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Abstract. A theoretical description and experimental validation of the
Classifying Generalized Hough Transform (CGHT) is presented. This
general image classification technique is based on a discriminative train-
ing procedure that jointly estimates concurrent class-dependent shape
models for usage in a GHT voting procedure. The basic approach is ex-
tended by a coarse-to-fine classification strategy and a simple classifier
combination technique for a combined decision on several regions of inter-
est in a given image. The framework is successfully applied to the task of
automatic bone age assessment and produces comparable results to other
state-of-the-art techniques on a public database. For the most difficult
age range of 9 to 16 years the automatic system achieves a mean error of
0.8 years compared to the average rating of two physicians. Unlike most
other image classification techniques, the trained CGHT models can be
visually interpreted, unveiling the most relevant anatomical structures
for class discrimination.

1 Introduction

Bone Age Assessment (BAA) based on left hand radiographs is a well-established
procedure for determining the skeletal maturity which is mainly applied for
diagnosing growth disorders or forensic age estimation. Manual BAA is usually
performed with one of two common methods: Greulich & Pyle (GP) [7] developed
an approach, in which the radiologist determines the bone age by comparing the
radiograph with a standard atlas. In contrast, Tanner & Whitehouse (TW) [17]
have proposed to consider only regions of interest (ROI) around the epiphyses
and the carpal bones. For each of these so-called eROIs a score based on the gap
and shape of the epiphysis is assigned. The sum of all scores determines the age.

Since the manual assessment is time consuming, subjective, and requires
expert knowledge, an automatic method is desirable. In recent years, various au-
tomatic techniques have been proposed, which are usually based on some kind
of image feature extraction in combination with a standard classification tech-
nique. While some of these approaches employ heuristic features, like the length
and size of phalanges [6,9] or the distance between metaphysis and diaphysis
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[13], other methods directly utilize the TW rules, for example, by using a deci-
sion tree [1] or an artificial neural network [4]. The leading commercial product,
BoneXpert, employs the rules from TW after applying an active shape model
for the segmentation of 15 bones [18].

More general BAA approaches without any kind of heuristic feature selection
are Kim & Kim [10] and Harmsen et al. [8]. Kim & Kim classify discrete cosine
transform coefficients, computed from pixel intensity values in epiphyseal re-
gions, with a linear discriminant analysis. Harmsen et al. analyze 14 epiphyseal
regions of interest (eROIs) using the cross-correlation with 30 class-specific pro-
totypes as features and employing a k-Nearest Neighbor algorithm (kNN) or a
Support Vector Machine (SVM) for classification.

In this work, the Discriminative Generalized Hough Transform (DGHT) [14]
is extended. The DGHT utilizes a discriminative training technique to estimate
optimal shape models for usage in a standard Generalized Hough Transform
(GHT) approach and achieves high localization rates for well-defined objects
with medium shape variability. An unsupervised training method can be used to
learn parallel variation-specific GHT models to deal with stronger variabilities
[16] and returns the variation class together with the localization result. This
approach can be modified towards a general image classification technique, called
Classifying Generalized Hough Transform (CGHT) [15]. A first proof-of-concept
has already been presented in [5], where CGHT-based models were successfully
applied to the BAA task of separating the age classes 11-12 and 14-15 years. In
this paper the method is theoretically described and comprehensively evaluated.

2 Method

2.1 Discriminative Generalized Hough Transform

The classification technique, presented in this paper, is based on the Generalized
Hough Transform (GHT) [2] which is a general model-based localization method.
For 2D images, a point model M := {m} ⊂ R2 is used to represent the shape of
the searched-for object in relation to a reference point, which is the target point
for localization. Using this model, a voting procedure transforms a feature image
Xn, usually a binary edge image, into a parameter space H, called Hough space.
The Hough space is usually quantized and consists of so called Hough cells c,
which accumulate the votes in the respective region. The cells represent possible
target point locations and, potentially, shape model transformations. The latter
are not considered in this work, since moderate shape variations are learned into
the shape model. Thus, the voting procedure may be simplified as follows:

H(x) =
∑

∀ei∈Xn

∑
∀mj∈M

{
1, if x = ei −mj and |ϕi − ϕj | ≤ ϑϕ
0, otherwise.

(1)

Here, ei represents the i-th feature point while mj is the vector from the reference
point to the j-th model point. A pair (ei, mj) is allowed to vote if the difference
of the gradient direction of ei and the orientation of mj is below the threshold
ϑϕ. The number of votes per accumulator cell c after the quantization reflects
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the degree of matching between the feature image Xn and the model M at this
point. The best positioning of the model in the image is given by the Hough cell
ĉ = arg maxcH(c) with the highest degree of matching.

Since the accuracy of GHT localization highly depends on the quality of
the shape model, the Discriminative Generalized Hough Transform (DGHT)
additionally includes a machine learning approach for generating discriminative
models. This procedure, which is described in detail in [14], assigns individual
positive and negative weights to model points based on their importance for
correct localizations on training images. The GHT-based classification technique,
explained in the next section, is an extension of the DGHT which employs a
number of competitively trained submodels.

2.2 Classifying Generalized Hough Transform

Given a classification task with K classes, the CGHT [15] combines a set of K
competitive submodels Mk into a 3D GHT Model M = {Mk}, k ε {1, ...,K}.
Each submodel in M represents one class and the whole set {Mk} is jointly
optimized with respect to a minimum classification error (Section 2.3). This
competitive training procedure assigns large absolute weights to model points
supporting the class discrimination while eliminating irrelevant model parts.

Applying the optimized 3D GHT model M on a 2D image results in a 3D
Hough space H(x, k) = {Hk(x)}, k ε {1, ...,K} (Fig. 1), whereas the individual
Hk(x) have been obtained by applying the voting procedure in Equation 1 to
the submodels Mk:

Hk(x) =
∑

∀ei∈Xn

∑
∀mj∈Mk

{
1, if x = ei −mj and |ϕi − ϕj | ≤ ϑϕ
0, otherwise.

(2)

After the voting procedure has finished, the classification result k̂ is given by the
submodel with the highest degree of matching k̂ = arg maxk[maxxHk(x)].

Note that this procedure is flexible enough to compensate for a moderate
variability of the object’s position in the image. As long as the object to be
classified is completely visible, localizing the peak in the Hough space does not
effect the classification result.

3D Model 2D Image 3D Hough space

Fig. 1. Classification of an epiphyseal region of interest (eROI) using the Classifying
Generalized Hough Transform.
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2.3 Training

The training procedure starts with an initial model M = {Mk} composed of
identical submodels Mk ≡ Mk′ , ∀(k′, k), which is obtained by overlaying the
features of several training images in a predefined region-of-interest around a
manually annotated landmark. Other methods for obtaining an initial shape
model are described in [14].

With this model the modified voting procedure in Equation (2) is applied
producing a 3D Hough space H(x, k). Note that initially the Hk(x) are identical
for all K classes. To determine individual model point weights it is necessary to
capture the influence of each single model point on the Hough space, which is
achieved by the following feature function:

fkj (cki , Xn) = vki,j . (3)

For a given class k, this function denotes the number of votes vki,j from model

point mk
j in Hough cell cki . Considering the constraints of the GHT voting pro-

cedure for the entire model, the individual contributions of all model points have
to be recombined into an overall distribution. To assure maximum objectivity,
the maximum entropy distribution

pΛk
(cki |Xn) =

exp
(∑

j λ
k
j · fkj (cki , Xn)

)
∑
l exp

(∑
j λ

k
j · fkj (ckl , Xn)

) (4)

is used, which introduces class and model point specific weights Λk = {λk1 , ..., λkJk}.
Note that this probabilistic representation of the Hough space is in line with the
standard GHT theory, as the Hough space can be easily transferred into a prob-
ability distribution by using relative frequencies.

Since this work aims at a minimum classification error instead of a Hough
space with maximized entropy, the λkj are optimized using a Minimum Classifi-
cation Error (MCE) training approach [3], which minimizes the smoothed error
measure

E(Λ) =

N∑
n=1

K∑
k=1

I∑
i=1

ε(cki , c̃
kn
n ) · pΛk

(cki |Xn)η∑
l pΛk

(ckl |Xn)η
. (5)

Here, the error is summed over the N images in the training corpus, the K classes
and I Hough cells providing the votes vki,j in each class specific layer Hk(x). For
a given training image n, the error function ε(·) measures the distance of each
Hough cell cki to a given target cell c̃knn , which might be the center of the object to
be classified in the Hough space layer of the correct class kn. While this function
is realized as a Euclidean distance in the standard DGHT method, the CGHT
may additionally employ a fixed inter-class penalty to enforce discrimination
between the different class layers. However, since a focused peak in the layers
Hk(x) is not the target criterion, a simplified error measure has been applied
finally which equally penalizes Hough cells of wrong classes:

ε(cki , c̃
kn
n ) =

{
0, if k = kn

1, otherwise
(6)
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Model 1-1
Age range

Submodel 1-1-1

3-6

1-1-2

7-10

1-1-3
11-14

1-1-4

15-18

Model 2-1

2-1-1
3-4

2-1-2
5-6

2-1-3
7-8

Model 2-2

2-2-1
5-6

2-2-2
7-8

2-2-3
9-10

2-2-4
11-12

Model 2-3

2-3-1
9-10

2-3-2
11-12

2-3-3
13-14

2-3-4
15-16

Model 2-4

2-4-1
13-14

2-4-2
15-16

2-4-3
17-18

Step 1
(coarse)

Step 2
(fine)

Classification

Fig. 2. Illustration of the used coarse-to-fine classification strategy

The second term in (5) is a sigmoidal smoothing function that controls the
influence of the best hypotheses on the overall error measure with the parame-
ter η. Consequently, the optimization procedure is adjusting the model weights
particularly suppressing votes in the most likely cells of wrong classes.

For optimization of E(Λ) over the model point weights Λ = {Λ1, ..., ΛK}, the
method of steepest descent is used, which is not assuring a global minimum but
has shown significant improvements compared to other weighting strategies in
recent experiments [14].

The described optimization procedure assigns individual weights to each
model point in M and allows for eliminating model parts with small absolute
weights and therefore low influence on the overall classification result. The pro-
cedure can be repeated in an iterative manner [14] to gradually enhance the
model with structures from training images not yet correctly classified. This
has, however, not yet been studied.

3 Bone age classification

The proposed BAA procedure is solely based on analyzing eROIs, according to
Tanner & Whitehouse [17]. The eROI extraction is done based on the given
annotations from the corpus although it could be shown in [5] that a robust
automatic localization of those regions can be done automatically by using the
DGHT. Therefore, it is planned to combine the two techniques into a fully au-
tomated BAA system at a later time.

3.1 Coarse-to-fine classification strategy

The BAA task is characterized by a large object variability in combination with
a rather large number of classes. Therefore, it is necessary to restrict the inter-
class confusion, which can be achieved by utilizing a coarse-to-fine classification
strategy comprising of two levels (Fig. 2). The first level classifies a given im-
age into one of four coarse age classes. The second level decides more precisely
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between age ranges of 2 years only. Due to the significant differences of the epi-
physeal shapes between the coarse age ranges of the first level, the respective
CGHT models may focus here on global characteristics, such as the size, while
the models of the second level represent details to discriminate from neighboring
classes of similar age.

It is apparent that in this scenario, misclassifications are more likely to occur
at ages close to class boundaries. Therefore, the second level operates with over-
lapping classes (Fig. 2). For the sake of clarification, let us consider a patient
with a skeletal maturity of 12 years who should be assigned to class 11-14 years
in the first level. Due to a misclassification during the first level it may occur
that instead of the correct class, the class 7-10 years is selected which induces
the utilization of Model 2-2 for the second level. This mistake may be corrected
due to the incorporation of submodel 11-12 years in Model 2-2.

3.2 Combination of classifiers

A combined decision based on several eROIs clearly improves the bone age clas-
sification performance [8]. This idea has been tested in a first experiment to
improve the Model 2-3, which corresponds to the age range 9 to 16 years. To
this end, the three epiphyseal plates of the long finger have been analyzed with
individually trained CGHT models producing four class-specific Hough spaces
Ha
k (x) per joint a for the submodels 2-3-1 to 2-3-4. Afterwards, a normalization

step is applied, eliminating any bias from different model point numbers. Finally,
the peaks in the normalized Hough spaces are linearly combined for the three
joints and a decision is made for the class with the highest combined vote. As
an alternative to this heuristic approach, a log linear combination of the classi-
fiers [11] could be used in future attempts which, however, requires additional
training data.

4 Data

Training as well as evaluation is performed on images of male patients in an
overall age range between 3 and 18 years. The models are trained on non-public
data from the University Hospital Aachen and the University Medical Center
Schleswig-Holstein. To assure comparability with other studies, evaluation is
performed on the public database from the University of Southern California
(USC), where each image is assigned an individual age assessment from two
radiologists. In order to eliminate debatable cases from our experiments, 156
images with an inter-observer variability of more than 1 year have been removed
from the evaluation database as well as images with strong rotation (18 images),
atypical positioning (2 images) or unsuitable spacing (5 images). In order to
clarify the degree of deviation for these cases, some examples are provided in
Figure 3. The remaining 481 images were annotated using the average of both
expert readings.
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(b) (c) (d)

1

2

3(a)

Fig. 3. Illustration of eROIs used in this paper. g1 is used for single eROI classification,g2 and g3 are additionally used for combined classification. (b-d) Examples of strong
rotation (b), atypical positioning (c) and unsuitable spacing (d).

5 Experiments

In order to evaluate the GHT-based classification technique described above,
two different experiments have been done. In the first investigation, described in
Section 5.1, a single epiphysis has been analyzed to perform the age classifica-
tion while the second experiment (Section 5.2) analyzes the combination of the
classification results of three eROIs.

5.1 Single eROI classification

In this experiment, the coarse-to-fine strategy (Section 3.1), has been applied to
classify the metacarpophalangeal of the middle finger ( h1 in Fig. 3). The training
of each submodel in classification level 1, covering an age range of 4 years, could
be performed using 84 images. Reducing the age range to 2 years, the amount
of training data decreased to only 42 images per submodel. The trained models
have been evaluated on 481 images and achieved a mean classification error of
1.11 years.

Figure 4 shows the resulting CGHT submodels of the first classification level.
It can be seen that the training procedure has automatically learned reasonable
representations of the 4 different age classes. The models have captured size
and anatomical differences between the classes while at the same time preserv-
ing some level of intra-class shape variability. Studying the learned anatomical
structures, it is interesting to note that the fusion of the epiphyseal cartilage
can be observed in the submodels 11-14 and 15-18 years while the first two sub-
models 3-6 and 7-10 years are characterized by a clearly visible gap in this area,
emphasized by highly weighted model points shown in red color.

Since a larger number of training images was available for the age range 9-16
years the training was repeated with an amount of 56, instead of 42, images per
submodel in classification level 2. In this experiment a slight gain of the mean
error to 1.15 years could be observed.

5.2 Combined classification

The classifier combination described in Section 3.2 has been trained on 56 train-
ing images per class from the restricted age range 9 to 16 years and evaluated on
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3 to 6 years 7 to 10 years 11 to 14 years 15 to 18 years
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0
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Fig. 4. CGHT submodels of classification level 1. The colors indicate positive and
negative model point weighting.

253 test images. A combination of the metacarpophalangeal, proximal and distal
interphalangeal of the middle finger (Fig. 3) led to a significant improvement of
the mean error from 1.15 years, when using a single classifier, to 0.84 years.

Table 1 gives a comparison of the presented technique with other recently
published methods which have been evaluated on the USC database. Note that
these publications eliminate a similar amount of problematic images from the
evaluation dataset and apply a scaling and orientation normalization prior to the
actual classification. Note further, that the age range restriction in our experi-
ments was only necessary due to the shortage of training data. The addressed
age range for our combined classification experiments (9-16 years) is considered
the most difficult [8] due to the fact that the growth differentials are significantly
lower than in younger children.

Table 1. Comparison of BAA methods

Method Database Age range #Images Mean Error

BoneXpert[12] Subset of USC1 2-17 1083 0.72
Harmsen[8] - six eROIs combined Subset of USC1 0-18 1097 0.83
CGHT - single eROI Subset of USC1 3-18 (male) 481 1.11
CGHT - single eROI Subset of USC1 9-16 (male) 253 1.15
CGHT - three eROIs combined Subset of USC1 9-16 (male) 253 0.84

6 Discussion

In the presented validation experiments, the proposed image classification method
has shown good performance. A crucial aspect for the success of the proposed
discriminative training technique is, however, the availability of sufficient train-
ing images since the data must reflect the large shape variability contained in
clinical data. Apart from the general problem of finding comprehensive corpora
with annotated hand radiographs three restricting factors have to be addressed
when using the CGHT. First, all submodels Mk of a model M should be trained

1 Corpus from the University of South California: http://www.ipilab.org/BAAweb/.
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on the same number of images in order to prevent a preference for submodels
with a larger amount of training data. This is a direct consequence of using
the smoothed error measure (Equation 5), which does not compensate for bi-
ased data. Therefore, the class with the smallest amount of available images
determines the training amount for all classes of the same model. Second, work-
ing with the described coarse-to-fine strategy makes the training data situation
worse since narrowing the age ranges in the second classification level reduces
the available data per class. Due to the training data shortage the installation of
a third classification level for an age range of 1 year is currently not feasible. The
usage of age ranges of 2 years, however, already induces a best-case expected
error of 0.5 years if the data is equally distributed with respect to the age. Third,
the method is currently limited to images with restricted orientation and scaling
variability, which required the omission of some strong outlier images as shown
in Figure 3. A normalization step, based on the results of the prior epiphysis
localization procedure, may allow for a better treatment of those cases and will
probably additionally improve the classification rate by reducing the contained
shape variability to mostly anatomical factors. As a consequence of the three
mentioned aspects, it is expected that the observed results can be further im-
proved by (1) increasing the amount of training data, (2) reducing the scaling
and orientation variability by a prior normalization step, and (3) introducing
further classification levels into the coarse-to-fine framework.

7 Conclusion

This contribution has, for the first time, presented a mathematical description
and comprehensive experimental validation of the novel Classifying Generalized
Hough Transform (CGHT). It could be shown that this general image classi-
fication method can be successfully applied to the task of automatic bone age
assessment and achieves comparable results to other state-of-the-art techniques
on a public database. In contrast to most other image classification methods, the
learned models can be visually interpreted and unveil the most relevant anatom-
ical structures for class discrimination. The basic approach has been extended by
a coarse-to-fine classification strategy and a simple classifier combination frame-
work for a combined decision based on several epiphyseal regions of interest. The
latter method was shown to significantly improve the mean classification error
which confirms the findings of other authors [8].

Since the success of the applied discriminative model training heavily depends
upon the amount and quality of available training data, it is expected that further
improvements can be achieved by using a larger amount of training images,
providing high quality annotations and employing a normalization step prior to
the actual classification. Besides these aspects, our future work will consider the
combination of a larger number of eROIs, a more sophisticated, e.g. log-linear
[11], classifier combination, and the integration of this classification approach
with the automatic landmark detection technique based on the Discriminative
Generalized Hough Transform (DGHT) [14].
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