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ABSTRACT
Medical imaging modalities often provide image material in more than two dimensions. However, the analysis
of voxel data sets or image sequences is usually performed using only two—dimensional methods. Furthermore,
four—dimensional medical image material (sequences of stacks of images) is available already for clinical diagnoses.
Contrarily, four—dimensional image processing methods are almost unknown. We present an active contour model
based on balloon models that allows a coherent segmentation of image material of any desired dimension. Our model
is based on linear finite elements and combines a shape representation with an iterative segmentation algorithm.
Additionally, we present a novel definition for the computation of external influences to deform the model. The
appearance of relevant edges in the image is defined by image potentials and a filter kernel function. The filter kernel
is applied with respect to the location and orientation of finite elements. The model moves under the influence
of internal and external forces and avoids collisions of finite elements in this movement. Exemplarily, we present
segmentation results in 2D (radiographs), 3D (video sequence of the mouth), and 4D (synthetic image material) and
compare our results with propagation methods. The new formalism for external influences allows the model to act
on greylevel as well as color images without pre—filtering.
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1. INTRODUCTION
Spatial and temporal information is nowadays available from many imaging modalities such as Video, CT, MR, and
Ultrasound. A quantification of temporal or spatial data by hand can not be used in clinical routine as this is too
time—consuming even for experienced observers.1 For two—dimensional images, active contour models have proven to
yield robust segmentation results.2 The classic approach of KASS ET AL.3 is widely used for medical image analysis
and is still topic of current improvements and research.4 Nevertheless, the development of new medical imaging
systems exceeds the development of image analysis methods, especially for image material of higher dimensions. So far
models to quantify image material of higher dimensions exist only for highly specialized applications5 and are usually
bounded to three dimensions. The spatial and temporal extension of image space gives need for new developments.
When a tracking of objects and their movement in image sequences is needed, often the image sequence is segmented
using propagation methods.6 It is well recognized that this propagation of two—dimensional contours in an image
sequence might result in fatal distractions of the contour at few ambiguous images in the sequence.7 This problem
is e.g. tackled using motion estimation.8 For spatial data, the propagation of segmentation results through slices is
still used9 even though three-dimensional models have been published years ago.1° More and more often, a medical
diagnosis is based on image material of up to four—dimensions." So far, no coherent model exists to represent and
segment spatial objects that additionally move and change shape over a period of time under observation.

2. METHODS
Our model is a generalization of the well known balloon model.'° It uses linear finite elements and mechanical
influences to perform an iterative segmentation process in image material of d dimensions. The segmentation result
is a geometrical representation of objects contained in image space can be used for many different tasks in the
quantification of medical image data.
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2.1. Image Space
To allow a formulation of the model which is independent of the dimension, first we define an image as a discrete,
convex subset of the d—dimensional space:

(1)

So far, we assume a Cartesian image space with equally—spaced axes, i.e. square picture elements (pixels) and
cubic volume elements (voxels) . We denominate four—dimensional image elements as stixels (spatio—temporal image
elements) , but will use the term image element for all elements of I irrespective of its dimension d.

The image space I is mapped onto a space of image values W:

WCIRm,mE{1,2...}
.

(2)

The image function f assigns an at least one—dimensional image value for each image element of I:

J:ffEI—EW (3)

The dimension m of the image values is not limited in our model. E.g., it is m = 1 for grey scale images and m = 3
for color images. Medical imaging systems offer an increasing amount of multi—modal images with m > 1.

2.2. Shape Representation
An object represented by the model is a subset of I. The shape representation is the surface of this object with d —1

degrees of freedom. For its definition, we use a set V of discrete vertices v2 and a set E of finite elements e3 which
are also called edge elements or edgels.'° All vertices v are elements of the image space I, they determine a position
in I with their vector v.

V = {v2}, v I (4)

The finite elements or edgels are affine simplices K of dimension d —1 . Each finite element e3 provides the connection
and orientation for d vertices Vj,1...d that support this edgel:

E = {e}, e = K(v,i, . . . ,Vj,d), Vj,k E V (5)

The general affine simplex K of dimension n is defined as:

K(vo,v1,...,v) =
{Aoo

+ ...+AJ 0 � Ak < 1, Ak = i} (6)

For each edge! e3 , the unity normal vector nj pointing outward and its size e are available. Further, we define
1_Tx (vi) as a set of vertices which lay no more that edges afar of v . Here an edge is the straight connection
between two vertices v and Vk which share at least one edgel e3 . ue(vi) is defined as the set of all edgels e3 which
are supported by v . The shape representation yields the consistent surface of a coherent subset of I if the following
necessary requirements are met:

. Every vertex v supports at least d edgels e3.

. Every edgel e3 has exactly d different adjacent edgels. Two edgels are adjacent if they share d — 1 vertices.

. No edgels e3 and ek ,j k exist that share d vertices.

• The sequence v,1. ..d of vertices, which defines the orientation of e, complies with the orientation of the shape's
surface.

• The edgels e2 do not intersect with each other, that is {e3 fl ek} = {} V j k.
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. A path can be found to reach each edgel e3 from every other edgel ek by stepping over adjacent edgels.

So far, we have not proved the sufficiency of these requirements. Note that the last requirement leads to the
representation of one single coherent object. If this requirement is not enforced, it becomes possible for the model to
represent more than one object contained in I. Instances of this generalized model for 2,3, and 4 dimensions result
in the following shape representations:

. In image space of two dimensions x and y, an object is represented by a polygonal shape.

. For spatial image data (d = 3), the finite element model forms a triangulated surface.

. A sequence of 2D images also results in an image space with d = 3, the image space is accessed using the
coordinates x, y and t. The model consists of triangular finite elements where each vertex defines a position
(x, y) in the image plane and its time of occurrence t. Each finite element represents a line segment of a
polygonal shape in different images of the sequence. This results in segments which are scaled and translated
over a short period of time. The line segment at the time t is obtained when the edgel is cut with a plane
defined by t = t.

S An image space of four dimensions comprises a spatial object and its movement and change of shape in time.
The model results in a set E of tetrahedrons that connect four vertices which each define a position (x, y, z)in
space and a time of occurrence t. Each edgel represents a moving.facet of a triangulated object. Here, the cut
of an edgel with a hyper plane defined by t = t may result in one or two triangles, the triangles obtained by
cutting all edgels with that hyper plane result in the triangulated object at time t. The triangulated facets are
scaled and translated during the existence of each edgel e3 which is given by the minimal and maximal time
coordinate of the vertices Vj,k.

2.3. Mechanical Influences
Influences act on the model and result in movements towards the surface of objects contained in an image. A
mechanical formulation was used because forces allow a vectored definition of influences independent of the image's
dimension d. Different notations are used in literature to denote such influences. Internal12 or intrinsic'3 influences are
used to describe a preferenced shape of active contour models. The influences are used to control the reconstruction
of ambiguous parts of an image. They may also include tendencies of the contour to seek object surfaces. Significant
image information is used to attract or stabilize an active contour model at object boundaries. These external or
extrinsic influences are calculated from imae values iY W. In different models, these forces are either imposed
on edgels or vertices. In our model, forces Fe, that act on edgels are later transformed to their resulting forces
acting on the vertices as well, because only vertices define a position in the image space and can be moved. The
location of edgels is always defined by their supporting vertices.

2.3.1. Pressure
The mechanical formulation of a tendency to seek object boundaries is realized by an internal or external pressure
p that results in a pressure force F that acts on every edgel e3:

(7)

The pressure force is directed along the edgel's normal vector and proportional to the size Ie} of the edgel
and the chosen pressure p. Positive pressure results in a seek of the contour to the outward, negative pressure to a
tendency of the contour to shrink.
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Figure 1. External influences for a three—dimensional edgel e3 and one exemplary filter kernel k(h).

2.3.2. Image information
Most importantly, edges pick up image information. Edgels e3 are influenced by all image values that are read from
the image subset I . This subset is defined as a set of image elements in the vicinity of e3:

Ii = {E I = + h . Le E e, hmin � h � hmax} (8)

This set contains all image elements that are reached by adding the normal vector ft scaled in the range [hmjn ,hmaxl
to the image elements in the affine simplex of e3. In our model, the dimension dim(13) of the subset from which
external influences are read, is the dimension d of the image material itself.

For the computation of the external influences, for every component in the image values iY W, a corresponding
entry in the image potentials ii) is assigned. The image potentials are chosen to describe the appearance of
objects in different color channels. E.g., for m = 1, (w) is a scalar function for greylevels. For RGB color spaces
with i; = (W,Wg,wb)T , (r(Wr), 4)g(wg), 4b(Wb)) assigns individual potentials for the values in different color
channels. Furthermore, we use a filter kernel A(h) with entries for each dimension of the value space. This adaptable
filter kernel defines the strength and scale of gradients in the image at the border of objects of interest. So far, we
use nearest neighbor interpolation to map continuous positions into the discrete image space I. External influences
acting on an edgel e3 are defined with respect to k(h) and (tii). The absolute value of the external force Fee. the
unstandardized correlation of the image potentials arid the filter kernel (h) applied in direction of the normal
vector t:

i (h) (f(e+h)) (9)

Ee1 hhmiri

The image potentials are summed up and individually weighted by the filter kernel k(h) in respect to their distance
h to the edgel (Fig. 1). This force is always directed against the normal vector of each edgel. The choice of (h)
allows the model to find high gradients in the image as well as the occurrence of image potentials with a magnitude
that equals the pressure p. It can be interpreted as a directional adaptive filter of adaptable scale, the image is
always filtered normal to the direction of edgels. Therefore, our model works on the original image material with no
pre—filtering. In Figure 1 , external information is read from the three—dimensional image subset Ij of a triangular
edgel e3. The exemplary filter kernel of size 7 is the discrete approximation of the first order derivative of a Gaussian
function with a standard deviation of one pixel.
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2.3.3. Supporting vertices
The forces F and F. have to be transferred to the supporting vertices Vj,k . The pressure force 1 is equally
divided:

1= E (10)
e3EUe(V)

Every vertex v supports l/d of all pressure forces 1. in its vicinity. In contrast, the external force is divided to the
supporting vertices with respect to the position of image elements and their potentials. Vertices are more influenced
by image potentials from close image elements. Assuming that the position e of image elements of edgel e3 is
composed as

Xe ,, (11)

(compare Eq. (6)), the A1, in the range [0, 1] are near to 1 if Xe iS near to v,3 and decrease with increasing distance.
The external force ff. acting on vertices is computed as

(12)
e3EUe(v) ZeEej hhmin

Here 1 is the corresponding index of vertices in e3 so that v = v,3 . Eq. (12) is motivated to achieve an equilibrium
not only of forces but also of turning moments for all external influences and supporting forces P . The equilibrium
of turning moments was chosen because it enhances the property of finite element models to find segmentation results
independent of their sampling.2

2.3.4. Deformation force
Internal influences from deformation energies directly result in forces 1 on vertices . The deformation energy of a
flexural rigid body is proportional to its absolute 2nd order derivative. Therefore, the aim of the deformation force
is to reduce the models 2nd order derivative. This is achieved easily for the model with discrete vertices,

F=Uv(V.)I : (13)
J. i VkEU(V1)

if z = 1 . Then every vertex is pulled with adjustable strength to the average position of all vertices in its vicinity.
For L > 1, we use weights w in respect to the distance L.j,k to calculate the average position of UX(vj). Here 'i,k
is the number of straight edges between v and Vk.

Sd -. -.F. =
> w(ik) L1 w(,k) . (Vk — v2). (14)

VkEU(Vj) vkEU(v)

The decreasing sequence w(,k) : IN — JR is heuristically chosen. We use

A
(15)A + Zi k

with A E {1;3].
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2.4. Iterative Segmentation
The model detects structures in image space I with an iterative segmentation algorithm. During segmentation,
vertices move until they are in contact with significant edges whose appearance is coded in the filter kernel k(h). The
segmentation starts with an initial contour. This contour is either a seed for an inflating segmentation (p >0) or an
instance of the model that encloses the whole image space for a deflating process (p <0) . An initial seed contour is
a contour that represents the subset I defined as

i={aei (_)2�r} (16)

with small initial radii r8 and x laying in the center of an object of interest.
After the initialization of the contour, all forces P, acting on vertices are calculated. The vertices are then moved

under these influences . The forces are normalized so that the movement of the contour is independent of the size of
edgels. For this normalization, we define the supported size O for every vertex v.

oi= : IeI (17)
eU(v)

oi gives the average amount of image elements in the contour that have influence on P . For normalization of
the deformation force P , we use the sampling t, this is the average distance of vertices in the contour. All vertices
are moved proportional to the sum of forces:

(18)

This movement corresponds to the movement of objects under the influence of liquid friction with the coefficient /3.
The shift of vertices needs not to be whole—numbered. We therefore store the coordinates ilj as vectors of JR'
and limit this space with the bounds of I.

The movement of vertices changes their distance and therefore the size of finite elements. After each iterative
movement, the contour is resampled. This resampling regards all Cartesian distances Li,k of adjacent vertices v2 and
Vk.

. If the distance L2,k 5 above an upper bound Lmax, a new vertex Vi iS created at position -(v + vk). All edgels
that are supported by both, v and vk , are duplicated. In one set of duplicates, v is exchanged for Vi , in the
other set this exchange is done with Vk.

. If L,k 5 below a lower bound Lmjn, also a new vertex Vj is created at position -(v + vk). All edgels that
contain both, v and Vk , are deleted. For edgels that contain either v or Vk , this vertex is replaced by Vj.
Thereafter, v2 and Vk are deleted as well.

The resampling results in changes of the represented shape. These changes can be minimized if the order of
resampling operations is optimized and the new vertex vj is placed at a more appropriate position compared to the
center of v and Vk.14 So far, we heuristically set Lmax � Lmin � Lmax and estimate L = (Lmin + Lmax).

Every vertex keeps track of its own position during the previous iterations. If the Cartesian distance from the
actual position to one of the prior positions is below a minimum value Lf, the vertex is frozen. No forces are calculated
for frozen vertices, they remain at their current position. The segmentation process ends if all vertices are frozen or
if a maximum count of iterations is reached. The position of frozen vertices still contributes to the deformation force
F,'. This bounds the movements of adjacent active vertices and contributes to an implicit annealing process of the
contour, the activity of vertices decreases in the vicinity of already frozen vertices.
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2.5. Handling of Collisions
Following the movement and resampling of the contour, collisions of finite elements might occur A collision of finite
elements is detected if {e fl ej } { } V i k, that is if image elements are found that belong to the afhine siniphices
of two different edgels e and ej. For the two- dimensional instance of the model, this cut of two edgels can easily
be solved by exchanging the two vertices v,i arid Vk,1 . In higher diñiensions, the handling of collisions is more
complicated and requires the start of the following algorithm:

• First all finite elements that are involved in collisions are deleted. ilie resultiig (omitolir does not fulfill the
conditions for a consistent surface given in Sec. 2.2.

• Afterwards, vertices are deleted from the contour if they support no edgels.

• Then the cuts that exist in the inconsistent model arc extracted. The resulting cut objects are contours of
dimension d — 1 that are based on vertices in image space of dimension d. E.g., a cut object in a triangulated
surface is a non—planar polygon. For the four—dimensional model, tins polygon occurs at one point in tune,
changes shape and size and vanishes again. Such cut objects are found by tracking coherent inconsistencies in
the model. These inconsistencies are formed by d — 1 vertices that support only one edgel. Such vertices are
used to create an edgel in the cut object of dimension d — 1.

• Then all vertices are checked. If they support edgels in more than one cut object, the vertices as well as all
supported edgels are deleted. This constellation can not he solved by the following consistency operations.

• For every cut object, its size, the location of its center of gravity and an average normal vector are computed.

• If two cut objects approximately match in size, position and orientation, they are connected with new finite
elements to close both cuts.

• If no matching cut object is found, single objects are closed by the creation of a new vertex in its center of
gravity and the creation of new finite elements that connect this new vertex with all vertices in time cut object.

After this operation, one or more coherent subsets of I are represented by the model. In (hepeli(lency of the
quantification task, supernumerary objects are either accepted or deleted.

3. RESULTS
The model has been implemented in C++ on different UNIX- based platforms. Time unplementation consists of
polymorphistic objects which create an adequate instance of the rriodcl according to the presiit immiage material. We
present examples for instances of the model in 2, 3, arid 4 dimensions.
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3.1. 2D—Instance of the Model
\Ve use the model to detect the contour of body parts in radiographs. The shape of the (letecte(l contour is used as
one method to categorize radiographs which is necessary for content —based image retrieval in medical applications. 5
To detect a contour in radiographs, we initialize the model at the border of the ililage and apply negative pressure
(p = —2). An exemplary radiograph of a right hand (Fig. 2) is 357 x 5-10 pixel in size and has 256 gray values. The
contour is sanipled with Lrnax 20. L11 = 8. \Ve set the unage potential proportional to the image values u using
(w) = 0.0138w. The filter kernel is located only on the inside of the contour. Its size is —3. = —-

and its values are set to k([—3. —2, —11) = [, 1, . The strength of the deformation forces is set to sd = 0.2. The
segmentation result, is found after 320 Iterations i . These parameters can he applied on a wide variety of skeletal
radiograplis and were set using an automated method.0'

3.2. 3D—Instance of the Model
As a segmentation result in 3D, we present the tracking of a hiwnan lip in an image sequence acquired with a
CCD camera. The images where stacked to create a three—dimensional image space. The green channel of the 11GB
image sequence was used for the detection. Time images are 274 x 205 pixel in size, time exemplary short sequence
consists of 19 images and shows the pronunciation of the syllable 'ha. The whole stud consists of many sequences
that show time pronunciation of different selected syllables and is used for phoniatric diagnoses. A three -dimensional
instance of the mcdel segniented the outer contour of the lips in this image stack. Whereas prior methods, which
used propagation methods, often drifted away in later images in the stack, the three dimensional model yields a
coherent segmentation result (Fig. 3). Note that the reduction of the 2" oder derivative of the contour ahmg the
t axis corresponds to a local motion estimation of the tracked object.

To obtain segmentation results for every image in the sequence. the resulting three dimensional object. was cut
into slices along the t—axis. The resulting two—dimensional contours where superimposed into the original images
(Fig. 4).
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t=3

t=9

t=15

Figure 4. Result, of the segmentation for planes in the image se(luence.

Not all sequences acquired within this study can be sufficiently segmented using only the green channel. We will
therefore extend the detection method to a three—dimensional color space.

3.3. 4D—Instance of the Model
We still gain experiences with the four-dimensional model. As an example, we present the segmentation result of
a synthetic dataset. This dataset is an image space I C IN4 that consists of 32 successive volume datasets of the
size 32 x 32 x 32 voxel. Each voxel set contains a binary image of a sequence in which a cube is morphed into a
sphere. The initialization of the model was a affine 4 simplex consisting of five vertices and five edgels in the center
of this four (limensional image space. Then the model performed 25 segmentation iterations with a sampling of
Lmax = 10, L11- = 3. The resulting contour consists of 644 vertices in JR4 which are connected by 3559 edgels. This
contour was then cut with different hyper planes t = t (Fig. 5). Each edgel results in 0, 1, or 2 triangular edgels in
JR3 all these edgels form a triangulated surface of the object at the time t.

Additionally, to compare our model with propagation methods, the segmentation process was also started for
subsets of I in two and three dimensions. In order to achieve the same sampling, when changing from dimension
d1 to d2, the average distance between vertices L has to be readjusted so that L1/y'iJ L2//i). One spatial
data set of 32 x 32 x 32 voxel would result in 86 vertices and 168 edgels with Lrnax = 8, L1111 = 3. The incoherent
dataset of 32 three dimensional contours would therefore consist of 2752 vertices and 5376 edgels. One central slice
of 32 x 32 pixel was segmented using Lmax 7, Lmin 3. The resulting contour consists of 16 vertices and edgels.
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Figure 5 .Acohereiit 1 I) contour

We estimate that the segmentation of the dataset in 1024 two tiunensional slices would result iii more than 10.000
edgels and vertices with no coherence in depth and time. The benefit of our model S not. only the coherence hut also
a reduced amount of data for the segmentation result.

4. DISCUSSION
Our generalized finite element model fulfills the task of image segmentation in up to four (linieiisioIis and automatically
incorporates the knowledge of spatial and temporal coherence of objects. It is therefore more stable than propagation
methods for segmentation of image sequences or stacks. Additionally, the knowledge of the coliereiice is aiitoniatieallv
contained in the dataset and needs not to be recomputed froni propagation slices.

Our new method for the computation of external influences allows the seginentatioii process to work oii the
original image data with no need for pre filtering. The newly introduced adaptable kernel function for external
influences allows the model to control the direction of tins lilt er that is used to (letect significant gradients iii t he
image. The formulation also holds for a value space of higher (liilensioIi, e.g. 11GB color imliages. Our model reads
image information from subsets l of the image with dini( I) —diin(I, ) . This intensifies t lie ability of active contour
niodels to consider global image information.

With these extensions, we also increase the complexity of the segmentation process. Fhie order of niagrutuide is
dominated by the computation of external influences and was estimated to O(iru •d2 ). As a consequence, segmentation
results iii 4D exist so far only for synthetic image material with coarse image space resolution.

For the use of the model on medical image data, different paramnet ers have to he set. The mm )del looses the ability
to reproducibly segment image material if these parameters are hieuristicall chosen by experts. For t lie use of the
model on medical images. we developed methods to determine t he paraniet ers using one hand segment atiomi result.
Tins allows physicians to perform the required parameter adjustments. 16

Though the concepts are formulated in (1 dimensions with mm upper bound for d, inst,ammces of time niodel exist
only for 2, 3, and 4 dimensions as real world space is hounded to 4D.
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