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Abstract— Private spaces like apartments and vehicles are not 

yet fully exploited for health monitoring, which includes 

continuous measurement of biosignals. This work proposes 

sensor fusion for robust heartbeat detection in the noisy and 

dynamic driving environment. We use four sensors: 

electrocardiography (ECG), ballistocardiography (BCG), 

photoplethysmography (PPG), and image-based PPG (iPPG). As 

ground truth, we record a 3-lead ECG with wet electrodes 

attached to the chest. Twelve healthy volunteers are monitored 

in rest and during driving, each for 11 min. We propose sensor 

fusion using convolutional neural networks to detect the sensor 

combination delivering the most accurate heart rate 

measurement. For rest, we achieve scores of 95.16% (BCG + 

iPPG), 96.08% (ECG + iPPG), 96.35% (ECG + BCG), 96.53% 

(ECG + PPG), 96.58% (PPG + iPPG), and 97.15% (BCG + 

PPG). In motion, the highest scores are 92.46% (BCG + iPPG, 

PPG + iPPG, ECG + iPPG), 92.83% (ECG + PPG), 93.03% 

(BCG + PPG), and 93.08% (ECG + BCG). Fusing all four signals 

with the best fusion approach results in scores of 97.24% (rest) 

and 94.38% (motion). We conclude that sensor fusion allows 

robust heartbeat measurement of car drivers to support 

continuous and unobtrusive health monitoring for early disease 

detection. 

I. INTRODUCTION 

According to the World Health Organization (WHO), 

cardiovascular diseases cause 17,9 million deaths per year [1]. 

Early detection of symptoms improves therapeutic outcomes 

and reduces mortality [2], but requires continuous health 

monitoring or regular medical check-ups [3]. In western 

countries, people spend 35 minutes per day in a car [4], where 

the positions of the seat, belt, and steering wheel are static 

meaning that medical sensing can be integrated 

unobtrusively.  

Leonhard et al. [5] review sensors that are already used for 

heartbeat detection: electrocardiography (ECG) [6], 

capacitive ECG (cECG) [7], radar [8], ballistocardiography 

(BCG) [7], photoplethysmography (PPG) [9], and image-

based PPG (iPPG) [10]. The majority of works use a single 

sensor and only a small number of publications use two or 

more sensors [5]. For instance, Walter et al. used cECG, BCG, 

and magnetic impedance sensors to prove the feasibility of 

these sensors during driving [7]. Heuer et al. evaluate the 

feasibility of ECG, cECG, infrared thermometer, and a pulse 

oximeter to advance driver assistance and active safety [11]. 

However, the challenge of changing signal quality remains. 
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Due to the motion of the driver and the vehicle, the number 

and length of dropout periods, as well as the signal quality, 

are inappropriate for a medical check-up with a single sensor 

[6],[12]. Therefore, redundant systems fusing multiple signals 

are needed to be able to choose at least one signal with a high 

signal-to-noise ratio (SNR) at each instance of time. 

The sensor fusion approaches proposed by Münzner et al. 

[13] focus on human activity recognition, which can be 

applied to heartbeat detection. They compare three fusion 

approaches using convolutional neural networks (CNN): I) 

early fusion merges the signal after the first layer, II) sensor-

based late fusion merges the signal in the dense layer with two 

convolutional layers per signal, which increases the number 

of extracted features, and III) signal-based late fusion has one 

convolutional layer per signal.  

A review from Tejedor et al. [14] covers sensor fusion for 

heartbeat detection and recommends the algorithm from 

Chandra et al. [15]. This algorithm estimates the heartbeat 

location with CNN-based information fusion and is 

generalizable regarding the input modalities [15]. We assume 

that the combination of the approaches from Münzner et al. 

and Chandra et al. with a majority “voting” mechanism could 

enable higher reliability. In this work, we present a robust 

sensor fusion approach for vehicles and determine the 

performance gain on heartbeat detection. In particular, we 

answer the question: ‘Does the fusion of multiple sensors 

increase the reliability of heartbeat detection?’. 

II. METHODS 

A. Sensor System 

We choose four types of sensors. The 1-lead ECG with dry 
electrodes (BiosignalPlux Explorer, Plux Wireless Biosignals, 
Lisboa, Portugal) is attached to the steering by copper plates. 
The PPG (BiosignalPlux Explorer, Plux Wireless Biosignals, 
Lisboa, Portugal) is placed on the steering wheel with two 
LEDs for the red and infrared spectrum. The BCG (SCA11H, 
Murata, Nagaokakyō, Japan) is placed on the backrest and 
measures ballistic forces generated by the heart. For iPPG, an 
off-the-shelf red, green, blue (RGB) camera (Real Sense 
D435i, Intel, California, United States) is directed towards the 
driver from behind the steering wheel. The green channel of 
the video is cropped to a region of interest (ROI) that covers 
the driver's face and is averaged [16].  
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The ground truth is recorded using a 3-lead ECG 
(BiosignalPlux Explorer, Plux Wireless Biosignals, Lisboa, 
Portugal) with wet electrodes attached to the driver’s thorax. 

B. Experimental Design 

We mounted four devices in a driving simulator 
(RaceRoom simulator RR3055, KW automotive, Fichtenberg, 
Germany) in appropriate positions (Fig. 1). 𝑁 = 12 healthy 
volunteers performed two recordings, each lasting 11 min: I) 
sitting without intentional movement (rest), and II) simulated 
driving (motion). We performed the study under the 
declaration of Helsinki [17]. 

C. Data Processing 

Signal processing is based on Chandra et al. [15] and is 

performed in four steps: i) downsampling to 250 Hz using 

resample_sig() from the wfdb python library, ii) median 

filtering with lengths of 150 samples for noise removal, iii) 

amplitude normalization to the interval [-1,1], and iv) 

synchronization based on landmarks and leftwards shift. This 

data is then divided into snippets of 251 samples, which 

results in 12∙11∙60 = 7,920 snippets for each activity. 

Following Chandra et al. [15], we choose an overlap of 250 

for generating test snippets. For training snippets, the overlap 

is 240. These snippets are divided into training and test data 

using leave-one-out cross-validation (LOOCV), therefore one 

volunteer is used as a validation set and the remaining as a test 

set, which is repeated 11 times. We chose LOOCV due to the 

rather small amount of data. 

D. Hybrid Algorithm 

The hybrid algorithm is based on the CNN layer design 

from [15] and is implemented using Python as glue code and 

the libraries Keras and TensorFlow (Fig. 2). Training and 

testing are performed on the “Phoenix” cluster of the TU 

Braunschweig [18]. The input vector contains the ECG, BCG, 

PPG, or iPPG signal. The convolutional layer extracts the 

features of the signals and generates a feature map. Similar to 

Chandra et al. [15], we use 4 filters of length 20 in the 

convolutional layer for each of the sensor signals. The 

dropout layer with a dropout rate of 0.2 prevents overfitting. 

The pooling layer reduces unnecessary information. The 

dense layer classifies the provided segment in binary classes: 

no heartbeat and heartbeat, coded 0 and 1, respectively.  

We selected a sigmoid function such that the output layer 

generates an output vector 𝑌̂ containing multiple labels that 

are either 0 or 1. Thereby, 𝑗 represents the number of a 

snippet, and 𝑠 stands for the signal. The output vector is: 

𝑌̂ = {𝑦̂1𝑗 + 𝑦̂2𝑗+. . +𝑦̂𝑛𝑗}  ∀ 𝑗 = [1, 𝑠]              (1) 

The three sensor fusion approaches: I) early fusion, II) 

sensor-based late fusion, and III) signal-based late fusion 

proposed by Münzner et al. [13] is integrated into the CNN 

layer design. These approaches have the same CNN layer 

design (Fig. 2). 

 

Figure 2. Basic structure of the hybrid algorithm for four signals. 

Figure 1. Driving simulator with placed sensor devices. 
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The early fusion approach consists of a single integrated 

CNN and signals are fused in the convolutional layer. This 

decreases the number of learned features. The sensor-based 

late fusion approach has two CNN per signal and therefore the 

sum of integrated CNNs is eight. It then follows that more 

features are extracted per signal. The signal-based late fusion 

uses one CNNs per signal and the number of integrated CNNs 

is four. The fusion of these two approaches is conducted in 

the dense layer.  

The hybrid algorithm contains all three fusion algorithms 

and the voting function to determine the heartbeat position. 

This voting function is independent of the CNN and processes 

the output vector 𝑌̂ for making the final decision if a segment 

contains no heartbeat (class 0) or one heartbeat (class 1) based 

on a majority vote. Thereby, if more than two sensor fusion 

approaches have a label 𝑦̂ = 1 then the voting concludes the 

segment contains a heartbeat.  

E. Evaluation  

The ground truth heartbeat positions are generated by a 

simultaneous truth and performance level estimation 

(STAPLE) method, which is based on a majority vote of nine 

state-of-the-art R-wave detection algorithms [19]. We 

calculate an overall performance score for each approach, 

which consists of the metrics’ positive predictive value 

(PPV), and sensitivity. These metrics are based on the 

calculation of true-positive (TP), true-negative (TN), false-

positive (FP), and false-negative (FN). The PPV calculates 

the ratio of TP to TP and FP classified segments: 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (3) 

 The sensitivity calculates the ratio of TP to TP and FN 
classified segments: 

  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (4) 

 The overall performance score is a combination of the 
average PPV and sensitivity overall performance score: 

𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑃𝑉+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

2
                            (5) 

III. RESULTS 

A. Performance of Two Sensors for Resting Subjects  

 As a first step, we calculate the overall performance score 

of two sensors for each approach for resting subjects. This 

enables a comparison between the different signals. 

TABLE I.  SCORE FOR TWO SENSORS FOR RESTING SUBJECTS 

Approach 

Score (in %) 

BCG 

+ 

iPPG 

ECG 

+ 

iPPG 

ECG 

+ 

BCG 

ECG 

+ 

PPG 

PPG 

+ 

iPPG 

BCG 

+ 

PPG 

Early fusion 44.64 90.85 94.62 95.21 84.02 86.67 

Sensor-based 
late fusion 

95.16 95.91 96.22 96.49 96.58 96.22 

Signal-based  

late fusion 
94.97 95.83 96.05 96.41 96.18 96.88 

Hybrid 
algorithm 

95.09 96.08 96.35 96.53 95.63 97.15 

The BCG and iPPG signals have the lowest score with 

44.64% with early fusion. The highest score has the BCG and 

PPG sensors with the hybrid algorithm (97.15%). 

B. Performance of Two Sensors for Subjects in Motion 

 As a second step, we calculate the overall performance 

score of two sensors for each approach for subjects in motion. 

The combination with BCG and iPPG shows the lowest 

performance (44.58%) with the early fusion approach. The 

highest score has the ECG and BCG sensors with 93.08%. For 

motion, the sensor-based late fusion has four times the highest 

score for a specific sensor pair. 

TABLE II.  SCORE FOR TWO SENSORS FOR SUBJECTS IN MOTION 

Approach 

Score (in %) 

BCG 

+ 

iPPG 

PPG 

+ 

iPPG 

ECG 

+ 

iPPG 

ECG 

+ 

PPG 

BCG 

+ 

PPG 

ECG 

+ 

BCG 

Early fusion 44.58 72.93 91.20 89.94 67.35 92.59 

Sensor-based 

late fusion 
92.46 92.46 92.46 92.88 93.03 93.03 

Signal-based  
late fusion 

92.73 91.56 91.56 92.02 92.72 92.72 

Hybrid 

algorithm 
92.45 92.54 92.22 92.83 93.01 93.08 

C. Performance of Four Sensors for Rest and Motion 

The score for the four sensors ECG, BCG, PPG, and iPPG, 

and the hybrid algorithm for rest is 97.01%, and motion 

(94.38%). The sensor-based late fusion algorithm achieves 

the highest score for resting subjects with 97.24%.  

TABLE III.  SCORE FOR FOUR SENSORS FOR REST AND MOTION 

Approach 
Score (in %) 

Rest Motion 

Early fusion 94.85 90.71 

Sensor-based late fusion 97.24 93.95 

Signal-based late fusion 95.13 93.58 

Hybrid algorithm 97.01 94.38 

IV. DISCUSSION 

For unobtrusive monitoring in private spaces, e.g. the 
vehicle, the changing data quality of the measured bio-signals 
is a major challenge [7],[16]. Combining all four sensors 
achieves the highest scores with 97.24% for resting subjects 
and 94.38% for subjects in motion. This indicates that the 
fusion of multiple sensors increases reliability. The sensor 
pairs BCG and PPG (rest), as well as ECG and BCG (motion), 
have the highest scores with 97.15% and 93.08%. However, 
PPG and ECG require continuous physical contact with the 
hands at a specific position of the steering wheel. Under real 
driving conditions, the driver does not always hold the hands 
in a specific position. In these situations, BCG and iPPG are 
presumably still required.  

A limitation of our work is the synchronization of the 
signals. ECG and PPG signals are time-synchronized as they 
were obtained using the same hardware. BCG and iPPG 
signals were collected through separate devices.  
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The signals were synchronized by a manually generated 
short-time artifact with an up and down movement. This time 
synchronization could result in inaccuracies, which could be 
an explanation for the lower scores using the iPPG signal.  

In future work, we will adjust the sensor system to improve 
the time synchronization. For the ECG sensor, an additional 
layer as corrosion protection for the copper plates will be used 
to increase its reliability. Furthermore, pressure sensors could 
be used to detect the electrodes with the best contact. For the 
BCG signal, noise-cancellation with an additional sensor will 
be implemented. Additionally, for the iPPG, an adaptable ROI 
for the face could improve the SNR. Moreover, tests in real 
driving situations are necessary.  

We observed a high degree of variability regarding SNR 
between volunteers in our conducted experiments. We explain 
this effect by different body sizes, skin types, and gender. 
Therefore, more testers are needed. Besides, the skin type and 
melanin level have an impact on the SNR and the iPPG 
analysis [20].  

In this paper, we analyzed the entire length of the signal 
without a method for signal quality assessment. However, 
movement artifacts presumably lead to segments with such a 
high SNR that they are unusable for detecting heartbeats. 
Therefore, a method for selecting only signal segments with a 
low SNR could improve the results. 

In the future, we aim for extending the developed 
algorithms from mere heartbeat detection to diagnostics, e.g. 
atrial fibrillation detection. After proof of technical feasibility, 
it is important to answer comparative research questions by 
including patients with cardiovascular diseases. This could be 
realized by a large-scale and long-time study comparing 
clinical endpoints of patients that use a car with the proposed 
sensor system to patients that do not.  

In that case, data storage within the vehicle and 
transmission are important technical aspects. The increased 
data rates and reduced latency of fifth-generation (5G) cellular 
networks could enable real-time data transmission. 
Eventually, if the proposed system shows it can detect cardiac 
emergencies, it could be used for sending fully automatic 
emergency alerts [21]. 

V. CONCLUSION 

In this work, we aimed to increase the reliability of 
heartbeat measurement by fusing multiple sensors within a car. 
The results show that the proposed hybrid algorithm and a 
higher number of sensors improve reliability. Furthermore, the 
proposed setup is extendable to record further vital signs, e.g., 
respiratory rate, blood pressure, and temperature. Moreover, it 
holds the potential for monitoring the emotional state based on 
face landmarks or via electrodermal activity measuring skin 
resistance. Eventually, this could enable not only 
physiological monitoring but also unobtrusive psychological 
monitoring within the vehicular environment. 
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