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Fig. 1. Relevant images from the archive are presented by content-based image retrieval to assist computer-aided diagnosis
of screening mammography.

Abstract—Screening mammography has been established
worldwide for early detection of breast cancer, one of the main
causes of death among women in occidental countries. In this
paper, we aim at moving towards computer-aided diagnostics of
screening mammography. Tissue and lesion are classified using
the methodology of content-based image retrieval. In addition,
we aim at comprehensive evaluation and have established a large
database of annotated reference images (ground truth), which has
been merged and unified from different sources publicly available
to research.

In total, 10,509 mammographic images have been collected
from the different sources. From this, 3,375 images are provided
with one and 430 radiographs with more than one chain code
annotations. This data supports experiments with up to 12 classes,
and 233 images per class if a equal distribution is required.
Using a two-dimensional principal component analysis with four
eigenvalues and a support vector machine with Gaussian kernel
for feature extraction and image retrieval, respectively, the
precision of computer-aided diagnosis is above 80%. It therefore
may be used as second opinion in screening mammography.

Keywords-Content-based image retrieval; Computer-aided di-
agnosis; Principal component analysis; Support vector machine;
Mammography; Breast lesion; Breast density

I. INTRODUCTION

Cancer is the leading cause of death. The World Health
Organization (WHO) projects deaths from cancer worldwide
to continue rising, with an estimated 11 million deaths in
2030 [1]. Breast cancer is on the top five rank and one of the
main causes of death among women in occidental countries

(Brazilian National Cancer Institute, http://www.inca.gov.br).
In the past decade, screening mammography has been estab-
lished worldwide for early detection of breast cancer [2]. Using
special x-ray imaging equipment, both breasts are imaged
in two directions, the cranio-caudal (CC) and the medio-
lateral oblique (MLO) view, and the radiographs are visually
inspected by experienced radiologists.

In order to standardize mammographic reports, the Breast
Imaging Reporting Data System (BI-RADS) has been estab-
lished by the American College of Radiology (ACR) [3], [4].
BI-RADS define breast tissue density classes (Tab. I) as well as
assessment categories (Tab. II). Despite such standardization,
screening mammography is suffering until today from false
positive findings, resulting in 10% unnecessary and harmful
biopsies and psychological distress for many months, as well
as 0.5% unnecessary treatments [4].

Computer-aided detection (CADe) has been introduced and
already proven to support screening mammography [5]. How-
ever, still there are several interesting topics in cancer detection
systems. In a recent review, Tang et al. list the following key
technologies for CADe systems in mammography [6]:

• basic image enhancement,
• stochastic modeling,
• multi-scale decomposition, and
• machine learning,

which are applied for high-efficiency, high-accuracy le-
sion detection algorithms, including the detection of micro-
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TABLE I
BI-RADS TISSUE DENSITY CLASSES.

Class Tissue description
I almost entirely fatty

II scattered fibro glandular
III heterogeneously dense
IV extremely dense

calcifications, masses, architectural distortion, and bilateral
asymmetry. Nonetheless, CADe – by its nature – in general
has a limited capacity to improve the specificity of early cancer
detection.

Therefore, computer-aided diagnostics (CADx) systems cur-
rently are under development. In contrast to detection systems
(CADe), where suspicious regions are marked to guide the
radiologists, CADx aims at providing classification of suspi-
cious regions, e.g., labeling the lesion according to BI-RADS
assessment categories. Elter & Horsch recently have reviewed
technologies successfully applied to feature extraction [7]. For
clustered micro-calcifications, the following features are used:

• morphology of the cluster,
• location of the cluster,
• morphology of individual calcifications,
• optical density of individual calcifications,
• distribution of individual calcifications, and
• texture of background tissue.

In addition, features describing mammographic masses in-
clude:

• shape,
• margin characteristics,
• optical density, and
• texture.
Content-based image retrieval (CBIR) is seen as promising

technology in assisting diagnosis [8], since CBIR is based
on the above-mentioned visual features such as morphology,
shape, and texture [9]. In general, CBIR relies on a large
repository of medical images annotated with ground truth data,
e.g., medical case records. The query image is presented to
the system, and based on visual patterns described by features
(also referred to as signature) and according distance functions,
the visually most similar images are returned from the archive
[10]. The physician may choose from the offered responses,
and consult the electronic medical record (EMR) linked to the
images for case-based reasoning (CBR) [8].

For CBIR-CAD, a second step of automatic processing
is performed, where the ground truth of the retrieved im-
ages is combined with their visual similarity measures to
obtain a diagnostic suggestion. So far, medical CBIR has
been applied successfully for categorization of images, e.g.,
differing imaging modality, anatomy, field of view, or the
relative positioning of patient and imaging device [11], [12].
In previous investigations, we applied the Image Retrieval
in Medical Applications (IRMA) framework [13], [14] for
automatic detection of BI-RADS tissue classes [15], [16].

However, CBIR has rather seldom been applied to CADx
mammography. El Naqa et al. report a similarity learning

TABLE II
BI-RADS ASSESSMENT CATEGORIES.

Class Assessment description
0 need additional imaging evaluation and/or

prior mammograms for comparison
1 no findings (negative)
2 benign
3 probably benign
4 suspicious abnormal

(biopsy should be considered)
5 highly suggestive malignant
6 known biopsy-proven malignant

approach to CBIR with application to digital mammography
[17]. More recently, Zheng reviewed CBIR-CAD approaches
in mammography [18]. The CAD performance and reliability
depends on a number of factors, including the optimization of
lesion segmentation, feature selection, reference database size,
computational efficiency, and relationship between the clinical
relevance and visual similarity.

Contributions: In this paper, we aim at moving towards
CADx of screening mammography. We propose, implement,
and evaluate a CBIR-CADx system addressing feature selec-
tion, computational efficiency, and reference database size.
Tissue and lesion classes are classified using CBIR method-
ology. In addition, we aim at comprehensive evaluation and,
accordingly, we have established a large database of annotated
reference images (ground truth), which has been merged and
unified from different sources publicly available to research.

II. STATE OF THE ART IN CBIR-BASED CAD FOR
MAMMOGRAPHY

In the context of screening mammography, CBIR and CAD
systems have been explored to improve knowledge and provide
facilities for the radiologists. Both, tissue classes and assess-
ment categories have been analyzed.

A. Breast density classification

Bovis & Singh considered both, all four BI-RADS cate-
gories as well as the two categories: fatty and dense [19].
Using 377 mammograms from Digital Database for Screening
Mammography (DDSM), four groups of texture features were
extracted. To reduce the dimensionality of the data, the prin-
cipal component analysis (PCA) was used. The combination
paradigm was applied by eleven component classifiers, and the
authors have chosen an artificial neural network (ANN) for
this task. Recognition rates of 40− 71% and 77− 97% were
reported for the four and the two class problems, respectively.

Oliver et al. proposed a statistical technique to perform a
segmentation of the breast density, which was divided into
only two classes, fatty and dense [20]. The breast density
was characterized using two approaches, principal component
analysis (PCA) and linear discriminant analysis (LDA), in
which each pixel of a new mammogram was classified as fatty
or dense, taking into account its neighborhood. From the Hos-
pital Josep Trueta, Spain, 54 regions of interest (ROI) of size
50 × 50 pixels were extracted, and from the Mammographic
Image Analysis Society (MIAS) digital mammogram database



TABLE III
DATA DISTRIBUTION IN THE UNIFIED REFERENCE DATABASE.

Author Year Problem Classes Features Classifier Images Source Results

Bovis & Singh 2002 Tissue 2 ROI ANN 377 DDSM 40 – 71%
4 77 – 97%

Oliver et al. 2009 Tissue 2 ROI LDA/PCA 54 private 90%322 MIAS
Tagliafico et al. 2009 Tissue 4 Histogram Thresholding 160 private 80 – 90%
Subashini et al. 2010 Tissue 3 ROI SVM radial kernel 43 private 95%
Eltonsy et al. 2007 Lesion 2 ROI Concentric layer model 540 DDSM 96%
Elter & Hasslmeyer 2008 Lesion 2 ROI, meta Generic algorithm, Euclidean metric 360 DDSM 86% (ROC)
Tao et al. 2010 Lesion 1 ROI Multi-phase pixel-level 54 private 69%
Verma et al. 2010 Lesion 2 ROI Soft-clustered direct learning 200 DDSM 97%
Oliver et al. 2010 Both 4 ROI LDA / PCA 184 private 92 – 94%

all the 322 images available were used. Despite the authors
expectation that LDA would perform superior, PCA provided
the best classification with about 90% of accuracy. However,
no statistically significant differences were found.

Tagliafico et al. developed a method to estimate the breast
density [21] based on gray scale statistics. Histogram and
accumulative histograms are computed and thresholded. Image
data was acquired according to the Mammography Quality
Standards Act (MQSA) and digitized from the films. In total,
160 mammograms from both CC and MLO views were used
wherein breast density had been evaluated according to the
four BI-RADS tissue classes by two experienced radiologists.
Results from 80% to 90% of agreement between the two
experienced radiologists and the automatic program were
reported.

Subashini et al. used statistical features for breast char-
acterization [22]. In total, 43 normal mammograms from
MIAS database were used and the pectoral muscle as well
as labels were eliminated from the mammograms. Then,
from the breast region alone, features like mean, standard
deviation, smoothness, third moment, uniformity, entropy, and
others were extracted and classification was performed using a
support vector machine (SVM) with a radial basis kernel. The
results report an accuracy of 95.44% considering three classes
of breast density, namely fatty, glandular, and dense tissue.

B. Assessment categories

Eltonsy et al. presented a technique for automatic detection
of masses using the DDSM database [23]. Morphological char-
acteristics were extracted from 540 ROIs of images containing
malignant masses (270 images), randomly selected from the
DDSM cancer volumes with the same amount of negative
findings, and split 50% for test and training, each. The authors
have reported that 96% of the masses have been detected by
the proposed concentric layers model, and only 12 masses
have been failed of detection.

Elter & Hasslmeyer proposed a CADx system to dif-
fer malignant from benign masses [24]. From the DDSM
database, 360 ROIs were selected, 164 and 196 containing a
proven malignant and a benign mass, respectively. In total, 75
features were extracted including some meta-information such
as gender and age. To escape the curse of dimensionality, a
genetic algorithm was applied reducing the feature space as

well as finding suitable weights. An Euclidean distance was
applied as metric. The performance was evaluated in terms
of the area under the receiver operating characteristic (ROC)
curve, and 86% was obtained.

Aiming the segmentation of breast masses in mammograms,
Tao et al. proposed an algorithm involving multi-phase pixel-
level classification [25]. A non-specified dataset provided 54
mammograms (51 malignant and 3 benign) from which ROIs
were verified and had the ground truth set by five experienced
radiologists. The following features were extracted: texture
(from co-occurrence matrix), shape (Hessian matrix), and a
group of gray-level statistics, in a total of 30 dimensional fea-
tures for each ROI. After this, in order to obtain the potential
mass pixels, the Otsu thresholding method was used, and for
the spiculation detection, a steerable edge detection approach
was employed. Results showed an accuracy of 87.81% for the
pixel-scale classification task and an area overlapping ratio
of 68.90% and 54% for segmenting entire mass and margin
portion only, respectively.

Verma et al. proposed a new algorithm for breast lesions
classification [26]. From DDSM database, 200 mammograms
had the ROI containing the lesion extracted and then char-
acterized using the following features: density, mass shape,
mass margin, abnormality assessment rank, patient age, and
subtlety value. A soft-clustered direct learning classifier was
proposed for the classification of suspicious areas and over
97% of accuracy was obtained, a high value when compared
with other techniques such as standard multi-layer perceptron,
for instance.

Combining CBIR and CAD, Tao et al. established a mass re-
trieval platform [27] with the performance of two experiments.
The first one used a database consisting of 415 mammograms
containing masses (244 malignant and 171 benign) from
University of Michigan, and the second one used a reference
library non identified containing 476 masses (219 malignant
and 257 benign). Prior to feature extraction, a segmentation of
the masses was performed using the multi-level learning-based
segmentation method [25]. Regular, lobulated, and irregular
shapes were computed with the following features: third order
moments, curvature scale space descriptors (CCSD), radial
length statistics, and region-based shape. Regarding mass
margin, they considered circumscribed, microlobulated, indis-
tinct, and spiculated, extracting texture features from them.



Similarity was calculated using a locally linear embedding
(LLE) method with the performance indicated by a ROC
analysis. For the first database, an area under the ROC curve
of 75% was obtained, and for the second dataset, an average
area of 80% was achieved.

C. Tissue and assessment combined

Continuing their previous work, Oliver et al. have used 92
mammograms of MLO and CC views each to verify if the
breast density information improves the results of a CAD
system for breast masses detection [28]. These 184 mam-
mograms were obtained with a digital mammographic unit
(Mammomat Novation, Siemens AG, Munich, Germany). The
reason for combining MLO and CC views is that sometimes
a lesion is hidden and only seen in one of the views. Texture
attributes were used to characterize each BI-RADS tissue type
and results showed that although a better performance was
obtained for MLO mammograms, the performance of the CAD
system is improved and this information is advantageous. An
accuracy of 92% was obtained without considering breast
density information and one of 94% using automatic density
estimation. However, the authors do not report on false nega-
tive findings.

D. Resumee

Table III summarizes previous publications. It becomes
obvious, that all experiments have been performed on different,
rather small, and also selective datasets. Selection procedures
as well as separation of test and training data are ambiguous, in
particular with respect to the small sample sizes. Furthermore,
most authors use private data, not being available for others.
Results are reported by precision, accuracy, or ROC curves,
which also are incomparable quantitatively. Another problem
is hidden in the small number of categories, disregarding
whether tissue, assessment, or mixed classes are considered. In
most papers, a simple two-class problem is investigated, which
reflects clinical practice insufficiently. Recently, this need of
unified data repositories and evaluation study protocols has
also been claimed by Horsch et al. [29].

III. MATERIAL & METHODS

A. Development of reference database

In our previous work, mammographic images have been
unified and imported from several sources available to the
public [30]. In total, 10,509 images have been made available
from the following repositories:

• Mammographic Image Analysis Society (MIAS)
• Digital Database for Screening Mammography (DDSM)
• Lawrence Livermore National Laboratory (LLNL)
• Rheinisch-Westfälische Technische Hochschule (RWTH)

Aachen University, Aachen, Germany Department of
Radiology.

All radiographs are classified reliably according to the
BI-RADS tissue classes (Tab. I) and assessment categories
(Tab. II) as well as the type of lesion (Tab. IV).

TABLE IV
IRMA LESION CLASSES [30].

Class Type of Lesion
a unspecified
b calcification, unspecified
c calcification, micro-sized
d calcification, macro-sized
e mass, unspecified
f mass, circumscribed
g mass, spiculated
h architectural distortion
i asymmetry

To create a ground truth for diagnostics, the IRMA mam-
mography database was extended by additionally importing
spatial annotations that were (partly) delivered with the im-
ages. Figure 2 depicts the conversion of annotations, which
are provided as center coordinate and size (circle), masking
image (overlay), or polygon/free-hand annotation (drawing),
and transformed into a chain code definition in the extensible
markup language (XML). Within the IRMA database, many-
to-one standardized annotations are linked to the images,
respectively. The IRMA framework intrinsically supports con-
sistent scaling of both, images and chain-coded annotations.

Centered to the annotated lesion outline, quadratic patches
are extracted at different scales and size (128 pixel with respect
to a full scale of 1,024 pixel bounding box) and used within
the experiments. For BI-RADS assessment class 1 (negative),
we extracted the patches from the center of the breast tissue,
which can be computed automatically combining contour with
muscle detection in both CC and MLO images.

B. Feature extraction and distance measure

Breast tissue of different density with or without a lesion
may differ in brightness and texture attributes, since it contains
information about the spatial distribution and variation of gray
levels. Since high-dimensional feature vectors may limit com-
putational efficiency and accuracy (curse of dimensionality), a
technique that combines the representation of texture with the
reduction of dimensionality is desirable. The two-dimensional
(2D) principal component analysis (2DPCA) technique is able

Fig. 2. Conversion of annotations



to satisfy these requirements. Unlike PCA, where the principal
component is a scalar, with 2DPCA each principal component
is a vector [31]. Previous experiments have shown that d = 4
of such vectors, each having m components, are sufficient to
characterize the tissue patterns [15].

For a binary classification, the support vector machine
(SVM) can be described as follows: given two classes and a
set of points that belong to these classes, the SVM determines
the hyperplane in the feature space that separates the points in
order to place the highest number of points of the same class
on the same side, while maximizing the distance of each class
to that hyperplane. The hyperplane generated is determined by
a subset of items from the two classes, called support vectors.

For more than two classes, the problem turns into a multi-
class problem, which opens a variety of solutions [32]. Ac-
cording to previous investigations, we apply the one-against-
one method [15], where an SVM is built for a pair of classes
through its training in the discrimination of two classes. In this
way, the number of SVMs used in the method is M(M−1)/2,
where M is denoting the number of classes. Each SVM
belongs to only the two corresponding classes.

During the training phase, each class is matched against all
other classes. The obtained parameters are stored in a matrix-
like model file (Fig. 3, bottom).

Figure 3 (top) depicts how the prediction method is yielded
from the one-against-one solutions. Corresponding steps are
indicated by respective colors. For each step, all of which
being two-class problems, the site of the hyperplane is de-
termined on which the feature is lying. All hyperplanes are
delivered by the respective models (“C” in Fig. 3). This way,
only M steps are needed for classification.

C. CADx and CAD experiments with CBIR

The experiments were performed in several consecutive
steps, which are visualized in Figure 4:

1) ROI location: Conserving their aspect ratio, all mam-
mographies have been reduced in pixel resolution to fit
a bounding box of 1024 × 1024 pixel, and 128 × 128
pixel patches where extracted centering the lesion that
is indicated by a chain code in the ground truth data.
For BI-RADS category 1, the patches were positioned
arbitrarily within the breast tissue, excluding the pectoral
muscle, nipple and background areas.
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Fig. 3. Process of classification in the SVM model.

2) Feature extraction: The 2DPCA method was performed
on all the patches. The principal components related to
the first d largest eigenvalues of the covariance matrix
were used in the experiments.

3) Spit & Scale: The data is divided into 60% for training
and 40% for testing. To improve the performance of the
SVM classifiers, the training features are scaled into the
interval [−1, . . . , 1], and the scaling factor is used to
normalize the testing features, too.

4) First Model: Using the LIBSVM library, 5-fold cross
validation was performed on the 60% training data in
order to obtain the best parameters of the SVM, which
then are used to build the first model. All hyperplanes
are stored in a matrix according to Figure 3.

5) Selection: This first SVM model is used to indicate
the relevance of images to a certain query (classifier
experiment). In a final system, the selection can be
done using a relevance feedback loop. Since this has
not jet been implemented, we applied the ground truth
information so far.

6) Second Model: It has been observed that radiologists,
when performing CBIR experiments, pay most attention
on the top ten images retrieved. Hence, the top ten
retrieved images were used for training the second SVM
in order to obtain the final model.

7) Retrieval: Using the second model, the query image
finally is classified. For quantitative experiments, the
classification of the query image is compared to the
ground truth.

The first d = 4 principal components of 2DPCA technique
were considered for lesion (malignant or benign) characteriza-
tion and SVM was used for classification with 10-fold cross
validation of all the patches. The evaluation was performed
with measures of accuracy, which is the percentage of correctly
classified images over the ground truth of all images in that
category (normal or malignant lesion and normal or benign
lesion).

To increase the comparability with results published by
others (Tab. III), the performance of the 2DPCA technique
was compared to PCA and SVD for breast and lesions char-
acterization, as these two techniques were already reported as
being able to represent texture and reduce the dimensionality
of the feature vector. SVM was evaluated for the task of image
retrieval.

D. Implementation

Our system was implemented using MatLab through the
image processing toolboxes and the LIBSVM library [33].
Feature extraction was executed on an IntelCore2Quad 2.66
GHz processor with 8 GB of RAM operated with Microsoft
Windows 64 bit system. Image retrieval was performed on an
Intel-Core2Duo 2 GHz processor with 3 GB of RAM under
Microsoft Windows 32 bit.
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Fig. 5. Patches from the IRMA mammography reference database

IV. RESULTS

A. Database and annotation

From the IRMA database, a total of 9,870 mammographic
images are available according to the relevant BI-RADS codes
(Tab. V). From this, 3,375 images are provided with one and
430 radiographs with more than one chain code annotations.
The smallest sample size of 233 images is recorded with BI-
RADS IV-5 (Tab. V). Since our implementation is based on
the LIBSVM library, equal-sized classes are needed so far,
and 233 images were selected randomly from each class in the
database, resulting in 2,796 individual images of 12 classes.

Figure 5 exemplifies the resulting patches. Each two hori-
zontally neighbored patches are from the same class. The four
double-columns correspond to the BI-RADS tissue density

TABLE V
DATA DISTRIBUTION IN THE UNIFIED REFERENCE DATABASE.

BI-RADS Tissue classes
I II III IV Sum

Assessment
categories

1 2,518 1,855 1,295 834 6,501
2 676 515 383 237 1,811
5 591 471 263 233 1,558

Sum 3,785 2,841 1,940 1,304 9,870

classes I to IV. From top to bottom, the five rows depicts BI-
RADS assessment categories 1, 2, 2, 5, 5, respectively, where
rows 2, 4 and 3, 5 show examples from IRMA lesion classes
(b-d) calcification and (e-g) mass, respectively.

This figure impressively demonstrate the classification prob-
lem to handle. On the one hand side, one may feel to see the



TABLE VI
RESULTS MATRIX OBTAINED WITH d = 4.

Feature SVM kernel shape
extraction polynomial sigmoidal Gaussian

2DPCA 72.31% 67.84% 80.07%
PCA 66.69% 66.61% 68.83%
SVD 66.32% 60.56% 69.96%

differences between malignant and benign masses, or between
the patches from the BI-RADS I-IV tissue classes of negative
findings (BI-RADS 1, first row), but, for instance, deciding
malignant or benign calcification seems rather difficult. It is
worth mention that neither mean gray scale nor contrast is
a sufficient feature for robust tissue density nor assessment
category classification.

B. Classification

Table VI lists the best average precision obtained with
d = 4, comparing breast density and lesion characteristics
using 2DPCA, PCA, and SVD for feature extraction and
SVM with polynomial, Gaussian, and sigmoidal kernels for
the retrieval task. In general, polynomial kernels perform better
than sigmoidal kernels, and Gaussian kernel outperform both,
polynomial and sigmoidal kernels. With respect to the feature
extraction and selection methods, 2DPCA performs superior
to SVD, and PCA is worst. The overall best result of 80,07%
is obtained for 2DPCA with a Gaussian kernel, which is in
consonance with previous experiments [15]. Worst result is
only 60,56% of averaged precision, which is obtained with
SVD and a sigmodial kernel of the SVM classifier.

The time of execution of the CBIR system was 6,200
seconds using the polynomial kernel, 2 seconds using the sig-
moidal kernel and 4.3 seconds using the Gaussian kernel. As a
CBIR system that takes several minutes to execute the retrieval
process is not viable for clinical practice of radiologists, the
use of polynomial kernels cannot be recommended.

Figure 1 depicts ten relevant images from the archive
presented to the radiologist by CBIR to assist CAD of
screening mammography. With the validated meta-information
linked to these images, this set can be regarded as a second
reading, providing additional confidence. So far, the physician
is enabled to switch the view of the images between the
thumbnail (Fig. 6a), thumbnail and chain code fused (Fig. 6b),
and patch (Fig. 6c). The corresponding image is shown in a
separate browser window when the thumbnail is hit with the
mouse. Here, a link to the patient’s EMR could be placed, too.

V. DISCUSSION

Table VII shows the confusion matrix of the 12 class
experiments. The matrix is sparsely occupied, which indicates
that some paths of the one-against-one classification process
(Fig. 3) are less likely than others. Unsurprisingly, it appears
that classes within the same category of pathology are harder
to differentiate from each other than from different categories.
Furthermore, categories of more translucent tissue are easier
to classify. This is compliant with findings by other authors.

TABLE VII
CONFUSION MATRIX. CRITICAL ERRORS IN BOLDFACE.

I-1 I-2 I-5 II-1 II-2 II-5 III-1 III-2 III-5 IV-1 IV-2 IV-5
I-1 89 0 0 0 0 0 3 0 0 2 0 1
I-2 0 80 0 0 0 0 0 0 0 0 7 7
I-5 0 0 62 0 6 4 0 7 11 0 0 4

II-1 0 0 0 78 0 0 0 0 0 0 0 16
II-2 0 0 10 0 60 11 0 7 6 0 0 0
II-5 0 0 24 0 13 34 0 5 0 18 0 0

III-1 15 0 0 0 0 0 40 0 0 38 0 1
III-2 0 0 19 0 5 9 0 48 12 0 60 1
III-5 0 0 19 0 20 14 0 9 32 0 0 0
IV-1 16 0 0 0 0 0 20 0 0 58 0 0
IV-2 0 6 0 0 0 0 0 0 0 0 66 22
IV-5 0 7 0 0 0 0 0 0 0 0 39 48

For dense tissue (BI-RADS class IV), most critical errors
occur (Tab. VII, highlighted in red). Here, benign (BI-RADS
category 2) is confused with malignant (BI-RADS category 5)
and vice versa. Again, this finding has been reported in the
literature, too.

Rather surprisingly, another medical meaningful confusion
has occurred frequently (19 times) between BI-RADS III-
2 and I-5. This can be explained however due to the fact
that, currently, patched of fixed resolution-related size have
been extracted from the mammographies. If the patch is
too small with respect to the actual lesion, it contains only
tumorous tissue, and this may be erroneously classified as
heterogeneously dense tissue (Fig. 7). Therefore, adapting the
patch size to the size of lesions might improve the retrieval
results. It is worth mention that this information is captured
in the compiled ground truth database. Also, separating MLO
from CC images might further improve the results.

The results presented in this paper have been obtained on a
by far increased database as compared to previously published

(c) BI-RADS I-5 (d) BI-RADS III-2

Fig. 7. Extracting patches of fixed size.



(a) Normal view

(b) Chain code overlay

(c) Extracted patch

Fig. 6. View options from the CBIR result browser

work in terms of both, the number of classes and the number
of samples. Handling different sample sizes per class and
extracting patches from those images in the database, which
are associated with more that one annotation, will further
increase the number of patches for even more comprehensive
experiments. Then, however, overlaps may occur and must be
handled, as well as linear dependencies, accordingly.

Further test have been performed using 20 classes, where –
supported by the ground truth that we have established in the
database – the type of lesion is differentiated between calci-
fications and masses. Since both patterns differ visually, one
may expect an improvement that might be able to compensate
the performance loss due to more classes. However, the SVM
library in use is forcing an equal class distribution, which
further reduces the data to a total of 900 images; 45 images are
in the smallest of the 20 classes. Hence, the limitation of equal-
sized classes must be overcome before further experiment
become generalizable.

VI. CONCLUSION

In this study, a CBIR system was presented that uses breast
density together with the existence of a breast lesion as pattern
for image retrieval. We have continued comprehensive system
evaluation based on a significantly enlarged database of, so
far, 3,375 images of 12 classes. This work may contribute to
CBIR-CAD of mammographies, providing a system able to aid
radiologists in their diagnosis or a system that is useful as pre-
processing stage for computer-aided systems for breast lesions
classification. Future work will include the characterization
of breast lesions individually, through morphological features.
Also, combining CC and MLO views for classification is
expected to increase the system’s reliability. We also plan to
conduct experiments with even more classes of pathology,
e.g., separating calcification from masses. Nonetheless, the

precision obtained (> 80%) already indicates that CADx has
the potential to significantly reduce the number of unnecessary
breast biopsies in clinical practice.
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