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Summary
Background: Since 1942, when Goldberger 
introduced the 12-lead electrocardiography 
(ECG), this diagnostic method has not been 
changed.
Objectives: After 70 years of technologic 
 developments, we revisit Holter ECG from 
 recording to understanding.
Methods: A fundamental change is fore-
seen towards “computational ECG” (CECG), 
where continuous monitoring is producing 
big data volumes that are impossible to be 
inspected conventionally but require efficient 
computational methods. We draw parallels 
between CECG and computational biology, 
in particular with respect to computed to-
mography, computed radiology, and com-
puted photography. From that, we identify 

technology and methodology needed for 
CECG.
Results: Real-time transfer of raw data into 
meaningful parameters that are tracked over 
time will allow prediction of serious events, 
such as sudden cardiac death. Evolved from 
Holter’s technology, portable smartphones 
with Bluetooth-connected textile-embedded 
sensors will capture noisy raw data (record-
ing), process meaningful parameters over 
time (analysis), and transfer them to cloud 
services for sharing (handling), predicting 
serious events, and alarming (understand-
ing). To make this happen, the following 
fields need more research: i) signal process-
ing, ii) cycle decomposition; iii) cycle normal-
ization, iv) cycle modeling, v) clinical param -
eter computation, vi) physiological modeling, 
and vii) event prediction.
Conclusions: We shall start immediately de-
veloping methodology for CECG analysis and 
understanding.
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1. Introduction
A long time has gone since in 1895, Willem 
Einthoven turned electrocardiography into 
a diagnostically applicable medical device 
(▶ Figure 1a) delivering the leads I, II, and 
III [1]. Einthoven also assigned the letters 
P, Q, R, S, and T to the various deflections 

of the curve’s pattern. In 1924, he was 
awarded the Nobel Prize in Medicine for 
his discovery. In 1934, Wilson defines the 
unipolar limb leads VR, VL and VF, where 
V denotes voltage [2]. Shortly thereafter, in 
1938, the American Heart Association and 
the Cardiac Society of Great Britain have 
defined the standard positions and the wir-

ing of the chest leads V1 to V6 [3]. In 1942, 
Emanuel Goldberger increased the voltage 
of Wilson’s unipolar leads by 50 % and cre-
ated the augmented limb leads aVR, aVL 
and aVF [4, 5]. When added to Einthoven’s 
three limb leads and the six chest leads, we 
have arrived at the 12-lead electrocardi -
ography (ECG) that is used today. Slightly 
thereafter in 1949, Norman J. Holter has 
developed a mobile backpack that records 
the ECG of its wearer and transmits the 
signals [6]. Starting at 75 pound, this sys-
tem has been greatly reduced in size and 
weight while increased in performance. 
 Recent technology allows for continuous 
12-lead ECG recordings over days thus 
providing physicians with valuable infor-
mation on arrhythmias in high risk 
 patients.

However, the core principles of record-
ing and analysis remained unchanged over 
all the years: Today in 2015, continuous 
ECG monitoring is performed following 
the same paradigms as it has been done in 
1949. Therefore, it is time to revisit these 
paradigms with respect to today’s technol-
ogy.

2.  Methods
2.1 Relation to Computational 
 Biology
Within the past 75 years, enormous tech-
nological developments have been made, 
in particular regarding computer systems 
and their applications in medicine. We 
particularly refer to the ‘computed’ or 
‘computational’ terminology that aims at 
indicating the substitute of a system’s core 
processes by data processing techniques 
(computa tion) such as data-analytical and 
theoretical methods, mathematical mo-
deling, and simulation techniques. Some 
examples are:
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• Computed tomography (CT): In the 
1970s, the first CT device was installed 
at Mayo Clinic, Rochester, Minnesota, 
USA, resulting in three-dimensional 
(3D) volumetric data. Invented by 
 Godfrey Hounsfield, digital geometry 
 processing is used to obtain large series 
of two-dimensional (2D) radiographic 
images taken around a single axis of 
 rotation [7, 8].

• Computed radiology (CR): In the 1980s, 
Fujifilm Medical Systems introduced 
CR, initially limited to a few selected 
veterinary colleges and specialty private 
veterinary practices because of its high 
cost [9]. This 2D imaging technology 
makes use of intensive computation 
when reading out excitation states of re-
cording plates by laser beam.

• Computational photography (CP): In 
the 1990s, another 10 years after CR in-
vention, CP was born by several techno-
logical inventions including in-camera 
computation of digital panoramas and 
mosaicking [10, 11], high-dynamic 
range images [12, 13], and light field 
rendering [14], which uses optical and 
computational elements to capture 3D 
scene information which, for example, 
can then be used for selective focusing 
[15], also referred to as post focus, e.g., 
available with the Google camera app 
for Android. A more recent CP example 
is the visual microphone [16], where 
subtle deformations of objects from 
sound are visually monitored, empha-
sized, and decomposed into frequencies 
to reconstruct the sound waves that 
have induced these mechanic alter-
nations.

More generally, the National Institutes of 
Health (NIH), Bethesda, MD, USA, have 
defined ‘computational biology’ as the de-
velopment and application of data-analyti-
cal and theoretical methods, mathematical 
modeling, and computational simulation 
techniques to study biological, behavioral, 
and social systems [17]. With respect to the 
presented time line, one-dimensional (1D) 
imaging, in other words, medical signal 
 recording shall be revisited next by intro-
ducing computational power to substitute 
device limitations.

2.2 Reflecting the State of the Art

So far, clinical use of ECG signals follows 
the needle-in-the-haystack paradigm. Four 
to six cycles are plotted on a scale paper 
and manually measured for clinically 
meaningful parameters, which, however, 
are fairly well standardized [18 –23]. ECG 
pattern inspection is basically composed  
of seven steps: 1) rhythm, 2) heart rate,  
3) conduction intervals (PQ, QRS, QT),  
4) heart axis, 5) P wave morphology,  
6) QRS morphology, and 7) ST morphol-
ogy. Meaningful measures include the PQ 
duration, which is normally between  
120 ms and 200 ms, QRS duration, which 
should be less than 120 ms, and the QT 
time, usually normalized by the square root 
of the heart rate in seconds (QTc) and 
below 450 ms.

2.2.1 Hardware and Protocols 
for Recording and Handling

Today’s Holter monitoring is usually re -
corded on 3 or 12 leads over 24 hours, since 
short-term intervals (< 10 min) are not re-
liable [24]. The limitations due to the 
shortness of the 24 hours have already been 
addressed [25] and answered by devices 
such as the Zio Patch (iRhythm Technol-
ogies, Inc, San Francisco, CA, USA), which 
is an FDA-cleared, single use, non-invasive, 
water-resistant, 14-day, ambulatory ECG 
monitoring adhesive patch [26]. Nonethe-
less, the needle-in-the-haystack paradigm 
is followed since only a small number of 
events are considered. Recent research 
coupling the recordings to 1-min epochs 
[27] does not change that paradigm in 
 general. Contrarily, technology for cloud-
sharing of mobile recordings is already 
available, but has not yet been used for 
Holter monitoring.

2.2.2 Software for Analysis and 
Understanding

The field of automated ECG analysis was 
one of the earliest topics in Medical In-
formatics and is still representing rank 13 
of MeSH (U.S. National Library of Medi-
cine Medical Subject Headings) topics 
 discussed in Methods articles in the last  

50 years [28]. In previous works, ECG data 
is parsed for just a few irregular events, i.e., 
arrhythmias, such as extra-systoles [29]. 
Today, ‘Computing in Cardiology’ (CinC) 
has been established as annual (since  
1974) scientific conference (http://www.
cinc.org/). Within the last 25 years, almost 
350 papers have addressed the heart rate 
variability (HRV), which is computed over 
several ECG cycles. The intervals are rang-
ing from ultra-short-term (< 60 sec) to 
long-term e.g., 6 hours [30] or 24 hours 
[31]. Recently, a comprehensive list of  
70 HRV indices has been compiled that 
produce a finite number out of 30 beats 
[32]. The indices have been evaluated [33] 
and dynamic analysis has been suggested 
for clinical consideration [33, 34]. How-
ever, shape analysis of cycles in several 
leads is certainly more important as just 
considering the pulse rate. For instance, the 
QT dispersion has been identified as indi-
cator for stroke [35].

2.3 Foreseeing Computational 
Electrocardiography

In future, such type of data processing will 
become standard in ECG analysis, and raw 
data will be recorded continuously (up to 
the full lifetime). Wellness industry and 
sportive consumers who like monitoring 
their body performance and sharing it  
in social networks will open economical 
markets that allow low cost hardware, for 
instance embedded in smart clothes 
(▶ Figure 1b). More meaningful use of this 
technology will start with high-risk pa-
tients, for instance in ambient assisted liv-
ing (AAL) or as security method in public 
transportation on roads, railways, or air-
ways, before applied to all humans. Com-
putational ECG (CECG) aims at predicting 
and preventing serious adverse events, such 
as the sudden cardiac death (SCD) [36], 
which remains a major public health prob-
lem worldwide, e.g., causing more than 
300,000 deaths per year in the United 
States [37]. SCD affects not only patients 
with chronic diseases [38, 39] or obstruc-
tive sleep apnea [40, 41] but also athletic 
and sportive young people [42]. Medical 
Informatics is seen as key component for 
improvements.

T. M. Deserno, N. Marx: Computational Electrocardiography: Revisiting Holter ECG Monitoring
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3. Results
3.1 Technology and Methodology 
Needed
Data transfer from mobile devices to cloud 
services is available already. As the record-
ing hardware is becoming available (▶ Fig-
ure 1b), remaining obstacles hindering our 
vision to turn to reality are signal analysis 
and understanding methods as well as 
standards for biodata interfacing – all in 
the core competences of medical in-
formaticians. The following fields need 
more research:
• Signal preprocessing: Big data results 

from continuous ECG monitoring. 
Novel Holter devices deliver 12 leads, 
each at 1000 Hz sampling rate and 10 bit 
coding, ending up with 8 GB of uncom-
pressed data per week (e.g., Medilog FD 
12 plus, Schiller, Switzerland). Textile-
embedded electrodes and consumer 
market products are expected to deliver 
noisy signals and there might be discon-
nected or shifted periods. These must be 
detected robustly, and the user needs 
feedback to check the hardware compo-
nents and their interconnection.

• Cycle decomposition: It is commonly ac-
knowledged that ECG is decomposed 
into the cycles for further analysis. 
R-wave detection is used, and several al-

gorithms have been suggested, which 
usually are based on leads I or II. For in-
stance, high-pass filters [43], spectral 
analysis [44], template matching [45], 
and wavelet decomposition [46] are ap-
plied. Advanced methods use the vector 
cardiogram, which is composed from 
the six chest leads [47]. However, more 
recent research has indicated already the 
limitations of existing approaches when 
applied to noisy signals [48] or record-
ings of multi-morbid patients [49].

• Cycle normalization: To apply big data 
analysis methods, one need to cope with 
the problem that the human heart rate is 
changing abruptly and frequently, and 
hence, all cycles are sampled with dif-
ferent effective rates, i.e., represented by 
a different number of samples. Since the 
ECG cycle pattern is changing non-
 linearly, simple resampling is not an 
 option but non-linear stretching is 
 required [50].

• Cycle modeling: As a core component of 
any real time ECG understanding, each 
cycle needs representation by a small set 
of model parameters. So far, heart 
model construction is used primarily 
for ECG simulation rather than analysis 
[51]. Matching models onto recordings 
usually is based on curve fitting [52, 53], 
and Gaussians are the preferred curve. 

However, existing methods do not cope 
with multi-lead recording, and com -
putational efficiency is required, which 
calls for further research [54].

• Clinical parameters: Data reduction into 
parameter curves is the next step follow-
ing consequently. Various ECG risk 
markers for SCD have been identified, 
which are far beyond the heart rate and 
its variability. Cardiac rhythm abnor-
malities, AV block, QT length, QT dis-
persion, T-wave alternas, late potentials, 
as well as left- (LBBB) or right-bundle 
branch blocks (RBBB) are important 
[55]. These medical concepts need to  
be transformed into mathematical 
 expressions using the cycle model pa-
rameters. Then, they can be computed 
automatically, visualized in real time, 
and substitute the native ECG curve 
 inspections.

• Physiological models: Such risk markers 
need to be combined for the develop-
ment of physiological models. The 
physiological models must be enhanced 
including traditional (e.g., body tem-
perature, respiratory rhythm) as well as 
more advanced (e.g., glucose level, car-
diovascular pressure) physiological 
measures. Engineering approaches are 
needed to model cardiovascular physi-
ology [56]. Such models will be based 

T. M. Deserno, N. Marx: Computational Electrocardiography: Revisiting Holter ECG Monitoring

Figure 1 ECG recording hardware. a) In 1903, the Eindhoven device delivered three leads (health.howstuffworks.com). b) In 2014, the HealthWatch Com-
pany of Tel Aviv, Israel has applied its 12-lead embedded T-shirts coupled with a smartphone for FDA approval (http://mobihealthnews.com/32774/health-
watch-seeks-fda-clearance-for-its-12-lead-ecg-tshirt).
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on clinical parameters rather than ECG 
potential samples.

• Event prediction: Event prediction in pa-
tients with risk factor or those with 
existing cardiovascular disease is one of 
the major tasks in cardiology today [57]. 
So far, these parameters are often as-
sessed from standard rest ECGs and 
 extended analyses over a longer period 
of time as well as under different condi-
tions in daily life (e.g. sleep, exercise) are 
missing. Knowledge must be gained and 
meta-models must be established to 
allow in time alerts and event preven-
tion. At this end, the CECG wearer is 
alerted and takes action such that SCD 
will not happen [58]. So far, the subject’s 
age is roughly predictable on HRV sig-
nals [31] but work on predicting events 
has not yet published. In addition, event 
prediction models need to cope with 
signal changes due to physical body 
movement [59, 60].

3.2 First Steps Towards CECG

In some of these points, first steps have al-
ready been reported in the literature and 
further research is ongoing. As an example, 
we illustrate our CECG vision with respect 
to the identification of surrogate markers 
for SCD in patients with diabetes mellitus 
and end stage renal disease (ESRD). In an 
ongoing controlled clinical trial (Clinical-

Trials.gov: NTC02001480), which has been 
approved by the Ethics Committee of the 
RWTH Aachen University, the study sub-
jects are continuously monitored over a 
24 / 7 interval. The recording period covers 
three dialysis cycles and delivers about 
800,000 cycles per person. A vector cardio-
gram-based R-spike detection is applied 
[54]. The ECG model fitting is based on 
Gaussians. Mean and standard deviation of 
the Gaussians describing Q- and S-wave 
are used to compute the QRS duration in 
each of the cycle.

So far, data from five individuals is 
 available. ▶ Figure 2b visualizes the QRS-
 duration averaged over 15 measurements 
which have been synchronized on the start 
of the dialysis (monitoring time = 0). A 
12-hour period is plotted (red) and the end 
of the dialysis is indicated by the vertical 
grey line. In both periods (during and after 
the dialysis), a linear regression model has 
been fitted (blue lines). The offset in both 
parts differ significantly (Student’s t-test,  
p << 0.001).

Comparing ▶ Figure 2a and ▶ Figure 
2b, the different approaches become ob-
vious. The ECG in ▶ Figure 2a shows  
12 cycles on 4 leads, while the CECG in 
▶ Figure 2b is based on 5 subjects times  
3 period times 12 hours times 3,600 cycles 
per hour ~ 650,000 cycles on 12 leads. The 
change in QRS duration is manifested aver-
aging over same periods of different indi-

viduals. Such computations need medical 
explanations, which require comprehensive 
research and further experiments as well as 
conduction of controlled clinical trials.

4.  Discussion

SCD remains the leading cause of mortality 
in developed nations [61]. It is consensus 
that increasing the number of leads while 
increasing the duration of monitoring is 
required for a better understanding of SCD 
and other pathologic heart failures. Ideally, 
computer algorithms for risk analysis are 
applied that process the significantly in-
creased amount of ECG monitoring data 
(big data [62, 63]), and forecasting as well 
as prevention strategies are developed tak-
ing into account subject-specific circum-
stances (personalized medicine [64]).

After decades, the ancient paradigm of 
ECG recording, handling, analysis, and 
understanding is changing towards what 
we have named ‘computational ECG’ 
(CECG). In our vision of CECG, continu-
ous monitoring is achieved using inexpen-
sive hardware (recording), big data is pre-
processed on mobile devices to form 
meaningful indicators over the time 
(analysis), which are transferred into the 
cloud and shared (handling), and further 
analyzed for alarming before adverse 

T. M. Deserno, N. Marx: Computational Electrocardiography: Revisiting Holter ECG Monitoring

Figure 2 Conventional vs. computational ECG. a) Commonly, ECG is plotted over a short period and a few measurements are done manually by counting 
the scales on the normalized plot (http://www.ecglibrary.com/norm.php). b) In computational ECG, long time recordings are processed automatically and 
 visualized by parameter over the time plots. Note that panel b is an average of 15 recordings (the high values of 0.25 s are due to a systematical offset when 
transforming model parameters to clinical measures and subject to improvement).
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events, such as SCD, are happening (under-
standing).

Roughly 25 years ago, the medical in-
formatics community already aimed at 
changing the ECG paradigm [65]. At that 
time, the goal was to define common 
stand ards for quantitative electrocardio-
graphy (QECG) based on digital record-
ings and to validate ECG-based diagnostic 
decision support [66]. In total, 14 different 
12-lead ECG analysis programs from Bel-
gium [67], Canada [68], France [69], Ger-
many [70], Italy [71], Japan [72], The 
 Netherlands [73], Portugal [74], United 
Kingdom [75], and United States [76] in-
cluding research systems as well as com-
mercial products from major industrial 
companies have been compared based on 
the same dataset. However, the entire cam-
paign was based on patient recordings of  
8 or 10 seconds [77], thus following the 
ancient paradigm.

Stepping forward, some examples of 
CECG are available already. For instance, 
HRV analysis has developed from about 0 
to almost 1000 (PubMed-registered pub -
lications per year) from 1990 to 2012, re-
spectively [34], which is in line with our 
analysis of the CinC conference. In the al-
ready mentioned QECG campaign, the 
value of scatter-graphs for the assessment 
of computer-based ECG measures has been 
emphasized [78]. These plots condense 
measures from several cycles into a non-
signal like format. As another example, 
electrocardiographic imaging (ECGI), a 
noninvasive method for mapping the elec-
tric activity of the heart in humans in real-
world conditions [79, 80] is based on up to 
250 electrodes (leads). The enormous data 
is visualized in 3D by pseudo-coloring an 
MRI-based heard shape. Furthermore, 
Marques has recently suggested a changed 
paradigm of diagnosis towards molecular 
genetics [81], emphasizing the personal-
ized component of CECG.

However, more research is required 
that shall start by today. Then, in five 
years from now, we expect the wellness in-
dustry to offer hard- and software tech-
nology for continuous ECG recording and 
handling for less than 100 US$, which will 
open a huge and international consumer 
market. The data is preprocessed and ana-

lyzed on the smart device via comple-
mentary apps for computational ECG, 
hosted in cloud-based vendor-specific 
proprietary repositories, but shared with 
friends via social networks. However, 
more serious applications in medicine and 
for ambient assisted living (AAL) are al-
ready in development, profiting from low 
cost hardware and already established 
consumer markets.

5. Conclusion

The field of automated ECG analysis was 
one of the earliest topics in Medical In-
formatics and may be regarded as a model 
for both, computer-assisted medical diag-
nosis and evaluating medical diagnostic 
programs [82]. Nonetheless, it is still a hot 
topic in research providing challenging 
tasks in near future (▶ Table 1).
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Table 1 Key issues for discussion

•  Reading of ECG has remained unchanged 
over more than 70 years: From clinical re-
cordings  individual cycles are plotted on 
scale paper and manually annotated and 
analyzed, while in long term Holter monitor-
ing, the numbers of irregularities are 
counted.

• A 7 day 24 hour recording yields 15.6 km 
printout; most of the recorded cycles remain 
uninspected. 

• In near future, textile-embedded electrodes 
coupled with smartphones will continuous 
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ing personalized big data volumes that 
require automatic analysis.

• Identifying individual cycles, mapping mod-
els to each of the cycles, where the model 
parameters allow computing medical mean-
ingful ECG readings and plotting them in 
curves over the time will  
revolutionize ECG in medicine.

• Such computational ECG (CECG) supports 
prediction of serious  adverse events and 
allows preventing actions to be taken in 
time  applying cloud-based big data ana-
lytics.

• In parallel to the hardware development 
that is currently ongoing,  
we urgently need to revisit ECG reading and 
focus research on data analysis and model-
ling.
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