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Color line search for illuminant estimation in
real-world scenes
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The estimation of illuminant color is mandatory for many applications in the field of color image quantification.
However, it is an unresolved problem if no additional heuristics or restrictive assumptions apply. Assuming
uniformly colored and roundly shaped objects, Lee has presented a theory and a method for computing the
scene-illuminant chromaticity from specular highlights [H. C. Lee, J. Opt. Soc. Am. A 3, 1694 (1986)]. How-
ever, Lee’s method, called image path search, is less robust to noise and is limited in the handling of micro-
textured surfaces. We introduce a novel approach to estimate the color of a single illuminant for noisy and
microtextured images, which frequently occur in real-world scenes. Using dichromatic regions of different
colored surfaces, our approach, named color line search, reverses Lee’s strategy of image path search. Reli-
able color lines are determined directly in the domain of the color diagrams by three steps. First, regions of
interest are automatically detected around specular highlights, and local color diagrams are computed. Sec-
ond, color lines are determined according to the dichromatic reflection model by Hough transform of the color
diagrams. Third, a consistency check is applied by a corresponding path search in the image domain. Our
method is evaluated on 40 natural images of fruit and vegetables. In comparison with those of Lee’s method,
accuracy and stability are substantially improved. In addition, the color line search approach can easily be
extended to scenes of objects with macrotextured surfaces. © 2001 Optical Society of America

OCIS codes: 330.1690, 150.2950, 100.2000.
1. INTRODUCTION
The understanding of color constancy is important in psy-
chology as well as digital image processing. Color con-
stancy is the attempt to derive intrinsic reflectance prop-
erties of objects, which are independent of extrinsic
parameters such as illumination, viewing direction, sur-
face orientation, and surrounding colors. Although not
perfect, human perception allows illumination-
independent color description. Numerous experimental
studies have been performed to obtain insights into this
phenomenon and to develop models that explain the
mechanisms of human illuminant adjustment.1–6 In this
context, the roles of scene background,1,2 other image
surfaces,3 and human color memory4 have been studied.

A common approach to color constancy is the estima-
tion of physical parameters from the output of photore-
ceptors, e.g., illuminant spectrum and surface reflectance
spectrum.6–12 Obviously, the correct estimation of spec-
tra is sufficient but not necessary to solve the color con-
stancy problem.7 The measurement of color spectra with
few sensors is similar both for the human visual system
and for technical color imaging. Nevertheless, color con-
stancy in human vision requires an understanding of hu-
man perception, while color constancy in image process-
ing is tantamount to reliable estimation of reflectance
properties8,9 or scene parameters,13,14 which are indepen-
dent of the scene’s illumination. In this paper, we focus
on the technical point of view.

Most frequently, simple imaging geometries with uni-
form diffuse and spatial illumination as well as flat sur-
faces without luster have been assumed.6,7 Alterna-
tively, low-dimensional linear models with fixed basis
functions are used to describe the surface and illuminant
0740-3232/2001/112679-13$15.00 ©
spectra of real-world scenes.15 For such models, Maloney
and Wandell15 have proven that only N 2 1 descriptors of
surface reflectance can be uniquely recovered from a
scene that is illuminated by a single illuminant using a
single-view visual system with N sensors. In other
words, the trichromatic human visual system and any
three-chip CCD camera are able to recover only two sur-
face descriptors. This is insufficient for an appropriate
representation of natural surfaces. Increasing the num-
ber of descriptors requires the inversion of an undercon-
strained nonlinear system of equations. Reliable estima-
tions have been achieved by Brainard and Freeman7

using a Bayesian framework with a special loss function.
The use of additional information provides further de-

scriptors for each surface. In simple approaches, color
charts16 or patches with neutral spectral reflection are
added to the scene. Ho et al.9 have applied the theory of
chromatic aberration to determine the illuminant.
D’Zmura and Iverson6 inspected several views of the sur-
face under different illumination conditions in order to es-
timate surface and illuminant parameters. However, ad-
ditional information is obtainable in only a limited
number of applications. For example, in medical diag-
nostics, charts and patches are inapplicable to the pa-
tient, and additional examinations will increase inconve-
nience or pain.17,18

Other approaches are based on restrictive suppositions.
For instance, Buchsbaum19 and Land20 have applied the
gray-world assumption. D’Zmura and Lennie5 and Lee21

have evaluated color changes on highlights. Introducing
the quarter-circle analysis, Tominaga and Wandell10,11 fo-
cused on three-dimensional objects, where the reflectance
was described by the dichromatic reflection model.12,22
2001 Optical Society of America
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For these surfaces, Brill23 has introduced the concept of
rank-2 fields. This approach requires a precise segmen-
tation of the image. In real-world scenes, disturbing ef-
fects have to be considered. Usually, the illumination
cannot be controlled. Furthermore, microtextured sur-
faces and noisy pixels violate the basic assumption of ho-
mogeneous objects, which complicates rank-2 segmenta-
tion. Therefore methods are required to determine the
illuminant color without segmentation.

Working from the dichromatic reflection model, Lee21

has introduced a method for computing the scene-
illuminant chromaticity from specular highlights of col-
ored objects. All colors are normalized on the values of
the red channel. In those red diagrams, the dichromatic
lines of colored objects intersect at one point, determining
the illumination color. This approach was generalized
later for the three-dimensional color histogram, where
different color planes intersect in a certain line.10 Al-
though Lee’s method performs sufficiently well on syn-
thetic images of spheres, its application to real-world
scenes is sensitive to noise or inhomogeneities such as
textured surfaces.

In this paper, we extend Lee’s basic idea to determine
the intersection of color lines from the red diagram to the
rg diagram, and, more essentially, we propose a novel
method to locate appropriate color lines directly in the do-
main of the color diagram. Lee’s method of image path
search (IPS) (see Subsection 2.B) is performed in the im-
age domain. Color values are collected along a certain
direction in the image, starting at a specular highlight.
Paths resulting from different objects are transformed in
the color diagram to determine their intersection. In
contrast, our novel approach of color line search (CLS)
(see Subsection 2.C) directly searches for straight lines in
color diagrams. The diagrams are obtained from image
regions located around specular highlights on different
objects. All hypotheses are retransformed into the image
domain to test their validity. The intersection of valid
color lines is then computed once more in the color dia-
gram.

2. ILLUMINANT COLOR ESTIMATION
A. Dichromatic Reflection Model
According to the dichromatic reflection model,22 each
color vector (R,G,B)T is determined by a linear combina-
tion of surface reflection (Rs ,Gs ,Bs)

T and body reflection
(Rb ,Gb ,Bb)T:

S R
G
B
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D 1 wbS Rb

Gb
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D . (1)

The weights w depend only on the geometry of the imag-
ing system, whereas the color vectors result from the mul-
tiplication of the distribution of the irradiance spectrum
and the reflectances of surface and body before tristimu-
lus integration, s(l), bs(l), and bb(l), respectively. A
neutral surface equally reflects all wavelengths l. This
yields bs(l) 5 bs and allows us to rewrite Eq. (1) for
dichromatic reflection:
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where r̄(l), ḡ(l), and b̄(l) determine the responsiveness
of the red, green, and blue color sensors, respectively.
Since the responsiveness of each sensor is strictly positive
in a finite interval, the integration in Eq. (2) becomes defi-
nite. Applying the first generalized mean-value theorem
of the integral calculus, *a

bk(x)l(x)dx 5 k*a
bl(x)dx, and

replacing the tristimulus integration of s(l) by
(sR,sG,sB)T yield
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1. Red Diagram
According to Lee,21 the varying weights of body and sur-
face reflection form a straight color line in the red-
normalized diagram. If R Þ 0, G, and B are all different,
we obtain

B

R
5 a

G

R
1 b, (4)

where slope a and ordinary intercept b are given from Eq.
(3) by

a 5
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bb
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bb
G 2 bb

R , b 5
sB

sR

bb
G 2 bb

B

bb
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(see Appendix A). Note that the parameters a and b de-
pend only on the irradiance spectrum s(l) and the color of
body reflection bb(l).

2. rg Diagram
The normalization of colors to the red channel only, as
proposed with Eq. (4) by Lee, is asymmetric and particu-
larly susceptible to noise in the red channel. According
to the CIE XYZ system, the chromaticity xy diagram is
defined by normalization on the sum of X, Y, and Z. Such
normalization is similarly used for the camera-specific
RGB color space. Let us define the parameters

r 5
R

R 1 G 1 B
, g 5

G

R 1 G 1 B
. (6)

Hence Eq. (3) results in

g 5 a8r 1 b8, (7)
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Fig. 1. (a) The color edges obtained by the Laplacian-of-Gaussian within each band (512 3 512 pixels) of the standard image ‘‘peppers’’
are marked in blue. They are used as starting points for the IPS algorithm. (b) Only 11 paths remain for minimal lengths of 7 and 10
pixels at the ascending and descending parts of each path, respectively. (c) The intersection of corresponding color lines within the rg
diagram determines the scene-illuminant chromaticity.
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(see Appendix B). Again, slope a8 and intercept b8 de-
pend only on reflectance properties and not on the param-
eter w. Supposing dissimilar object and illuminant col-
ors, two objects that differ in spectral emission yield color
lines that intersect in the rg diagram at (r, g)
5 ( pr , pg), with

pr 5
sR

sR 1 sG 1 sB , pg 5
sG

sR 1 sG 1 sB (8)

(see Appendix C).

B. Lee’s Method of Image Path Search

1. Principle
The basic idea of Lee’s image path search (IPS) algorithm
is to collect normalized colors along a path in the image
domain from the body to the surface reflection color. Ac-
cording to the dichromatic reflection model, a straight line
is formed in both the red diagram and the rg diagram.
The starting point of the path is supposed to be located at
changes of color. These color edges are determined by
the zero crossings of the Laplacian-of-Gaussian filtered
color bands [Fig. 1(a)]. Since suitable paths must cross a
color edge, they are split into an ascending and a descend-
ing part, each of which starts at the color edge point [Fig.
1(b)]. The color changes correlate with changes in
brightness, which is high with respect to the surface re-
flection but rather low concerning body reflection. There-
fore the path route of the IPS is controlled by the object’s
brightness instead of its chromaticity (which is still un-
known at this moment). Along the ascending and de-
scending parts, the normalized colors of the image are col-
lected. Since smooth and monochrome objects are
assumed, each set forms a straight line in the rg diagram
[Fig. 1(c)]. If both parts significantly differ in slope, e.g.,
at the border between different objects, they are disre-
garded. Each color edge pixel within the image is consid-
ered a starting point for the IPS algorithm. If two color
lines obtained are similar, e.g., at a change of surface and
body reflection, they are merged. In addition, short
paths are suppressed. If two or more different paths are
determined, the illuminant color is fixed at the point of in-
tersection.

2. Remarks
In the original paper,21 Lee successfully tested the
method of IPS on a synthetic image of two spheres with
ideal reflection properties. However, this proves the use-
fulness of the idea rather than its applicability to real-
world scenes, such as the public-domain image ‘‘peppers’’
(Figs. 1–3). Although its calibration is undefined and
one might suspect that the image metric is not in linear
exposure space, the peppers image has been used as a
standard in many research establishments.

In general, real-world images show noisy or (slightly)
inhomogeneous objects, resulting in variations of bright-
ness and color that may restrict or even violate the
dichromatic reflection model. Furthermore, the high-
lights are often very small, and therefore the ascending
part of the path is too short for a robust IPS. Another
problem arises from mutual illumination at object bor-
ders. One object illuminates the other, and vice versa.
Funt and Drew24 have shown this interreflection to agree
with the dichromatic reflection model, and, consequently,
paths at interreflection borders are accepted by Lee’s al-
gorithm [e.g., see paths 1–6 in Fig. 1(b)]. The corre-
sponding color lines do not belong to the scene-illuminant
chromaticity and cause major detection errors; e.g., the
point of intersection is mislocated in Fig. 1(c).

C. Our Approach of Color Line Search
The problems indicated above are mostly related to local
data irregularities in the image domain, where the detec-
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tion of color lines by Lee’s IPS method takes place. To
overcome this drawback, we apply a reversing strategy.
With the use of our color line search (CLS) approach,
straight lines are detected directly in the rg diagram be-
fore they are retransformed and verified in the image do-
main by an IPS-related algorithm. This essentially im-
proves the entire algorithm. The CLS method is
independent of starting points, which formerly have had
to be selected in a noisy image. Furthermore, the CLS
method avoids all problems related to interreflection bor-
ders. It is reliable and capable of processing partly inter-
rupted paths in the image domain, which often result
from microtextured objects in real-world scenes.

1. Determination of Regions of Interest
The detection of straight color lines referring to the rg
diagram of a multicolored image [Fig. 2(a)] is not appli-
cable because of the high densities in its color histogram
[Fig. 2(b)]. Therefore rg diagrams are computed for
small regions of interest (ROIs), where color changes from
body to surface reflection are expected. These color
changes mostly occur in the surrounding of specular high-
lights [Fig. 2(c)]. Specular highlights are coarsely char-
acterized by local coincidence of intense brightness and
unsaturated color:

I 5
R 1 G 1 B

3
.

1

2
Imax ,

S 5 1 2
min~R, G, B !

I
,

1

2
Smax , (9)

where Imax and Smax denote the highest intensity I and
the highest saturation S in the image, respectively. Note
that the number as well as the centers of gravity of the
detected highlights remains unchanged for a wide range
Fig. 2. (a) Two regions of interest (ROIs) are emphasized in the peppers standard image. The green pepper shows a microtextured
surface, whereas the red one’s is rather homogeneous. (b) The high densities of the rg diagram obtained from the entire image do not
allow the identification of individual straight lines. (c) In contrast, such lines can be seen in the zoomed rg diagrams obtained only from
the ROIs. The three best lines have been determined by a Hough transform.

Fig. 3. (a) Regions of specular highlights that have been determined by thresholding saturation and brightness are marked in the
peppers standard image. (c) With a CLS applied, 13 valid color lines have been detected. Note that all lines meet in a sharply focused
point of intersection. The corresponding image paths that are built to check the consistency are displayed in (b).
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of thresholds. In addition, errors of this simple method
are recognized and subsequently rejected by applying a
consistency check (see Subsection 2.C.3). For each de-
tected highlight, four ROIs are placed such that their cor-
ners meet in the center of the highlight.

2. Detection of Color Line Proposals
Color line proposals are determined within the rg dia-
gram of each ROI by applying the Hough transform.25

The Hough transform considers all lines passing through
the current pixel of a binary image. Lines are character-
ized by their slope and intersection. These parameters
are spanning the Hough domain, which is also referred to
as the accumulator array. During the transform, each
positive pixel in the binary image causes the increase of
all slope–intercept cells in the accumulator array, which
are related to possible lines. A final maximum detection
in the Hough domain directly locates the straight line in
the binary image that comes with the largest number of
contributing pixels. The major advantage of the Hough
transform is its independence of local disturbances of
lines. Only the total number of pixels contributing to a
line is important, not their relative positions.

Since the values of slope become infinite when color
lines are parallel to the vertical axis, they cannot be pa-
rameterized if the Hough domain is defined by slope and
intercept. In our implementation, the Hessian standard
form is applied to parameterize straight lines by their dis-
tance to the origin and the angle of the distance vector.
This results in sinusoidal curves in the Hough domain.25

After all pixels are transformed from the rg diagram of
any ROI, local maxima are determined. With the use of
Eq. (7), the coordinates of the maxima determine a8 and
b8 of straight lines in the rg diagram. Note that the
height of a maximum is directly related to the number of
points forming the straight line in the rg diagram.
Hence a few lines with the most points serve as color line
proposals of each ROI to indicate the illuminant color at
the image object. Figure 2(c) shows three hypotheses in
each of the rg diagrams of the two ROIs from Fig. 2(a).

3. Consistency Check
It is obvious that the number of points cannot be the
unique criterion to select reliable dichromatic color lines.
Therefore each line proposal is checked within the corre-
sponding ROI according to its consistency with the dichro-
matic reflection model. For each color line proposal, an
image path inside the ROI is searched for, such that the
normalized colors lie on the current color line. The order
of colors along the path is important. We assume smooth
surfaces without abrupt changes of the surface’s normal
direction. Processing the colors on the line in ascending
order, a reliable path must be rectilinear without sharp
edges or U turns. However, not all colors of the color line
have to occur on the image path. The fact that we search
for a specific color in a specific direction enables us to re-
lax Lee’s condition of direct neighborhood for image path
elements. Consequently, we accept gaps of 2 or less pix-
els to jump over noise or to connect patches of microtex-
tured surfaces. Since each path must remain on the
same surface, larger gaps demand more sophisticated
consistency rules, which are not implemented yet.
If the length of the resulting path exceeds a threshold,
the dichromatic reflection model is satisfied and the cor-
responding straight line is selected as a valid color line
describing the current highlight. In other words, the
length of the corresponding image path is used as a crite-
rion for the validity of the reflection model for the current
color line. Figure 3(a) shows the highlights within the
peppers image that is used for our CLS algorithm. Valid
image paths with an approved CLS hypothesis are
marked in Fig. 3(b). For the CLS approach, color lines
obviously intersect at a distinctly focused point [Fig. 3(c)].

D. Estimation of the Intersection Point
The color lines of different objects with slope a8 and inter-
cept b8 have now been determined by applying either the
IPS or the CLS method [Fig. 1(c) or 3(c), respectively].
However, the intersection of valid color lines from real-
world scenes cannot be located exactly. The Hough
transform is used again to estimate the point of intersec-
tion. For all color lines, the parameters (a8, b8) are
transformed into the Hough domain. If all color lines
perfectly meet within a distinct point of intersection, the
Hough-transformed parameters form a unique straight
line. For real-world scenes, the straight line that fits
best all data points in the Hough space is computed by the
Karhunen–Loève transform. Note that this equals the
least-squares regression of the distances between all
points and the line. From Eqs. (7) and (8), we obtain
slope 2pr and ordinate intercept pg of this line in the
Hough domain:

b8 5 2pra8 1 pg . (10)

E. Summary of the Algorithm
Assuming the dichromatic color model, the problem of il-
luminant estimation in real-world scenes is reduced to
finding the intersection point of valid color lines in the rg
diagram. Applying the CLS method, we determine color
line proposals by Hough transform of rg diagrams repre-
senting ROIs at specular highlights [Fig. 3(a)]. They are
evaluated by path-searching the image domain [Fig. 3(b)].
Valid color lines are represented by their slope and inter-
cept in the Hough domain. The Karhunen–Loève trans-
form is applied to estimate the best-fitting straight line in
the Hough domain, which equals the regression of the
point of intersection in the rg diagram [Fig. 3(c)]. A
pseudocode of the CLS algorithm is provided in Fig. 4.

3. VALIDATION OF THE COLOR LINE
SEARCH METHOD
Lee’s rather general evaluation was based on an artificial
image of spheres that was computer generated according
to the dichromatic reflectance model.21 He showed that
the point of intersection in the red diagram exists at its
proper location and can be determined automatically by
computer algorithm. However, the applicability of the al-
gorithm to real-world scenes is still questionable. In par-
ticular, uncertainties arise from noise, microtexture of the
objects’ surface, nonideal illumination of natural scenes,
mutual illumination, and clipping at specular highlights,



2684 J. Opt. Soc. Am. A/Vol. 18, No. 11 /November 2001 T. M. Lehmann and C. Palm
Fig. 4. The CLS method of illuminant estimation in real-world scenes is visualized in pseudocode. The major parts of the algorithm—
ROI detection, color line proposals, consistency check, and intersection estimation—are represented in lines 1–4, 5–9, 10–29, and 31–32,
respectively.
which occur frequently in data taken from routine appli-
cations.

To obtain more general results, the validation of the
CLS method must rely on real data. Although illumi-
nant estimation using highlights is often applied in the
field of color constancy research,5,10,21,23,26 to the best of
our knowledge, a standardized database of real-world im-
ages for validation does not exist. Most commonly, avail-
able databases are specific to a certain application. For
example, the color constancy test images by Funt et al.27

show macrotextured objects, and most of them are cap-
tured without specular highlights. Therefore they are
unsuitable for our purposes. Furthermore, available da-
tabases often lack in documentation; in particular, any
description of clipping at specular highlights is not pro-
vided.

A. Image Database
Inspired by the standard peppers image, we have built an
image database from natural objects. This database is
available from the authors on a noncommercial basis.
Both IPS and CLS methods presuppose at least two ob-
jects of different color, which are illuminated by a single
point source of light. If each object is unicolored, their
reflections follow the dichromatic reflection model (3); i.e.,
the weight of the light source color varies as a result of
the change of the normal direction of the objects’ surface.
This is shown to be valid for most nonmetal surfaces.12

Fruit and vegetables were placed on a black back-
ground without luster illuminated by a solidly mounted
point light device (Storz Xenon Nova 20131520, Cologne,
Germany), and were captured with a three-chip CCD
camera (Lemke TC 804, Gröbenzell, Germany). In con-
trast with previously used images of artificial spheres,17

natural objects neither are perfectly unicolored nor pro-
vide ideal smooth surfaces. We composed five ensembles,
each of which contains at least four differently colored
fruits or vegetables [Fig. 5(a)]. All ensembles were ex-
posed from two camera positions with fixed position of the
illuminant. This results in ten scenes.

Each scene was acquired with 368 3 278 pixels by av-
eraging 20 frames in order to reduce imaging noise. Ac-
cording to Funt et al.,27 the dynamic range was increased
by floating-point capturing. To study clipping effects, we
performed two kinds of calibration. First, the lightness
of the illuminant was reduced as much as required to
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Fig. 5. (a) Arrangements of fruit and vegetables have been analyzed by (b) an IPS and (c) a CLS.
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avoid clipping errors. Because of the mirroring surface of
fruit, this results in roughly dark images. Second, ad-
equate lightness was adjusted with respect to a human
observer, and clipping in any color band was accepted.

Since illumination in real-world scenes is often non-
ideal, another set of 20 images has been captured. The
Storz Nova lamp was replaced by a common light source,
being less focused and strongly yellow colored. Alto-
gether, 40 images have been used for validation.

B. Parameterization
With respect to the general applicability of IPS and CLS,
a set of parameters have been determined for each
method to enable reliable processing on the entire data
set, regardless of light source or clipping effects. For the
CLS implementation, the required path length was set to
6, accepting gaps of 2 or less pixels. Note that these pa-
rameters might vary within a broad range.

On the contrary, it was rather crucial to find a suitable
set of parameters for the IPS algorithm. According to
Eq. (7), color lines within the rg diagram are determined
by slope a8 and intercept b8. Because of the splitting of
paths into an ascending and a descending part, which is
denoted by the subscripts, as and des, respectively, a cer-
tain path is accepted only if both parts match sufficiently.
Hence reliable color paths must satisfy

aas8 2
a

2
aas8 , ades8 , aas8 1

a

2
aas8 ,

bas8 2
b

2
bas8 , bdes8 , bas8 1

b

2
bas8 (11)

for a 5 0.3 and b 5 10a. In addition, minimal path
lengths of 3 and 5 were required for the ascending and de-
scending parts, respectively. This ensures at least two
color paths in any of the 40 test images.
C. Experimental Results
Figures 5(b) and 5(c) show the color lines obtained from
the IPS and CLS methods, respectively. In general, a
CLS obviously tends to focus a point of intersection, while
an IPS instead builds an area of intersection. Computa-
tion of the scene-illuminant chromaticity is quantitatively
assessed by the coefficient of determination r2 of the lin-
ear regression that is determined in the Hough space (see
Subsection 2.D). This coefficient is defined between 0
and 1. A value of r2 5 1 indicates that all data points
are located exactly on the regression line. For example,
in Fig. 5, r2 5 0.999909 holds for the CLS in the second
scene, while the IPS yields r2 5 0.880642 in the fourth
scene. In general, a CLS results in coefficients of deter-
mination that are close to 1.0, while r2 is only approxi-
mately 0.9 if the color lines are detected by the IPS algo-
rithm.

Although the actual color of both light sources is un-
known, all scenes and camera positions must result in the
same point of intersection ( pr , pg) for the same illumi-
nant. The mean coordinates of intersection, p̂r and p̂g ,
as well as their standard deviations, sr and sg , respec-
tively, have been computed based on N P $3,7,10% images
with best quality r2 for the unclipped and clipped data as
well as for both illuminants.

Table 1 summarizes the results of our investigations.
Concerning the CLS algorithm, reliable mean coordinates
(p̂r ,p̂g) with small variances indicate robust chromaticity
determination of both lamps. In addition, this robust-
ness is emphasized by the mean coefficients of determina-
tion r̂2, which are always close to 1.0 and mostly have
small variances. Obviously, the Storz Nova lamp is lo-
cated near to the ideal white color @( pr , pg)
5 (0.3̄,0.3̄)#, while the other is more yellow colored
@( pr , pg) ' (0.5,0.4)#. In contrast, an IPS yields fluctu-
ating coordinates of intersection and lower coefficients of
Table 1. Mean Coordinates of Color Line Intersection p̂r and p̂g and Their Standard Deviations sr and sg
for Each Scene Illuminator and Each Algorithm, Based on N«$3,7,10% Images with Best Quality, Where the
Robustness is Indicated by the Mean Coefficient of Determination r̂2 and Its Corresponding Variance sr

White Spot Illumination Yellow Spot Illumination

IPS CLS IPS CLS

3 7 10 3 7 10 3 7 10 3 7 10

Nunclip

p̂r 0.3553 0.3343 0.3083 0.3326 0.3259 0.3224 0.3528 0.3932 0.3903 0.4355 0.4770 0.4902
ŝr 0.0450 0.0427 0.0579 0.0169 0.0143 0.0158 0.0874 0.0947 0.0805 0.0438 0.0339 0.0542
p̂g 0.3600 0.3566 0.3547 0.3535 0.3477 0.3518 0.3703 0.3482 0.3423 0.4345 0.4247 0.4079
ŝg 0.0158 0.0212 0.0190 0.0027 0.0066 0.0145 0.0233 0.0311 0.0282 0.0752 0.0534 0.0605
r̂2 0.8995 0.8412 0.7988 0.9999 0.9980 0.9894 0.8549 0.8271 0.7876 0.9998 0.9924 0.9834
sr 0.0264 0.0566 0.0857 0.0001 0.0022 0.0193 0.0340 0.0342 0.0734 0.0003 0.0119 0.0171

Nclip

p̂r 0.3395 0.4143 0.3815 0.3178 0.3227 0.3186 0.5551 0.4871 0.4762 0.4710 0.5281 0.5524
sr 0.0225 0.1398 0.1296 0.0091 0.0250 0.0222 0.1199 0.1138 0.0982 0.0236 0.1254 0.1056
p̂g 0.3552 0.3421 0.3558 0.3231 0.3322 0.3300 0.3383 0.3551 0.3601 0.4264 0.3527 0.3712
sg 0.0171 0.0537 0.0514 0.0190 0.0162 0.0186 0.0661 0.0461 0.0441 0.0176 0.0891 0.0820
r̂2 0.9719 0.9520 0.9347 0.9999 0.9980 0.9938 0.9590 0.9437 0.9258 0.9976 0.9840 0.9494
sr 0.0032 0.0203 0.0323 0.0000 0.0022 0.0089 0.0048 0.0154 0.0342 0.0025 0.0151 0.0771
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Fig. 6. According to Table 1, the illuminant chromaticity of the white lamp is determined from the N P $3,7,10% most reliable test
images. Data obtained from unclipped and clipped capturing are denoted by crosses and rhombs, respectively. The upper and lower
rows correspond to the CLS and IPS methods, respectively. Note that CLS clusters are substantially smaller.
determination with larger variances. In the case of the
unclipped data, which perfectly supports the dichromatic
reflection model, the IPS method is particularly less pre-
cise and less robust.

D. Data Analysis
Based on the data sets with N 5 10 measures (Table 1),
statistical analyses were performed. For all tests (white
lamp, yellow lamp, clipped data, unclipped data), a global
niveau of a 5 0.05 was selected. Based on each of the
two coordinates of the resulting mean intersection, the
methods (IPS versus CLS) and the acquisition techniques
(unclipped versus clipped) were compared. In addition,
the coefficient of determination was used to assess the ro-
bustness. Hence all images were used in P 5 5 tests.
According to the a adjustment by Bonferroni, all tests
were designed at the level of a/P 5 0.01.

To determine whether the robustness of CLS is supe-
rior to that of IPS, we applied a Wilcoxon signed rank test
to the coefficients of determination. In the case of un-
clipped images (Nunclip 5 10), r2 was found to be signifi-
cantly higher for the CLS method than for the IPS
method ( p , 0.01). This result holds for both sources of
illumination. In the case of clipped images (Nclip
5 10), significance was found only for white illumination
( p , 0.01) and not for the yellow-light source ( p
. 0.01). Nevertheless, these results verify the im-
proved robustness of the CLS method, which is qualita-
tively indicated by Fig. 6.

A second analysis was designed to assess the equiva-
lence of the methods. In the case of failure of either
method, significant differences in the coordinates of inter-
section were expected. Concerning evidence for the nor-
mal distribution, the Student’s t test for paired data was
applied to the differences of each of the coordinates.
Concerning white illumination, no significant differences
were found between both methods ( p . 0.01) for un-
clipped (Nunclip 5 10) as well as clipped (Nclip 5 10) im-
ages. In contrast, the illuminant chromaticity of the
yellow-colored lamp differs significantly ( p , 0.01) in
both coordinates for unclipped images (Nunclip 5 10).
Here the robustness of IPS (r̂2 5 0.78) is substantially
lower than that of CLS ( r̂2 5 0.98), which indicates a
failure of the IPS method. Concerning the clipped data
(Nclip 5 10), the same result holds only for the r coordi-
nate ( p , 0.01) and not for the g coordinate ( p
. 0.01). Since unclipped data are noisier than clipped
data and yellow illuminants are more difficult to deter-
mine than white-light sources (see Section 4), this result
again confirms the impact obtained with the CLS ap-
proach.

A last investigation was carried out to assess the effect
of data clipping with respect to the precision of illuminant
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chromaticity determination when using the CLS method.
A Student’s t test for unpaired data was performed for
each of the coordinates. For both illuminations, the dif-
ferences in both coordinates were insignificant ( p
. 0.01). Although this insignificance does not prove
identical distributions for clipped and unclipped data, one
may deduce that the effect of data clipping is minor and
hence that the CLS method is applicable to any scene,
with certain precautions.

4. DISCUSSION
Real-world scenes are usually acquired by standard CCD
cameras. Often, there is no choice in use of the scene’s
illuminator, and hence its color is unknown. Therefore
the image itself must be used to estimate the chromaticity
of the scene’s illuminant. Note that this calibration is re-
quired for any subsequent procedure of color quantifica-
tion. Nevertheless, an ideal white-colored illuminant is
assumed for simplicity in several applications, or the color
constancy problem is thoroughly ignored.

Approximately 15 years ago, Lee introduced a theory
and a method of data-based illuminant color deter-
mination.21 The initial IPS algorithm was shown to per-
form sufficiently only if restrictive assumptions hold on
surface homogeneity and dichromatic reflectance. In
particular, the IPS method is not robust against distur-
bances such as noise, interreflections, and textured ob-
jects, which often occur in real applications. This was
confirmed by our investigation. In contrast, the CLS
method of color line determination has been shown to sig-
nificantly improve precision and robustness. As a result,
a CLS is applicable to noisy images and scenes of objects
with microtextured surfaces regardless of local sensor
saturation.

Figure 6 visualizes the left-hand part of Table 1. A
CLS forms small and circular clusters for N P $3,7,10%
(upper row) regardless of whether the intersection is
based on unclipped or clipped data (which are marked
with crosses and rhombs, respectively). The correspond-
ing results from an IPS are visualized in the lower row of
Fig. 6. Note that the IPS clusters are widespread and el-
liptical rather than circular. The principal axis of each
elliptical cluster is approximately parallel to the r axis.
In other words, the pr coordinate obtained by the IPS al-
gorithm is disturbed more frequently. Note that this cor-
relates with our statistical analysis (see Subsection 3.D).
If we refer to Fig. 5(b), the reason for this shortcoming of
the IPS algorithm is obvious. A larger number of color
lines is directed along the r axis. In addition, several
lines are located close to the diagonal from (r, g)
5 (1, 0) to (0,1). Those lines result from interreflections
at object borders that are accepted only by Lee’s IPS
method and not by our CLS approach.

Concerning the IPS method on clipped data, the points
of intersection are detected more reliably ( r̂2 . 0.9) as
compared with the method on unclipped data ( r̂2

, 0.8). This is caused by the increased signal-to-noise
ratio, yielding longer descending parts of IPS color paths.
However, improved reliability does not coincide with in-
creased precision. In the case of clipped data, the detec-
tion of the ascending part of IPS color paths often fails.
Therefore a high variance of measures is obtained (Table
1), which is visualized by the enlarged cluster size of
rhombs as compared with that of crosses (Fig. 6, lower
row).

In our analysis, the results obtained from the white il-
lumination have been proven more reliable than those ob-
tained from the yellow-colored source of light. On the
one hand, this is caused by the enlarged focus of the yel-
low lamp. On the other hand, yellow is a mixture of red
and green. Therefore the difference between body and
surface reflection is reduced on red, green, and also or-
ange objects. Hence minor estimation errors have major
effects on the color line parameters. Furthermore, the
lack of short-illumination wavelengths reduces the num-
ber of reliable color lines obtained from blue surfaces, be-
cause the reflection of blue surfaces is limited by the in-
tensity of the blue component of the illuminant. Since
these lines are directed in the rg diagram from (r, g)
5 (0, 0) toward (1,1), they are important for a sharply fo-
cused point of intersection in the color diagram.

Another limit of the proposed algorithm may result
from the simple threshold technique that is used to deter-
mine the ROIs around specular highlights. Note that the
simplified definition of saturation in Eqs. (9) is not mean-
ingful as such because it does not have any chromatic ad-
aptation mechanism and it is implicitly assumed that the
images have been correctly color balanced. Hence any
selection of the thresholds in Eqs. (9) carries the risk of
excluding strongly colored illuminants. However, such
fundamental failures of the CLS approach have not been
observed in real-world scenes.

5. CONCLUSION
In this paper, we have proposed the algorithm of color line
search (CLS) to estimate the chromaticity of a single
point source of light from a single color image. Our CLS
method applies standard techniques, such as Hough and
Karhunen–Loève transforms, but does not require diffi-
cult preprocessing steps such as knowledge-based seg-
mentation or other high-level image analyses. Informa-
tion about the color of the illuminant is extracted from
highlighted regions that can be located easily at colored
surfaces by simple thresholding. We have evaluated the
method on real-world scenes with statistically reliable re-
sults. Both stability and accuracy are significantly im-
proved as compared with those of the former method of
image path search (IPS). Therefore the CLS method is
suitable for a wide range of applications.

The CLS method can be upgraded to scenes of objects
with only macrotextured surfaces if gaps of more than 2
pixels in the image paths are allowed during the consis-
tency check. However, this will require a more sophisti-
cated consistency check procedure. Nevertheless, the
normalized colors obtained from any surface should in-
duce a certain line in the rg diagram to validate the
dichromatic reflection model. With such an extension,
image-based illuminant estimation is no longer restricted
to scenes of objects with homogeneous surfaces.
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APPENDIX A: DERIVATION OF EQUATIONS
(5)
To derive Eqs. (5), we start from the three linear equa-
tions

R 5 wsbss
R 1 wbbb

RsR,

G 5 wsbss
G 1 wbbb

GsG,

B 5 wsbss
B 1 wbbb

BsB, (A1)

which describe the dichromatic reflection model [Eq. (3)].
Normalization of the blue channel in Eqs. (A1) to the red
one gives

B

R
5

wsbss
B 1 wbbb

BsB

wsbss
R 1 wbbb

RsR
. (A2)

We extend the fraction in Eq. (A2) by the term (bb
G

2 bb
R)sG, resolve the bracketed expressions in the divi-

dend, and obtain

Factoring out the terms (bb
G 2 bb

R)sB and sGsB in Eq.
(A3) yields

B

R
5

~wsbss
G 1 wbbb

GsG!~bb
B 2 bb

R!sB

~wsbss
R 1 wbbb

RsR!~bb
G 2 bb

R!sG

1
~wsbsbb

G 2 wsbsbb
B 1 wbbb

Rbb
G 2 wbbb

Rbb
B!sGsB

~wsbss
R 1 wbbb

RsR!~bb
G 2 bb

R!sG
.

(A4)

We cancel out sG in the second addend, extend by sR, and
factor out bb

G 2 bb
B in Eq. (A4) to obtain

B

R
5

~wsbss
G 1 wbbb

GsG!~bb
B 2 bb

R!sB

~wsbss
R 1 wbbb

RsR!~bb
G 2 bb

R!sG

1
~wsbss

R 1 wbbb
RsR!~bb

G 2 bb
B!sB

~wsbss
R 1 wbbb

RsR!~bb
G 2 bb

R!sR
. (A5)

In Eq. (A5), we are able to cancel out the bracketed ex-

B

R
5

~wsbss
B 1 wbbb

BsB!~bb
G 2 bb

R!sG

~wsbss
R 1 wbbb

RsR!~bb
G 2 bb

R!sG
5

wsbsbb
GsGsB 1 w

~ws

G

R 1 G 1 B
5

~wsbss
G 1

~R 1 G

5
~bb

B

~R 1 G 1

1
~bb

G 2
pression in the second addend. This results in the form
of a straight line [Eq. (4)]. Slope a and intercept b are
given by Eqs. (5):

B

R
5

~bb
B 2 bb

R!sB

~bb
G 2 bb

R!sG

~wsbss
G 1 wbbb
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~wsbss
R 1 wbbb
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1

~bb
G 2 bb

B!sB

~bb
G 2 bb
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5 a
G

R
1 b

with

a 5
sB

sG

bb
B 2 bb

R

bb
G 2 bb

R , b 5
sB

sR

bb
G 2 bb

B

bb
G 2 bb

R . h

APPENDIX B: DERIVATION OF EQUATION
(7)

To derive Eq. (7), we start again from the three linear
equations (A1) but normalize the green channel to the
sum of red, green, and blue. This yields

G

R 1 G 1 B
5

wsbss
G 1 wbbb

GsG

R 1 G 1 B
. (B1)

We extend the fraction in Eq. (B1) with the term (bb
BsB

2bb
RsB 1 bb

GsG 2 bb
RsG)sR, split the fraction, and factor

out the terms (bb
B 2 bb

G)sGsB and (bb
G 2 bb

R)sRsG to
obtain

Factoring out sR in Eq. (B2) and substituting the expres-
sions from Eqs. (A1) for R, G, and B yield

G

R 1 G 1 B

5

sRsGF ~bb
G 2 bb

R!~G 1 B ! 1
sB

sR ~bb
B 2 bb
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~R 1 G 1 B !~bb

BsB 2 bb
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GsG 2 bb
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(B3)
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A division by the term sRsG(bb
G 2 bb

R) in Eq. (B3) holds:

G

R 1 G 1 B
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B 2 bb
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(B4)

Now we split the fraction in Eq. (B4) and factor out the
term sB(bb

B 2 bb
R) in the divisor to obtain the straight

line form Eq. (7) with slope a8 and ordinate intercept b8:
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APPENDIX C: PROOF OF EQUATIONS (8)
The intersection of two color lines in the rg diagram at
(r, g) 5 ( pr , pg), which results from objects with another
spectral emission, is given by Eq. (7):

pg 5 a8pr 1 b8. (C1)

The replacement of a8, b8, and pr in Eq. (C1) by their
definitions from Eqs. (7) and (8) yields

pg 5

sRF21 1
sB~bb

B 2 bb
G!

sR~bb
G 2 bb

R!
G

~sR 1 sG 1 sB!F1 1
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sG~bb
G 2 bb
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G

1
1

1 1
sB~bb

B 2 bb
R!

sG~bb
G 2 bb
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. (C2)

Unifying both divisors in Eq. (C2) by extension of the sec-
ond fraction with the term sR 1 sG 1 sB results in

pg 5

F21 1
sB~bb

B 2 bb
G!

sR~bb
G 2 bb

R!
GsR 1 ~sR 1 sG 1 sB!

~sR 1 sG 1 sB!Fbb
BsB 2 bb
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GsG 2 bb
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G 2 bb
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G .

(C3)

By an extension with the term sG(bb
G 2 bb

R), we simplify
the double fractions in Eq. (C3) and obtain
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We factor out the term sG/(sR 1 sG 1 sB) and resolve
the multiplication. This yields
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