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Abstract: Cardiopulmonary coupling (CPC) analysis links 
heart and respiration rates to assess sleep-related parameters. 
Typically, the CPC is measured using multi-lead 
electrocardiography (ECG) and ECG-derived respiration 
(EDR). Novel textile shirts with embedded ECG sensors offer 
convenient and continuously monitored sleep at home. We 
investigate the feasibility of a shirt with textile sensors (Pro-
Kit, Hexoskin, Quebec, Canada) for CPC analysis by mobile 
computing. ECG data is continuously transmitted from the 
shirt to a smartphone via Bluetooth Low Energy (BLE). We 
customize a CPC algorithm and use twelve whole-night 
recordings from four volunteers to perform qualitative and 
quantitative analysis. We compare EDR with respiratory 
inductive plethysmography (RIP). In average, EDR and RIP 
differ 17.22%. After one night, the batteries are reduced to 
approx. 70% (shirt) and 90% (smartphone). The run time for 
CPC processing is approx. 3 min. Hence, smart wearables in 
combination with mobile computing show technical feasibility 
for CPC analysis. Eventually, this could yield a useful solution 
for sleep analysis of non-expert users in a private environment. 
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1 Introduction 

Sleep-related disorders, such as obstructive sleep apnea, are 
widely spread and lead to negative short- and long-term 
consequences [1]. Both, the cardiovascular as well as the 
respiratory system are informative for assessing sleep-relevant 
parameters [2].  

Patients usually undergo polysomnography in a sleep 
laboratory but due to the high number of attached sensors and 
the unfamiliar sleeping environment, this is unpleasant. Due to 
the uprising of smart and wearables devices, home-based 
systems have been proposed [3].  

CPC [4] detects sleep-related breathing disorders 
[5][6], sleep instability [7], and other effects. It yields a 
spectrogram with two important frequency bands: the lower 
(0.01 Hz – 0.1 Hz) and the higher (0.1 Hz – 0.4 Hz) which are 
associated with unstable and stable sleep, respectively. 

RIP sensors measure the movement of the chest and 
abdominal wall. If no respiration sensor is available, the 
respiratory activity can be derived from the morphology of the 
ECG signal [8]. This EDR signal stems from the movement of 
the electrodes on the chest during respiration. There is a large 
number of EDR algorithms [9]; however, as the induced 
respiration effect in the ECG is rather subtle, measurements 
may be inaccurate. 

In this work, we analyze a commercially-available 
ECG shirt with textile sensors for CPC in real-life conditions. 

2 Material & Methods 

We develop a custom mobile application that receives the 
ECG signal in real-time and computes EDR and CPC. We 
analyze the accuracy of EDR by comparison to a RIP sensor. 
Furthermore, we analyze aspects regarding usability, i.e. 
battery consumption and computation run-times. 

2.1  ECG shirt 

We use the Pro-Kit shirt (Hexoskin, Quebec, Canada) with 
single-channel ECG (256 Hz, 12 bits) and two RIP sensors 
(128 Hz, 16 bits) that measure breathing on the thorax and on 
the abdomen. The shirt is not a medical device.  

The vendor provides a free mobile application, that 
allows to record and store data from all sensors on the shirt. It 
connects to a computer via the universal serial bus (USB). 
Data is uploaded to the cloud, and can be downloaded from a 
web-frontend. In addition, there is a software development kit 
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(SDK) allowing to continuously transmit ECG data via 
Bluetooth Low Energy (BLE) to an Android device. This 
makes it inevitable to use EDR for CPC analysis. 

2.2 CPC application 

We develop a mobile application with three components:  
 Recording connects the shirt and stores the data;  
 Analysis computes the CPC;  
 Plot visualizes data in 2D and 3D. 

Typically, the user connects the app to the shirt via BLE and 
starts the recording before going to bed. On the next morning, 
he/she stops the recording, waits for the analysis and views the 
spectrogram. This allows to monitor changes of sleep behavior 
over time. 
 

We adopt the CPC method by Thomas et al. [3] for 
mobile computing. When calculating the coupling between the 
cardiovascular and the respiratory systems, we analyze two 
factors: (i) the cross-spectral power indicates common 
frequencies in both signals, and (ii) the coherence determines 
the synchronization of both signals. We use the product of 
cross-spectral power and coherence to determine the degree of 
CPC. We compute the EDR using the method by Schmidt et 
al. 2015 [10]. We filter the ECG signal (0.05 to 45 Hz band-
pass) and then compute the 4th order central moment  

 

𝑚 =  
1

𝑛 
(𝑥(𝑖) − �̅�) .

𝑛

 

𝑥(𝑖) denotes the ECG signal in a sliding window and 𝑥 its 
arithmetic mean value. The sliding window has a length of 5 
samples and a step length of 1 sample [10]. After interpolating 
the peaks using cubic splines, we filter the EDR signal again 
(0.05 to 1 Hz band-pass). 

To detect the R-waves, we apply the Pan-Tompkins 
algorithm [11]. We linearly resample the EDR and the RR-
intervals to 2 Hz. We calculate the product of coherence and 
cross-spectral power in fixed intervals. According to [3], we 
define 1024-sample (8.5 min) sliding windows with three 
overlapping 512-sample sub-windows. For each sub-window, 
we compute the product of coherence and cross-spectral 
density. We shift the 1024-sample sliding window over the 
recording of the whole night and repeat the process. 

 
To account for the limited resources of a smartphone 

we make several adjustments to the algorithms. For example, 
due to the limited random access memory (RAM), we do not 
load signals completely but process them in smaller branches. 

 

We use the SciChart library (SciChart Ltd, London, 
Great Britain) to visualize the CPC spectrograms. The app 
offers a 2D view and an interactive 3D visualization of the 
CPC spectrogram with zooming and rotation capabilities. 

2.3 Experimental design 

We evaluate the technical feasibility of the mobile app over 
five consecutive nights with a healthy volunteer (gender: male, 
age: 28 years, sleeping duration: 05:14 - 08:43 hours). The 
volunteer starts the app on an off-the-shelf mobile phone 
(Pixel 4a, Google, California, USA) before going to bed. The 
shirt transmit the ECG signal continuously to the smartphone 
and on the next morning, we read battery consumption and 
CPC run-time.  

To evaluate EDR accuracy, we record data on full 
night sleeps of three healthy volunteers (gender: 1 female, 2 
males, age: 20 - 33 years; sleeping duration: 07:15 - 08:18 
hours) in their home environment. They use the vendor-
provided mobile application for storing the ECG and the 
thorax RIP signals.  

We use the findpeaks() function of MATLAB 
(R2021a, Mathworks, California, USA) to detect the peaks in 
EDR and RIP signals. As proposed in [10], a sliding window 
of length 30 s and a step width of 10 s is used to compute the 
error of respiration in units of breathes-per-minute (bpm). We 
compare EDR to RIP by the mean absolute error (MAE) and 
mean relative error (MRE).  

3 Results  

3.1 Technical feasibility 

The longest sleep period was 8.8 hours with battery levels of 
70% and 91% for shirt and phone, respectively. However, the 
phone was running our app exclusively. 

We observed a linear trend for the computation times 
of the CPC spectrograms (Figure 1). Processing offline data 
(ECG + RIP) took between 3.5 min. and 4.5 min. and 
processing online (ECG + EDR) data between 1.5 min. and 2.5 
min., respectively.  

3.2 EDR / RIP analysis 

We observed an average error of 17.22% (3.54 bpm) with 
individual values ranging from 13.23% (2.52 bpm) to 22.02% 
(5.12 bpm) (Table 1). 
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Table 1: EDR errors and average value (gray) 

Night MAE 
[bpm] 

MRE  
[%] Night MAE 

[bpm] 
MRE 
[%] 

1 3.31 16.17% 5 3.01 16.83% 

2 5.12 22.02% 6 2.52 13.23% 

3 5.67 21.80% 7 2.58 14.68% 

4 2.58 15.82% Ø 3.54 17.22% 

3.3 CPC analysis 

As a representative example, we show the CPC spectrograms 
of a male subject using the RIP and the EDR signal (Figures 2 
and 3, respectively). Throughout the whole night there were 
activities in the higher frequency band (0.1 Hz – 0.4 Hz) 
centered at approximately 0.25 Hz. Furthermore, there were 
motion artifacts resulting in vertical lines of high amplitudes. 
In EDR, similar structures are visible but amplitudes within 
the higher frequency band are reduced. For example, in the last 
hour the amplitudes around 0.25 Hz are barely visible. 

The interactive 3D visualization view allows to 
identify peaks in the spectrogram (Figure 4).  

4 Discussion 

In this work, we analyzed the capability of a smart wearable in 
combination with mobile computing for CPC analysis. 

The mean error comparing EDR to RIP is 17.22% and 
larger than that of Schmidt et al. [10] who reported 11.27% in 
a similar population in supine position. They used manually 
selected 10min ECG segments free of artifacts and their data 
was measured using conventional ECG. In contrast, we 
analyzed whole nights over several hours without removing 
any noisy sequences from the ECG or RIP signal. Therefore, 
our reported results must be taken with a grain of salt. In future 
work we will conduct a more in-depth analysis using manually 
selected segments similar to [10].   
 We qualitatively compared CPC spectrograms that 
were computed using EDR and the RIP signals. Using EDR, 
the high frequency structures are less prominent and blur with 
the background. Moreover, motion artefacts are more 
prominent. Currently, the wearable provides a single signal via 
BLE, which makes it inevitable to use EDR. 
A limitation of our work and potential source of EDR error is 
using the Pan-Tompkins QRS detector [11] which is not state-
of-the-art anymore. In future work, we will use a state-of-the-
art QRS detector tuned for noisy ECG signals [12]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
The evaluation of the technical feasibility shows that 

the wearable in combination with mobile computing is well 
suited for in-home analysis. The runtime for computing a CPC 
spectrogram of a hole night is below three minutes and should 
be acceptable for a potential non-expert user. In future work, 
this duration could be significantly decreased. The CPC 
analysis could be performed continuously during the night or 
could be automatically started in the morning. 
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Figure 2: CPC spectrogram using RIP signal. X- and y-
axis represent time (hours) and frequency (Hz), 

respectively. The colormap ranges from low (blue) to 
high (yellow) values and indicates CPC values. 

Figure 3: CPC spectrogram using EDR signal. X- and y-
axis and colormap are identical to Figure 2. 

Figure 1: CPC analysis run-time on smartphone. 
Each dot represents a single analysis. 
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We observed that the limited RAM is an issue but 

issues could be solved by splitting computations. The battery 
capacities of the shirt and smartphone are hardly reduced, such 
that long-term (e.g. 24h) measurement are possible. This 
renders the possibility of developing other unobtrusive 
monitoring methods, such as ECG delineation for computing 
clinically relevant intervals [13] or arrhythmia detection [14]. 
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Figure 4: 3D visualization with two different perspectives. 
X- and y-axis represent time (hours) and frequency (Hz), 

respectively. Z-axis represents CPC values.  
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