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Detection of Leukocytes in Contact with the Vessel
Wall from In Vivo Microscope Recordings Using a

Neural Network
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Abstract—Leukocytes play an important role in the host
defense as they may travel from the blood stream into the tissue
in reacting to inflammatory stimuli. The leukocyte-vessel wall
interactions are studied in post capillary vessels by intravital video
microscopy during in vivo animal experiments. Sequences of video
images are obtained and digitized with a frame grabber. A method
for automatic detection and characterization of leukocytes in the
video images is developed. Individual leukocytes are detected using
a neural network that is trained with synthetic leukocyte images
generated using a novel stochastic model. This model makes it
feasible to generate images of leukocytes with different shapes
and sizes under various lighting conditions. Experiments indicate
that neural networks trained with the synthetic leukocyte images
perform better than networks trained with images of manually
detected leukocytes. The best performing neural network trained
with synthetic leukocyte images resulted in an 18% larger area
under the ROC curve than the best performing neural network
trained with manually detected leukocytes.

Index Terms—Leukocyte detection, microcirculation, model-
based image processing, nonlinear filtering, object recognition,
shape characterization, stochastic model.

I. INTRODUCTION

L EUKOCYTES (white blood cells) play an important role
in the host defense. In reacting to inflammatory stimuli,

leukocytes may travel from the blood stream into the tissue. Ini-
tially, leukocytes marginate and roll along the wall of venules
with a low velocity as compared to the surrounding erythrocytes
(red blood cells). The leukocyte-vessel wall interactions can be
studied by intravital microscopy duringin vivo animal experi-
ments [1].

It is our objective to develop an approach for detection and
tracking of individual leukocytes in sequences of video images
from in vivo microcirculation experiments. Our first goal is to
automatically detect leukocytes in microscopic video sequences
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and characterize their size and shape. This goal is not fulfilled
by existing approaches for offline analysis of microcirculation
images which were developed specifically for automatically es-
timating the velocity of moving leukocytes [2] or erythrocytes
[3]–[5]. As none of these approaches determines the exact posi-
tion of the blood cells in each image, the size and shape of each
cell cannot be characterized precisely.

In [6], several approaches for object recognition were com-
pared. One type of approaches is based on linear [7] or non-
linear filtering by convolution [8], another type of approaches
on feature-based classifiers [9], [10]. Contour-based approaches
(snakes [11]–[13], point distribution models [14] and the Hough
transform [7]) constitute a third category. Only methods based
on filtering or on recognition by query [15], [16] use the com-
plete intensity distribution of the convolution window. So we
decided to train a statistical classifier to detect the leukocytes
by convolution.

Several statistical classifiers could be trained to recognize ob-
jects from the intensity distribution in a convolution window. As
stated in [10], a feed-forward neural network with one hidden
layer is a nonlinear classifier that is capable of fitting any dis-
criminant function when provided with a sufficient number of
hidden nodes [17]–[19]. It has, furthermore, been proven that
training a feed-forward neural network with a sufficient number
of representative learning cases results in a Bayes-optimal non-
linear filter [8], [20]. So we develop a neural-network-based ap-
proach for detection of leukocytes, which obtains as input the
intensities of the pixels of a quadratic window. The weights of
the network need to be trained with a statistically representative
training set to distinguish leukocytes from the heterogeneous
background in the blood vessel mainly consisting of rapidly
moving erythrocytes. For this purpose, we develop a stochastic
model of the intensity distribution of a leukocyte. By varying the
model parameters simultaneously, we are able to generate syn-
thetic images of leukocytes with a realistic diversity in cell size,
shape, membrane contrast, and inner and outer texture. These
images are used to compose a training set for the neural net-
work.

The paper is organized as follows. First, we describe the
physiological background that motivates the automatic de-
tection of leukocytes. The visual appearance of leukocytes
in our image material (their shape, contrast, and texture) is
subsequently analyzed in detail. The results from this analysis
are used to build a stochastic model for generation of synthetic
leukocyte images. Experiments are conducted to investigate
whether feed-forward neural networks can be trained to detect
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Fig. 1. (a) Overview of the several steps, margination, rolling, adhesion,
diapedesis, and emigration, from free flowing leukocyte to migration into
inflamed tissue. (b) Video image obtained from anin vivo experiment in a
rabbit. It shows a post capillary venule in a prepared mesentery. (c) A typical
interacting leukocyte. (d) A (seldomly observed) interacting leukocyte with a
banana shape.

leukocytes in microcirculation images. The performance of
the neural networks trained with real and artificially generated
leukocyte images is compared.

II. A NALYSIS OF LEUKOCYTE IMAGES

A. Physiological Background

In case of inflammation or as a reaction to mechanical trauma,
leukocytes tend to migrate into the surrounding tissue. This
process consists of several consecutive steps [21] [Fig. 1(a)]:
margination toward the vessel wall, weak interaction with the
endothelium (rolling), strong activation and adhesion, which is
eventually followed by diapedesis where the leukocytes pass
the interstice between two neighboring endothelial cells that
concomitantly contract. In our research, especially the rolling
step is studied [Fig. 1(c) shows a magnification of a typical
leukocyte that interacts with the vessel wall]. Leukocytes roll
with a relatively slow velocity along the vessel wall section.

During their interaction with the vessel wall, the shape of the
leukocytes changes. The forces exerted on a cell, the degree of
adhesion and the degree of activation of the endothelium deter-
mine in concert the ellipticity and rotational speed of individual
leukocytes as well as the number of leukocytes concomitantly
sticking to the venule wall.

Venules within the mesentery of rabbits and rats [see
Fig. 1(b)] were visualized with a Leitz intravital microscope,
adapted for telescopic imaging [22] using a Leitz water-im-
mersion objective (SW25, numerical aperture 0.60). The
mid plane of the vessel—where the diameter is maximal—is
kept in focus during the experiment. Transillumination was
performed with a tungsten lamp. Final magnification at the
front plane of the camera was52. Images were recorded on

VCR and grabbed with a frame grabber from data translation
at a frequency of 25 Hz. The images were separated into fields
(odd and even video lines which entail a sampling frequency of
50 Hz) and blurred with an elliptic Gaussian kernel ( ,

[23]). The field images were then subsampled with
a factor 2 in the horizontal direction such that the horizontal
and vertical scales become identical.

Before a realistic model of the intensity distribution of a
leukocyte can be built, it is necessary to analyze the appearance
of leukocytes in our video image sequences. A leukocyte is
enveloped by a cell membrane which appears as a band darker
than both the cell cytoplasm and the surroundings of the cell.
This so-called envelope band has the following features:

1) its circumference in pixels;
2) its round or elliptic shape;
3) the texture of the envelope band.
The cytoplasm of a leukocyte is characterized by a texture

with a frequency spectrum that deviates considerably from that
of the surrounding (fast-moving) erythrocytes, especially along
the direction of flow where the fast erythrocyte motion caused
by the blood stream entails a spectrum prevailed by low fre-
quencies. Finally, the average intensity of the cytoplasm texture
deviates from the average intensity of the erythrocytes that sur-
round the leukocytes in the blood vessel.

B. Elliptic Contour

In the image sequences, the membrane of most adhering
leukocytes has an elliptic shape so we choose the ellipse as the
basic model of the contour of a leukocyte. The coordinates of
an ellipse1 are defined implicitly by

(1)

with a diagonal matrix containing the two nonzero diagonal
elements and . The length (in pixels) of the long and short
axes of the ellipse is given by and . Rolling of the leuko-
cyte is modeled by a rotation of the ellipse by the angle, which
is obtained by multiplying with the orthonormal rotation ma-
trix

(2)

This yields with . When the coordi-
nates specify the centroid of the leukocyte, one
obtains the general ellipse equation

(3)

which we use to characterize the contour of a leukocyte. Equa-
tion (3) can be rewritten as

(4)

1Henceforward,c denotes a variable,f(�) a function,ccc a vector,C the Fourier
transform ofccc, CCC a matrix,CCC the Fourier transform of the matrixCCC and the
complex conjugate ofCCC . The notationSSS(j) denotes matrixj in a sample, the
superscript the vector or matrix transpose.
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Fig. 2. The ellipse model consists of parameters specifying the length of the
long (� ) and short axes (� ), the rotation angle (�) of the ellipse, and its
center (x ; y ).

with

(5)

Fig. 2 illustrates the parameters in the ellipse equation.
Define theellipticity of the leukocyte

(6)

which specifies the relationship between the length of the long
and short axes for a circle). The size of a leukocyte is
defined by

(7)

specifies the parametric coordinates along the
ellipse as a function of the angle, with the para-
metric variable.

C. Leukocyte Dimensions

To analyze the variation in size and ellipticity of leukocytes
appearing in our image material, in total 120 leukocytes were
manually detected in different images selected at random from
the five grabbed video sequences. Around each leukocyte, a
quadratic (30 30) window was extracted and its average in-
tensity subtracted from the 900 pixel intensities. As the image
gradient is large where the (bright) cytoplasm and the (dark)
envelope meet, a SOBEL (gradient) operator [24] was applied
on the extracted leukocyte image. From the gradient image, we
obtained the coordinates of thepixels that exceeded an auto-
matically chosen threshold (see below). These coordinates were
represented by the matrix

(8)

Each row in specifies the coordinates of a pixel on the enve-
lope of a leukocyte. For each leukocyte, a least mean square fit
of its three parameters,, , and , is computed from

(9)

Fig. 3. The average intensity along the concentric ellipses is darkest around
the membrane band,� = 0. The bars indicate the standard derivation measured
among the 120 leukocytes.

with the vector having the length . The
threshold was chosen such that the average residual variation
per coordinate pair

error (10)

was minimal, s.t. . denotes the Euclidean vector norm.
Note thaterror when all coordinate pairs in lie on the
ellipse specified by the parameters, and . The eigenvalues

of the matrix

(11)

specify the dimensions of the leukocyte and the eigenvectors
its rotation angle , and .

Let denote the index of a leukocyte in the
sample. The parameters of each of the 120 manually detected
leukocytes were computed as sketched above with and

the estimated length of the long and short axes, and
the rotation angle.

D. Envelope Band

To obtain statistical information of the intensity distribution
of the envelope that separates a leukocyte from the surrounding
blood, we investigated the intensity distribution of four cross
sections of the cell membrane in each of the 120 leukocyte
images. The average intensity was computed along the seven
concentric, adjacent ellipses that jointly constitute the envelope
band of each leukocyte. The size of each of these seven ellipses
is given by the parameter and the parameters of the fitted
ellipse, and , with

. The intensity of the pixels is computed
along the four cross sections parallel to theand axes in each
image. Fig. 3 depicts the average intensity of each elliptic con-
tour. The figure shows an initial decrease in intensity followed
by a steep increase as a function of the distance in pixels to the
ellipse with the minimal average intensity .
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Fig. 4. Log magnitude spectrum of the 1-D autocorrelation function describing
the intensity variation along the ellipse with the darkest average intensity in the
membrane band,� = 0.

The intensity along the envelope band varies when, e.g., a
leukocyte sticks to the vessel wall or is occluded by erythro-
cytes. The stochastic model we build should also take into ac-
count this intensity variation along the envelope band. We an-
alyzed the intensity distribution of the ellipse with the lowest
average intensity (intersecting the point in Fig. 3) as a
function of the angle [see (7)]. Let the vector denote the in-
tensities as a function of . We computed
the following statistics: the mean and variance of the
envelope distribution of leukocyteas well as the autocorrela-
tion function among the observations contained in . This
function characterizes correlations between neighboring pixels
lying on the contour of the leukocyte.

First, the average gray value is subtracted from .
Subsequently, the discrete Fourier transform is computed,

. Multiplication with its complex conjugate
results in the one-dimensional (1-D) autocorrelation function

(12)

This function characterizes the correlation between pixels with
a radial distance of , , , , with .

To obtain parameters that characterize the envelope
intensity distribution of the whole sample of leukocyte im-
ages, we computed the average autocorrelation function

. Fig. 4 shows that the magni-
tude of the Fourier transform of the autocorrelation function
is prevailed by lower frequencies.

E. Cytoplasm Texture

Most of the pixels in a leukocyte image are part of the cy-
toplasm texture. To characterize this texture, we computed the
frequency spectra from the 120 leukocyte images as follows.
In each leukocyte image, we estimated the mean and
variance of the pixels inside the ellipse with the darkest
average intensity. The mean was subtracted from those
pixels, which were added to an image with the dimensions
32 32 that contained only zeros. The resulting image

Fig. 5. Log magnitude spectrum of the 2-D autocorrelation function
describing the frequency components of the cytoplasm texture. The
autocorrelation function was computed from 120 leukocyte images.

was rotated such that the long axis of the ellipse was parallel to
the -axis. This image was Fourier transformed and multiplied
with its complex conjugate

(13)

with denoting the two-dimensional (2-D) discrete Fourier
transform. The average autocorrelation function of the cyto-
plasm texture was computed from the 120 analyzed images,
see Fig. 5.

F. Background Texture

An analysis of the frequency spectrum of the background
(vessel) texture was also performed with 30 images that had
been extracted from positions in the grabbed video images that
contained no leukocytes. We computed the mean and
variance of each background image as well as the au-
tocorrelation function as explained in the previous subsection.
The spectrum of the background texture is prevailed by low fre-
quencies, especially along the direction of flow.

G. Population Parameters

The 120 extracted leukocytes vary in size, brightness, and
contrast, which we characterized by the following statistical pa-
rameters:

Shape and envelope distribution:

1) The average and variance ellipticity, the average
and variance sizeamong the 120 leukocytes.

2) The autocorrelation function of the envelope distribu-
tion. The average and variance of the envelope
distributionmean . The mean and variance

of the envelope distributionvariance .
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Cytoplasm texture:

3) The autocorrelation function of the cytoplasm texture.
The average and variance of themeanintensity

. The average and variance of thevari-

anceof the cytoplasm texture intensity .
Background texture:

4) The average and variance of themeanintensity
of the background texture.

Finally, we computed also the covariance matrixof the four
parameters , , , and among the 120 leuko-
cytes.

III. STOCHASTIC MODEL OF LEUKOCYTES

In this section, we compose a stochastic model of the 2-D
intensity distribution of a leukocyte based on the elliptic con-
tour model and the other statistics presented in the previous sec-
tion. The stochastic model characterizes the intensity distribu-
tion along the cross section of the envelope band, the intensity
distribution along the envelope band as well as the inner and
outer textures of a leukocyte image. Based on this model, syn-
thetic images of leukocytes are generated which will be used to
train neural networks to detect these cells in the blood vessel.

A. Envelope Function

We define the so-calledenvelope function, which specifies
the average intensity of a cross section of the membrane band
(Fig. 3), as a sum of two hyperbolic tangent functions

(14)

The parameters and , sign sign , determine the
asymptotic intensities inside as well as out-
side the leukocyte (these average intensities
depend on the particular light conditions—the contrast—in the
image material at hand). The minimal value taken by the enve-
lope function in between the two asymptotes depends on
the angle of the vector connecting the center of the leukocyte

[see (7)] to a particular point on the
contour of the leukocyte

(15)

We use theenvelope distribution defined in (12) to specify
the intensity variation along the darkest concentric ellipse as a
function of . For a given angle, the function returns
the value that satisfies the equation

argmin (16)

with the vector being the inverse Fourier transform of the
average 1-D autocorrelation function multiplied with the
vector , , with denoting the element-by-el-
ement product. The vector is a stochastic realization of a
convolution of the average autocorrelation functionwith

(Fourier transformed) white noise , being a vector
with numbers drawn at random from the standard
normal distribution. The stochastic componentensures that
synthetic leukocytes have different envelope distributions
but all with a frequency spectrum resembling that of real
leukocyte images. The average and variance ofare chosen at
random from the normal distributions and

.

The envelope function needs to be transformed into
cartesian coordinates . We combine the ellipse model (4)
with the envelope function (14) into

(17)

with

(18)

The envelope function resembles the mexican hat
function, though its depth as specified by depends
on . Fig. 6(a) shows the resulting 2-D intensity distribution
obtained by combining the envelope function with a membrane
distribution chosen at random.

The dimensions of the leukocyte, and , together with the
average intensities of the cytoplasm and background textures,

and , are drawn at random from the normal distri-
bution

(19)

with the mean and the covariance
matrix.

B. Cytoplasm and Background Textures

Artificial cytoplasm texture is generated by convolving
Gaussian noise with the 2-D average autocorrelation function

[see (13)]

(20)

with , an image with rows and columns, ,
, containing (uncorrelated) numbers drawn at random

from the standard normal distribution. Fig. 6(b) exemplifies ar-
tificial leukocyte texture that is computed this way.

Before adding the texture [Fig. 6(b)] to the artificial leuko-
cyte image depicted in Fig. 6(a), its pixel intensities are scaled
by the randomly chosen variance
thereby ensuring that the texture intensities obtain a realistic
dispersion. Cytoplasm texture is added to pixels for
which

(21)
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Fig. 6. This figure illustrates how an artificial leukocyte image is modeled from its constituent parts. (a) The envelope function and illustrates the effect of the
membrane distribution. (b) The artificially generated cytoplasm texture of the cell image. (c) The background texture that is extracted from our image material. The
two white tracks in the right-hand side indicate moving erythrocytes. (d) and (e) The leukocyte image generated by combining the information in (a), (b), and (c).

Because of the low frequency spectrum of the background tex-
ture in our image material, background texturesare drawn at
random from the texture database (grabbed video images) ro-
tated with a randomly chosen angle and added to
pixels in the leukocyte image for which

(22)

see Fig. 6(c) and (d).

C. Generating a Synthetic Leukocyte Image

Artificial images of leukocytes are generated with the sto-
chastic model based on (17). The leukocyte model encompasses
the following components.

• The dimensions of the leukocyte , and its rotation
angle . The coordinates of the leukocyte centerwere
always set to the central pixel of the image.

• The randomly chosen average intensities and
that specify the contrast of the leukocyte images.
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Fig. 7. (a)–(c) several examples of synthetic leukocyte images generated
with our stochastic model, (d)–(h) leukocytes detected by both the best neural
networks trained with synthetic and trained with real leukocyte images, (i)–(k)
leukocytes only detected by the best “synthetic” neural network (leukocyte
(i) is located centrally in the vessel), (l)–(m) leukocytes only detected by the
best “real” neural network and (n)–(p) leukocytes that could not be detected
by these two neural networks.

• The envelope distribution given by the autocorrela-
tion function and its randomly chosen mean

and variance .

• The cytoplasm and background textures,and , the
randomly chosen variance of the cytoplasm texture,
as well as the direction of flow, .

Fig. 6 shows the components of a synthetic leukocyte image and
Fig. 7(a)–(c) examples of synthetic leukocyte images.

IV. EXPERIMENTS

We performed two experiments. In the first experiment, the
required size of the training set is determined. In the second
experiment, the detection performance is compared between
neural networks trained with real leukocyte images and trained
with leukocyte images generated using the stochastic model.

A. Training Neural Networks for Leukocyte Detection

We first investigated whether feed-forward neural networks
with one hidden layer could be trained to recognize white blood
cells in the microcirculation images. To reduce the dimension-
ality of the input window with a factor of four, all video im-
ages were blurred with a circular symmetric Gaussian kernel
( ) and subsampled with a factor of two resulting in im-
ages with the size 96 192 pixels. Neural networks were subse-
quently trained to classify subimages (1313 pixels) as leuko-
cyte or background. A network should result in a high activa-
tion when the window is positioned on a leukocyte. Otherwise,
the neural network should result in a small output value. The
training set consisted of subimages containing either a leuko-
cyte or background.

It has been shown that the fractions of patterns of the classes
one wants to discern (background and leukocyte) should mimic
the prior probabilities of observing the objects belonging to
these classes in the image material [25]. When we assume that
a leukocyte may be recognized when the window center is posi-
tioned within 1 pixel from the centroid of the leukocyte, a con-
volution operation will maximally result in five leukocyte de-
tections per white blood cell. So all detections forming a group
of eight-connected pixels are considered as positive evidence

of one leukocyte. However, a single positive detection is con-
sidered sufficient positive evidence for a leukocyte. A normal
vessel, which constitutes our region of interest, covers about

of the image, i.e., 9000 pixels. Assuming further that a
video image contains 10–20 leukocytes, five positive detections
per leukocyte corresponds with a prior probability of about 1%,

leukocyte .
Three different training sets were composed by drawing

at random 2000, 5000, and 9000 subimages, 1313 pixels,
from the background available in our image database. The
background images were solely taken from areas inside the
vessel that contain no leukocytes; tissue outside the vessel was
omitted from the training set. Then 20, 50, and 90 manually
detected leukocyte images were added to the three training
sets. To rule out the influence of the brightness of the leukocyte
subimage, the average intensity of each subimage was set to
zero. Feed-forward neural networks with different topologies
were trained, , , where is
the number of hidden nodes (networks with fewer than seven
hidden nodes frequently ended up in poor local minima). The
two required outputs were ( ) for leukocytes
and ( ) when the training image contained
background. The neural networks were trained with back-prop-
agation [26], offline learning for maximally 3000 cycles,
learning rate 0.0001 and momentum 0.5.

The experiment indicated that solely neural networks with the
largest training set consisting of 9000 images generalized well
on test images. A convolution with a video image containing 16
leukocytes followed by thresholding resulted in 10–15 true and
1–5 false detections depending on the chosen threshold value,

. Reducing the fraction of leukocyte images in
the training sets to less than 1% had the effect that the neural
networks classified the whole vessel area as background.

B. Comparison of Neural Networks Trained with Artificial
and Real Leukocyte Images

In this experiment, neural networks with the topologies
, , were trained with two training sets

both consisting of 90 leukocyte and 9000 background images. In
the first training set, the leukocyte images were generated with
our stochastic model whereas the second training set contained
90 manually detected leukocyte images instead. In both training
sets, the same 9000 background images were used as in the first
experiment.

The performance of the neural networks was compared by
computing receiver operating characteristic (ROC) curves [27].
A ROC curve depicts the fraction of true versus false positive
detections for different values of a varying threshold. As perfor-
mance measure, we computed the area under each ROC curve.
This measure is independent of a particularly chosen threshold
value.

The performance of the trained neural networks was tested on
three microcirculation images, each from a different sequence,
which had not been used to build the training set. Each neural
network was used to detect leukocytes in the three test images.
A threshold value was applied on the output of the neural net-
work. Initially, the threshold was set so that as many as possible
positive detections of leukocytes were obtained in the image
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Fig. 8. ROC curves, test image 1, networks trained with artificial leukocyte images.

Fig. 9. ROC curves, test image 1, networks trained with real leukocyte images.

without making any false positive detections. Then the threshold
was decreased step by step, each time allowing one more de-

tection. Fig. 8 shows the resulting ROC curves of six different
neural networks trained with artificially generated leukocyte im-
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TABLE I
ROC INTEGRALS FOREACH OF THE 12 NEURAL NETWORKSCOMPUTED USING THE THREE TEST IMAGES

ages. Fig. 9 depicts similar ROC curves for the networks trained
with images of real leukocytes. Table I shows the areas under the
ROC curves for the 12 neural networks (six trained with syn-
thetic and six trained with real leukocyte images) applied on the
three different test images.

The ROC curves clearly indicate that the neural networks
trained with synthetic leukocyte images performed better than
the networks trained with real leukocyte images. The networks
with nine hidden nodes trained with the training set that con-
tained the 90 artificially generated leukocyte images resulted in
the best performance. The average area under the ROC curve
is 0.90. The neural network with 11 hidden nodes performed
best among those trained with real leukocyte images; its average
ROC area is 0.71.

V. DISCUSSION

The neural networks trained with artificially generated leuko-
cyte images perform better than those trained with real images.
The neural networks with 9 hidden nodes trained with synthetic
leukocyte images perform best on the test images, it has an 18%
larger area under the ROC curve than the best network trained
with real leukocyte images. Even leukocytes that interact with
a part of the wall that is currently out of focus can be detected
with the best neural networks, see Fig. 7(i) and (j).

The approach presented here can be useful for automatic de-
tection and later tracking of leukocytes in microcirculation im-
ages. An overall indicator of leukocyte-endothelium interac-
tions that can be computed automatically is the total number
of interacting leukocytes per 100-m vessel length. Estimates
of the (change in) ellipticity and size of detected leukocytes
can be used to characterize their deformation during rolling, ad-
hesion and diapedesis. This deformation is closely related to the
forces exerted on the leukocyte. However, a robust estimation of
the geometric parametersand relies on a good thresholding
of the SOBEL (gradient) image. In the future, more attention
should be paid to improving this thresholding procedure.

In the future, the approach can be incorporated in a tracking
algorithm for estimation of the rolling velocity of individual
leukocytes. A pilot experiment has indicated that the estimated
ellipticity and size of a leukocyte are features that lend them-

selves for determining whether leukocytes in successive images
correspond. However, more information about the local direc-
tion of flow and the absolute leukocyte positions in successive
images need to be taken into account. Satoet al. [2] present an
interesting solution to the tracking problem based on Hopfield
networks for coupling partial leukocyte traces.

VI. CONCLUSION

We presented an approach for detection and characterization
of leukocytes in video images obtained fromin vivo microcir-
culation experiments. Neural networks were trained to detect
leukocytes using a training set consisting of images of leuko-
cytes and of the background consisting of fast-moving erythro-
cytes in a venule. Two training sets were used. One consisted of
a mixture of samples of background and leukocyte images, both
extracted from different video images. In the second training set,
we used synthetic leukocyte images which were generated using
a novel stochastic model of the intensity distribution of a leuko-
cyte. The model contains the following three components:

1) a membrane (envelope band) with an elliptic shape;
2) a cytoplasm texture;
3) a background texture.

The stochastic leukocyte model contains 14 parameters which
we estimated from a sample consisting of 120 manually
extracted leukocyte images. The experiments indicate that the
neural networks trained with artificially generated leukocyte
images obtained a better performance than networks trained
with a sample of leukocyte images extracted from our image
material. This principle for generation of synthetic samples
may be useful for training neural networks for object detection
in other applications.

Our detection approach is interesting for automatically pro-
cessing video images from microcirculation experiments. Be-
sides aiding automatic computation of the number of interacting
leukocytes per unit vessel length, the deformation of leukocytes
during rolling, adhesion or diapedesis may be quantified using
geometric parameters.

A subject for future research is to incorporate our detection
algorithm in an approach for tracking of individual leukocytes.
Thereby, special attention should be paid to the development of
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a method for automatically thresholding the output image from
the convolution neural network in order to recognize as many
leukocytes as possible but omitting most false positive detec-
tions. Another issue is how to combine the geometric informa-
tion (size and ellipticity) of each leukocyte with information on
the direction of flow in such a tracking approach.
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