee.

– Long-range (LR): it addresses the protocols such as long-range (LoRa), wire-
less local area network (WLAN) or wireless fidelity (WiFi). We also consider
devices that transmit data but store it locally (Table 1).

2. Data usage (propagation): depending on mode of data transmission and aim of
measurement, the second step is implemented. Hence, four categories are identified:

– Internal memory: The wearable does not transmit data but stores it on the
device, which we consider as a passive node that is disconnected to exter-
nal systems.

– Smartphone: The wearable transmits data in short-range to a smartphone for
monitoring, processing, and/or visualization. Such devices potentially can
be integrated into healthcare system for bidirectional communication with
medical personnel in an emergency.

– Computer: The wearable transmits data in short- or long-range to a personal
computer (PC), desktop or a similar device for further processing and
analysis. We consider the computer as the base for real-time monitoring
and alerting (e.g., a fire station).

– Cloud or server: The wearable propagates data in three tiers. The gateway
might be a smartphone or any other embedded system capable of data
receiving and transmitting.

Table 1. Comparison of different wireless communication protocols used in wireless body area networks (WBANs). P2P
and LPWAN stand for Peer to Peer and Low Powered Wide-Area Network, respectively.

Wireless Technology Protocol Frequency Bands Data Rate Data Range Network Topology Power Consumption

Bluetooth (classic) IEEE 802.15.1 2.4 GHz 1–3 Mb/s ∼100 m P2P, Star Low

BLE IEEE 802.15.1 2.4 GHz 1 Mb/s ∼100 m P2P, Star Very Low

ZigBee IEEE 802.15.4 868,915 (MHz), 2.4 (GHz) 250 Kb/s ∼10–100 m P2P, Star, Tree, Mesh Medium

LoRa LPWAN 868,915 MHz 50 Kb/s ∼10 Km Star, Mesh Very Low

WiFi IEEE 802.11 2.4, 3.7, 5 GHz >45 Mb/s ∼30–250 m P2P, Star, Tree High

2.2.3. Application

We further analyze the application of the device. We classify into four categories:

• General monitoring: are devices that only deliver data without any specific application.
These devices neither target particular users nor send further notifications to their
users.They usually are applied for user information without further processing or
linkage to healthcare systems. Such devices do not support care delivery. Some
examples are devices in air quality, air pollution, and environmental monitoring.

• Specific diagnostics: are devices that have been designed, tested, and validated for
particular situations and conditions, e.g., identification of a drunk driver. We specify
the applications or user groups, e.g., specific age or firefighters.

• Disease management: are devices that have been particularly tuned for patients suffering
from a specific disease, such as diabetes, Alzheimer, respiratory diseases, COPD,
or asthma.
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• Non-medical are devices that have been designed and tested under realistic scenarios
in a primarily non-medical context, e.g., safety for industrial workers.

3. Results

The total number of 53 papers published between 2009 and 2020 met the requirements
of this study (Figure 2). Our analysis delivers 35 devices of G1, 9 devices of G2, and
9 devices of G3. G4 has not yet been reported on.

Temperature and humidity are monitored by 38 and 34 devices, respectively. Toxic
gases such as CO2 and NOx are measured by 14, 13, and 13 devices from G1, G2, and G3,
respectively. VoCs, CO, and O3 are known as the hazardous gases with an adverse effect
on health, each integrated into 12 devices. The list of environmental parameters is getting
longer with particular matter, pressure, and SO2 by 13, 13, and 7 devices, respectively.
The ambient physical parameters with less immediate danger to human health are at the bot-
tom of the list: UV, light, and sound level are measured by 7, 5, and 5 devices, respectively.

Thirty-five and eight tenths percent of the devices are waist-worn (18 in all three
groups). Wrist-worn and arm-worn are 24.5% (12) and 15% (8) of the devices, respectively.
Nine and four tenths percent (5) of the devices are integrated into garment. We specify the
remaining devices as other modes of wearability: 7.5% (4) attachments, 3.7% (2) boot, 3.7%
(2) helmet, and 3.7% (2) chest-worn (Figure 3, top-left).

Usually, the measurement is followed by data transmission to a second party (gateway)
for collection. Among all, BLE is the most frequently used protocol (30.1%) as it consumes
less power than standard Bluetooth or Zigbee, which is used by 26.4% (14) and 20.7% (11)
of the devices, respectively. Only 5.6% (3) of the devices transmit via LoRa, 6 devices do
not specify the protocol, 1 device uses other protocols (WiFi), and 1 device stores the data
on the internal memory (Figure 3, top-right).

Sixty-four percent (34) of the devices transmit the data to a smartphone or cloud/server,
each with 32% (17). Twenty-one percent (11) of the devices transmit to a PC, and only 15%
(8) of the devices store the data locally (Figure 3, bottom-left).

Fifty-eight percent (32) of the devices are used in general monitoring, and 20% (11) of
the devices are applied in specific diagnostics. In these devices, the target subjects or/and
the study have been specifically defined. Thirteen percent (7) of the devices are used
in disease management, and 9% (5) of the devices are applied in non-medical (Figure 3,
bottom-right).

Figure 2. Total number of wearable devices that met the requirements of the study.
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Figure 3. Distribution of wearable devices according to: mode of wearability (top-left), data transmission (top-right), data
usage (bottom-left), and application (bottom-right) of the wearable devices.

3.1. G1–Environmental Monitoring

In total, 22 different environmental parameters are measured by G1 devices. Tempera-
ture and humidity are measured by 23 and 22 devices, respectively. Nine devices measure
CO2, NOx, and VoCs, which indicates the importance of air pollutants in environmental
monitoring. Particular matter, pressure, and O3 are, each integrated in 7 devices. CO
and SO2 are integrated into 6 and 4 devices, respectively. UV and light are measured by
3 devices (Figure 4, left).

Eight percent of G1 wearables are waist-, wrist-, or arm-worn. Waist-based monitoring
is the most popular mode of wearability with 34% (12), wrist- and arm-worn modes are
23% (8) of the devices. Garments and other types are 20% (7) devices (Figure 5, top-left).

Bluetooth is the most used protocol with 31% (11) of the devices, followed by BLE
and Zigbee with 22% (8) and 17% (6) of the devices, respectively. LoRa is used in
2 devices. WiFi is utilized by only 1 device. The protocols of two devices are unspec-
ified (Figure 5, top-right).

Thirty-two percent (11) of the devices each transmits the data to a smartphone and a
cloud/server. Twenty-three percent (8) of the devices transmit to a PC. Only 14% (5) of the
devices store data locally (Figure 5, bottom-left).

Sixty-nine percent (24) of the devices are used in general monitoring. Eleven percent
(4) of the devices are applied in specific diagnostics. Eleven percent (4) of the devices
are used in disease management, and 9% (3) of the devices are applied in non-medical
(Figure 5, bottom-right).

Figure 4. Measured parameters and iterations in G1, G2, and G3 (left) and physiological parameters measured by G3
(right) devices.
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Figure 5. Distribution of G1 wearable devices according to: mode of wearability (top-left), data transmission (top-right),
data usage (bottom-left), and application (bottom-right) of the wearable devices.

We review the first group of wearable devices in terms of principles, features and
specifications, and application, if available (Tables 2 and 3).

3.2. G2–Environmental and Behavioral Monitoring

Measuring environmental and behavioral domains at the same time are considered in
G2 wearable devices. In addition to capability of measuring physical activities by integrated
accelerometer and IMU, G2 devices in this study measure 15 different environmental
parameters yielding large diversity from air conditions and hazardous/toxic air pollutants
to ambient physical elements.

Temperature, humidity, and O3 are measured by 6, 5, and 4 devices, respectively. Three
devices measure CO, SO2, particle matter, and pressure which are the second popular
environmental parameters. Three out of these 4 recent parameters are air pollutants which
complies the essential needs of monitoring and the effect on human health. VoCs and
NO2 as the air pollutants, as well as UV, light, and sound level, each, are integrated into
2 devices. CO2 and CH4 stand at the bottom and are measured by 1 device (Figure 4).

G2 wearable devices are waist- or wrist-worn. 67% (6) of the devices are waist-worn
and 33% (3) of the devices are worn on wrist (Figure 6, top-left).

BLE is the most used protocol with 45% (4) of the devices, followed by Bluetooth
standard with 33% (3) of the devices and Zigbee with 11% (1) of the devices, respectively.
The protocol of 1 device is not specified (Figure 6, top-right).

Fifty-six percent (5) of the devices transmit the data to a smartphone. Twenty-two
percent (2) of the devices transmit the data to a cloud/server. Twenty-five percent (2) of
the devices transmit the data to a PC (Figure 6, bottom-left).

Sixty-seven percent (6), 22% (2), and 11% (1) of the devices are used in general moni-
toring, specific diagnostics, and disease management, respectively (Figure 6, bottom-right).
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Table 2. Wearable devices in environmental monitoring (G1): part I.

Device Wearability Parameters Energy Consumption Data Transmission

Fresh Air [34] wrist-worn NO2, VoCs NA NA

[35] wrist-worn Formaldehyde, T, H 7 days SR: BLE, ext. mem.

[36] waist-worn VoCs, T, H 39–52 h Ext. mem.

W-Air [37] wrist-worn O3,CO2, T, H 50 mA, 5 h SR: BLE

WE-Safe [38] wrist-worn CO2, CO, T, H, UV 33 mA LR: LoRa

WE-Safe [39] wrist-worn CO2, T, H, UV 53.9 mA LR: LoRa

[40] helmet CO2, CO, VoC, T, H, P, UV, light NA LR: WiFi

[41] attachment CH4, T 13 days SR: Zigbee

[42] arm-band VoCs, T, H NA SR: Bluetooth

[43] waist-worn CO, SO2, NO2, O3, PM (1, 2.5, 10), T, H, P NA SR: BLE

[44] waist-worn CO, SO2, NO2, O3, NO, PM (2.5, 10), VoCs, T, H, P NA SR: BLE

[45] waist-worn PM (2.5), T NA SR: BLE

[46] ring-worn DNT, H2O2, MPOx 7.5 h SR: BLE

[47] waist-worn PM (1, 2.5, 10), T, H NA SR: Zigbee

[48] wrist-worn CO2, T, H, P, light 64 mA SR: Zigbee

[49] attachment CO2,T,H 5.07 days SR: Zigbee

[50] waist-worn NH3, NO2, C7H8 NA SR: BLE

[51] wrist-worn O3, T, H NA Ext. mem.

[52] arm-band ethanol (C2H5OH) NA SR: Bluetooth

[53] waist-worn O3, dust, T, H NA Ext. mem.

[54] waist-worn or chest-worn O3, PM (2.5, 10), T 150.96 mA Ext. mem.

MyPart [55] wrist-worn PM (2.5, 10), T, H 75 mA SR: BLE

[56] arm-band VoCs NA SR: Bluetooth

[57] waist-worn CO, NO2, SO2, T, H, P 18 mA, 65 h SR: Bluetooth

[58] arm-band CO2, NO, PM NA SR: Bluetooth

[59] waist-worn CO, T, P NA SR: Zigbee

Citisense [60] waist-worn NO2, CO, O3, T, H, P 5days SR: Bluetooth

SiNOxSense [61] attachment NOx 110.5 mA, 9 h SR: Bluetooth

iEGAS [62] waist-worn SO2, T, H NA Ext. mem.

[26] arm-band VoCs, T, H 10 h SR: Bluetooth

MAQS [63] arm-band CO2, T, H, light 5.5 to 24 h SR: Bluetooth, ext. mem.

[64] arm-band total hydrocarbons, total acids, T, H 9 h SR: Bluetooth

Wear-Air [65] T-shirt VoCs NA NA

[66] boot CO2 5 h SR: Zigbee

[67] arm-band VoCs, T, H NA SR: Bluetooth
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Table 3. Wearable devices in environmental monitoring (G1): part II.

Device Sampling Rate (H) Resolution/LoD/Coverage Application Data Usage

Fresh Air [34] NA >180 g/mol in working temp 4 °C to 23 °C asthma management internal memory

[35] NA 30 ppb to 10 ppm asthma management cloud/server

[36] 10-min time interval 80 mL/min air flow, 300 ppb to 5 ppm environmental internal memory

W-Air [37] 2 Hz VOC sensor: 0 to 1187 ppb air pollution cloud/server

WE-Safe [38] NA CO2: 0 ppm to 10,000 ppm environmental for safety applications cloud/server

WE-Safe [39] NA CO2: 0 to 10,000 ppm. T: −45 °C to +85 °C.
H: 0 to 100%, UV: 1 to 11 index environmental for safety applications cloud/server

[40] NA
CO: 0 ppm to 0.5 ppm, CO: 0 ppm to
2000 ppm, temp.: −40 °C to +85 °C,
P: 300 hpa to 1100 hpa

environmental at micro climate scale PC

[41] NA NA monitoring environmental for workers in gas
and oil industries internal memory

[42] 350 mL\min T: −45 °C to 125 °C. H: 0 to 100% RH environmental air quality cloud/server

[43] NA NA air quality smartphone

[44] NA NA air quality cloud/server

[45] 25 Hz NA air quality smartphone

[46] 10 Hz 4 ppm in liquid phase monitoring of explosive and nerve-agent
threats in vapor and liquid phases PC

[47] 0.5 Hz NA air quality cloud/server

[48] NA CO2: 0 ppm to 10,000 ppm environmental cloud/server

[49] NA CO2: 0 ppm to 50,000 ppm, T: −40 °C to
+124 °C, H: 0 to 100% RH air quality in industrial environments PC

[50] 350 mL\min(in test) C7H8 (10 ppm exposure in test), NO2 & NH3
(1000 ppm exposure in test) air pollution smartphone

[51] NA NA air quality internal memory

[52] NA 1 ppm, 1 to 200 ppm testing drunk drivers smartphone

[53] NA NA air pollution internal memory

[54] NA O3 0 ppm to 20 ppm, temp.: 0 °C to 100 °C respiratory disease internal memory

MyPart [55] NA NA air quality smartphone

[56] NA 1 ppm air quality smartphone

[57] 1 Hz P: 50 KPa to 115 KPa. CO: 0 ppm to 13 ppm,
SO2: 0 ppm to 10 ppm. NO2: 0 ppm to 27 ppm air quality smartphone

[58] NA NA air quality cloud/server

[59] NA temp.: −55 °C to +150 °C industries and coal mines & homes PC

Citisense [60] NA NA air quality cloud/server

SiNOxSense [61] NA NA air quality smartphone

iEGAS [62] NA NA environmental internal memory

[26] 1 Hz 4 ppb to 1000 ppm, T: 5 °C to 46 °C,
H: 0 to 100% RH environmental smartphone

MAQS [63] NA NA indoor air quality cloud/server

[64] NA 1 ppb, Max. T: 42.2 °C, H: 0 to 100% RH environmental smartphone

Wear-Air [65] NA NA air quality & environmental internal memory

[66] NA CO2: 0 ppm to 42,800 ppm environmental in hazardous works PC

[67] NA 1 ppb, max. T: 23.8 °C, max. H: 100% RH environmental smartphone
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Figure 6. Distribution of G2 wearable devices according to: mode of wearability (top-left), data transmission (top-right),
data usage (bottom-left), and application (bottom-right) of the wearable devices.

In addition, only some of the developers have reported the final cost of the prototypes,
which encompasses fabrication, components, and layout design. References [68–71] have
reported 150$, 130$, 150$, and 140$ as the final cost of the prototypes, respectively.

We address principles, features and specifications, and application of G2 wearable
devices in Tables 4 and 5, if available.

Table 4. Wearable devices for simultaneous monitoring of environmental and behavioral domains (G2): part I.

Device Wearability Parameters Energy Consumption Data Transmission

ART [68] wrist-worn O3, TVoC, T, H, acceleration 18 h to 48 h SR: BLE, ext. mem.

MLMS-EMGN-
5.1 [69] wrist-worn SO2, NO2, CO, T, H, motion

tracking, P, SL 28 h,15.8 mA SR: BLE, ext. mem.

[72] waist-worn CO2, T, H, P, motion tracking, al-
titude 300 mW SR: Bluetooth

AMAS [73] waist-worn PM2.5, oxidative potential(OP),
light, acceleration 14 h SR: Bluetooth, ext. mem.

[74] waist-worn CO, CH4, acceleration 1.6 W SR: Zigbee

UPAS [70] waist-worn PM2.5, T, H, P, UV, acceleration 25 h to 43 h SR: BLE, ext. mem.

[75] wrist-worn CO, NO2, O3,SO2, T, H, UV, mo-
tion tracking 3 days SR: BLE, ext. mem.

Eco-Mini [76] waist-worn VoCs,O3, SO2, T, H, SL, light, ac-
celeration 6 h to 12 days SR: Bluetooth, ext. mem.

[71] waist-worn O3, PM, acceleration NA ext. mem.
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Table 5. Wearable devices for simultaneous monitoring of environmental and behavioral domains (G2): part II.

Device Sampling Rate (H) Resolution/LoD/Coverage Application Data Usage

ART [68] NA
O3: 10 ppb,VOC: 0.3 ppm
to 30 ppm, O3: 10 ppb to
60 ppb

asthma management cloud/server

MLMS-EMGN-5.1 [69]

motion tracking sensor:
50 Hz, CO and NO2:
0.2 Hz, UV index: 1 Hz,
sound level: 2 Hz

NO2: 0.1 ppm, CO:
7.5 ppm,
NO2: 0 ppm to 7 ppm,
CO: 0 ppm to 1650 ppm

environmental smartphone

[72] NA NA environmental smartphone

AMAS [73] NA NA environmental for school
age students smartphone

[74] 1 Hz NA environmental smartphone

UPAS [70] NA CH4: 0 ppm to 25 ppm,
CO: 0 ppm to 30,000 ppm

toxic gases monitoring in
oil and gas industries PC

[75]
3 modes: 1 L\min &
2 L\min & 3 L\min air
flow

10 to 25 g environmental smartphone

Eco-Mini [76] NA NA environmental and activity cloud/server

[71] NA NA air quality PC

3.3. Environmental, Behavioral, and Physiological Monitoring

G3 wearable devices measure 3 domains. We follow the same policy with G2 and
give the concentration to the environmental and physiological domains to present the
results. Temperature and humidity are measured by 9 and 7 devices, respectively. Air
pollutants, including CO2, CO, and NO2, are measured by 4, 3, and 2 devices , respectively.
The physical environmental parameters consist of UV, pressure, and sound level, as well as
particle matter, VoCs, O3, and O2 are integrated, each in 1 device (Figure 4, right).

Extending the monitoring to the physiological domain shows that vital signals are the
highest priority. Heart rate (HR), skin temperature (ST), and breathing rate (BR) each is
measured by 8, 6, and 3 devices, respectively. Skin impedance (SI), Electroencephalography
(EEG), Photoplethysmogram (PPG), and pulse oximetry (SpO2) sensors, are integrated,
each in 1 device (Figure 4).

In G3, the number of domains is three, thus, it is expected the degree of convenience is
reduced reflected in mode of wearability. Forty-five percent (4) of the devices are worn as
the garment, 11% (1) of the devices are worn on wrist, and 44% (4) of the devices classified
as others (distributed approaches and attached to users) (Figure 7, top-left).

BLE is the most used protocol, in 55% (5) of the devices, followed by Zigbee in 45% (4)
of the devices. One device is not specified the protocol (Figure 7, top-right).

Forty-five percent (4) of the devices, transmit the data to a cloud/server. Forty-four
percent (4) of the devices transmit the data to a PC, and 11% (1) of the devices transmit the
data to a smartphone (Figure 7, bottom-left). Fifty-six (5), 33% (3), and 11% (1) of the devices
are used for specific diagnostics, disease management, and non-medical, respectively
(Figure 7, bottom-right).
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Figure 7. Distribution of G3 wearable devices according to: mode of wearability (top-left), data transmission (top-right),
data usage (bottom-left), and application (bottom-right) of the wearable devices.

Authors in Reference [77] have reported 133 e as the final cost of the prototype.
We review the principles, features and specifications, and applications of G3 devices in
Tables 6 and 7.

Table 6. Wearable devices for simultaneous monitoring of environmental, behavioral, and physiological domains (G3):
part I.

Device Wearability Parameters Energy Consumption Data Transmission

[77] wrist-worn CO, NO2, T, H, P, UV, SL,
motion tracking, ST, HR 18.35 mA, 12.53 h SR: BLE, ext. mem

[78] 2 parts: attach-
ment CO2, T ,H , UV, ST, HR NA SR: BLE, LR: LoRa

[79] garment CO, T, posture, HR NA SR: Zigbee

[80]
2 parts: waist-
worn and chest-
worn

PM2.5,10, T, H, light, BR, ac-
celeration NA SR: BLE, ext. mem.

[81]

3 parts:wrist-
worn,
chest-worn,
and spiromerter

O3, VoC, motion, T, H, HR,
BR, SI, PPG, ECG, motion 0.83 mW (wrist-worn) SR: BLE

[82] garment CO2, T, HR , ST, accelera-
tion NA SR: Zigbee

[83] helmet CO2,O2, T, H, P, HR, ST 0.5 A SR: Zigbee

[84] garment NO2, T, H, HR, ST, move-
ment NA SR: BAN wireless communi-

cation

[85] garment, pair of
boots

CO2, CO, T, H, BR, HR,
ST, oxygen saturation, po-
sition, posture, motion

7 h SR: Zigbee
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Table 7. Wearable devices for simultaneous monitoring of environmental, behavioral, and physiological domains (G3):
part II.

Device Sampling Rate (H) Resolution/LoD/Coverage Application Data Usage

[77]

CO and NO2: 1 Hz, SL:
2 Hz, UV index: 1 Hz,
ST: 15 s time interval,
PPG: 15 s time interval,
motion sensors: 50 Hz

NO2:1 ppm, CO: 5 ppm, SL:
1 dB, UV: 1 index, ST: 1 °C,
pressure: 1 hpa, temp.: 1 °C,
H: 1% RH/ SL: 32 db to 85 dB,
NO2: 0 ppm to 52.8 ppm, CO:
0 ppm to 1680 ppm, UV in-
dex: 0 to 9

COPD disease smartphone

[78] NA NA safety & health for
industrial workers cloud/server

[79] NA NA firefighters PC

[80] NA NA asthma & COPD
disease cloud/server

[81]

VOC: 0.02 Hz, T &
H: 10 Hz. PPG &
accelerometer: 30 Hz.
ECG: 50 Hz

NA respiratory disease cloud/server

[82] NA NA firefighters cloud/server

[83] NA

CO2:100 ppm to 600 ppm, O2:
18.5 to 22%, T: 10 °C to 40 °C,
ST: 35 °C to 39 °C, P: 0.8 Bar
to 1.2 Bar, H: 10% RH to 90%
RH

work in
harsh environ-
ments (mining)

PC

[84] NA NO2: 0.1 ppm/ NO2: 0 ppm
to 10 ppm firefighters PC

[85] NA NA firefighters PC

4. Discussion

The four influencing domains are interwoven; thus, simultaneous monitoring is
essential for comprehensive evaluation of the subject health. Air pollutants, including
toxic, hazardous gases, and particular matter, influence the disease, such as cardiovascular,
lung cancer, and respiratory. The risks of exposing to such pollutants have been already
well identified and documented. New research has been conducted to evaluate the effect
of air pollutants on the brain and mental illness (e.g., depression). The research shows
the correlation between psychological status of subjects with air pollution. In the other
words, higher level of air pollutants reduces the time that subject spent outdoor. Decreasing
the physical activities outside consequently leads to worsening the psychological distress,
including limited exposure to sunlight and social isolation [86–89].

4.1. Current Status of Wearables

Wearables are major means of personalized health monitoring for proactive health-
care [90–92]. The state of the art is concentrated on WBAN consisting several wearables
interacting and transmitting data through the mesh/star topology to a gateway and even-
tually to a cloud/server for data fusion, analysis, and decision-making [93,94]. However,
several limitations still exist, including wearability [95], power consumption [96], data accu-
racy [97], frequent calibration [98], restriction of data transmission [99], user privacy [100],
and data security [95].

Due to importance of environmental domain, and its interactions with the other
domains [101], we have categorized current wearable sensor systems into the groups G1
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to G4, all including the environmental domain. Thus, it is expected to have the highest
number of parameters from the environmental domain in the all groups. However, more
often the wearable devices have been only used in short periods, e.g., a clinical trial, as they
suffer from reliability, accuracy, and cannot support sufficient effective data on particular
diseases [102].

4.1.1. Application in Reactive and Proactive Healthcare

Ludwig et al. categorize the application of wearables into reactive healthcare (handling
adverse conditions and events) and proactive healthcare (assessing the state of health) [103].
Automated fall or cardiac emergency detection are reactive healthcare and may lead to
emergency calls. Monitoring known disease, for instance, are proactive healthcare. There-
fore, simultaneous monitoring of environmental (e.g., air quality), behavioral (e.g., physical
activity), and physiological parameters (e.g., heart rate, skin temperature) in combination
the parameters from the psychological domain (e.g., emotion) can proactively assess the sta-
tus (or status changes) of user health to predict and alert “long before occurrence” (principle
1.2: complete and continuous) [15]. However, the user must decide to use wearables daily
and recharge and interconnect them as required by the devices. Costs and Convenience
widely impact the acceptance of wearables [104–106].

Tracing the wearables between 2009 and 2020 shows the significant growth of devices
in the area of specific application and disease management rather than general applications.
In the same manner, investigation on the general application of devices in G1, G2, and G3
indicate reducing the devices from 24 to 6 and eventually zero in G3 devices. Similarly,
disease and specific application devices have grown their share from 3 in G2 to 8 in G3
devices (Figure 8, bottom line view, left). In particular, References [77,80,81] have been
designed for monitoring COPD, asthma, and respiratory disease, respectively. Besides,
References [79,82,84,85] have been designed for firefighters which are applied in health
and safety (H&S). Considering the number of devices and applications, G3 is the most
disease and specific application. Having said that, we studied the most influencing factors
in structuring G3, resulting in greater correlated diverse heterogeneous data, BLE data
transmission, garment and wrist-worn monitoring, and device→ gateway→ cloud. This
supports acceptance of growing role of wearables in proactive healthcare. We have vi-
sualized the impact of different factors on devices to construct G3 and their application
(Figure 9).

Our study shows the number of devices ascending from 2 to 12 between 2009 and
2018 (Figure 8, top-left). This supports the statement that our healthcare systems currently
transits from treatment after diagnosis towards prediction, prevention, and proactive per-
sonalized healthcare [107]. Enhancing the penetration rate of wearables in real studies
requires user and physician satisfactions [22]. Thus, as a matter of fact, improving continu-
ous monitoring is impacted by reducing the power consumption, which is consequently
function of mode of data transmission. The statistics between 2009 and 2019 indicate
the increasing share of BLE in data transmission (Figure 8, second line, left). Besides,
wrist-worn devices, as the most convenient mode of wearability have jumped to the top
in 2019 (Figure 8, second line, right). Weight of the wearables as an important factor has
been relatively reduced such that the wearables have been improved from 2011 to 2019 by
reducing the weight from 251 g to 52 g, approximately.

Although information on the costs of the prototypes is insufficient, the general range
is about 140 US$. Such a range may fit to user’s expectations and significantly motivates
contributors to turn prototypes into products.Nevertheless, wearables are must contribute
in to decision-making. This is accomplished by automated data fusion of multiple sensors
from different domains. In general, the transition of wearables from G1 to G3 is accom-
panied with increasing average number of measurement from 3.5 to 7.6 parameters per
device (Figure 8, bottom-right). The total number of parameters from 2009 to 2018 has
grown from 4 to 56 (Figure 8, top-right), showing that wearable devices increase their role
in proactive healthcare by extending their domain and range of monitoring.
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Figure 8. A statistic analysis of the wearables between 2009 and 2019 in the aspects of production and parameters (top line
view), data transmission and wearability (second line view), data usage and application (third line view), and application
of all groups and average parameters measurement (bottom line view).

Figure 8. A statistic analysis of the wearables between 2009 and 2019 in the aspects of production and parameters (top line
view), data transmission and wearability (second line view), data usage and application (third line view), and application
of all groups and average parameters measurement (bottom line view).
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Figure 9. G3 analysis in terms of features, principles, and application. In G3, no device has been
designed supporting general monitoring.

4.1.2. Big Data and Integration of Wearables into Healthcare Systems

Bid data is often described by four Vs, volume (feature: sampling rate and power con-
sumption), velocity (feature: data transmission), variety (principle: complete), and veracity
(feature: resolution and LoD). Wearables have the capability and potential to generate
big data. The battery power is the most limiting factor of data volume and complexity.
A trade-off between sampling and transmission rates is required to restrict the power
consumption [108]. However, not all developers sufficient information (e.g., experimental
data on battery volume or current leakage) on the operating time of the devices. Thus,
we cannot conclude quantitatively but rather qualitatively: As the number of monitoring
domains and parameters have increased, the sampling rate, rate of data transmission,
and/or wearability have been optimized, depending on the particular application.
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In addition, care delivery, supporting real-time physician’s feedback, and telemedicine
requires bidirectional communication. Therefore, data usage (propagation) potentially
impacts and drives wearables towards integration and application [109]. Their potential of
generating big data opens wearables to external healthcare systems, such as hospitals or
rescue teams. The data transmission from devices→ personalized gateway→ cloud/server
and from a device→ smartphone have reached from 1 to 3 and from 0 to 4 in 2018 and 2019,
respectively (Figure 8, third line, left). Personalized gateways are embedded in the short
and long terms [110]. We expect further increase of smartphone as personalized gateway in
telemedicine and penetration in remote regions. Additionally, moving toward 5G network
further highlight the future role of smartphone as personalized gateways improving the
efficiency of data transmission by reducing the data loss and faster delivery [111].

4.2. Future Group of Wearables (G4)

Although, the transition from distributed wearable systems to integrated central-
ized wearable systems is traced from G1 to G3, the devices are still lacking complete
monitoring of healthcare and well-being, which required complete monitoring of all four
WHO domains. Therefore, the psychological domain needs particular attention in future
wearables [112,113].

However, simply delivering raw data to physicians without meaningful interpretation
does not accelerate decision-making [114]. Hence, the fourth group of wearables (G4) fur-
ther demands a customized and quantified output with respect to disease and user’s health
status. This personalization enables a meaningful contribution to the decision-making
of physicians [22]. Following this approach, we propose simultaneous monitoring of all
four influencing domains, followed by a two-layer filter and computations of parameters’
interactions (Figure 10). In the first step, parameters from all four domains are considered.
We suggest to measure and quantify the output with respect to the target disease and
the customized profile of the patient/user. The first filter is disease profile. It includes
numbers of disease profiles and is uniquely proposed to be structured according to each
disease [115]. Each disease profile must include the factors describing the disease com-
prehensively. Comparison of the disease profile with the incoming measured parameters
that the user is exposed to, leads to filtering the non-effective parameters, alleviate the less
effective parameters, and gives higher weights to effective parameters. Therefore, the num-
ber of parameters might be changed and the influencing coefficient of ENVi, BEHjPlease
define if appropriate. , PHYk, and PSYm are added to each parameter.

The second filter highlights parameters as effective according to the user’s profile [116].
All important information such as the anamnesis are recorded in this profile. The vital
signs of the user are monitored for a limited period of time to identify drifts out of the
user’s normal range. We expect that the incoming parameters are treated differently with
respect to physiological status of the user.

In the last step, the most impacting parameters are correlated. The impact of each
parameter is calculated within and across the four domains. The output is dynamic for a
particular disease and user. It covers five ranges: regular (healthy), abnormal, pathological,
crucial (warning), and exceptional (emergency). It is quantified from 1 to 100 indicating the
risk of emergency. The output value significantly indicates to both users and physicians
the necessary steps to take in prevention and treatment.
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Figure 10. Customized and quantified output for future wearables. BMI stands for body mass
index. E, B, Ph, and S stand for environmental, behavioral, physiological and psychological, each
with number of parameters from 1 to n, j, k, and m, respectively. ENV, BEH, PHY, and PSY are
the coefficient of environmental, behavioral, physiological, and psychological domains, weighting
the parameters.

5. Conclusions

In conclusion, simultaneous monitoring of the environmental, behavioral, physio-
logical, and psychological domains is desirable due to mutual interactions among the
domains and their parameters. We have considered the environmental domain as a central
player, which independently influences the other domains. According to these interwoven
domains, we have categorized wearables into groups (G1 to G4). Existing wearables show
a significant contribution of G3 devices for disease management (e.g., COPD and asthma)
and, therefore, proactive healthcare. Increasing the penetration rate of smartphone as
personalized gateway supports the integration of wearables into our healthcare systems
for real-time assessment of user’s health and immediate care delivery. We propose future
wearables to focus on integration of parameters from the psychological domain.
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