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Abstract. Recently, research in the field of content-based image
retrieval has attracted a lot of attention. Nevertheless, most existing
methods cannot be easily applied to medical image databases, as
global image descriptions based on color, texture, or shape do not
supply sufficient semantics for medical applications. The concept for
content-based image retrieval in medical applications (IRMA) is
therefore based on the separation of the following processing steps:
categorization of the entire image; registration with respect to proto-
types; extraction and query-dependent selection of local features;
hierarchical blob representation including object identification; and
finally, image retrieval. Within the first step of processing, images
are classified according to image modality, body orientation, ana-
tomic region, and biological system. The statistical classifier for the
anatomic region is based on Gaussian kernel densities within a
probabilistic framework for multiobject recognition. Special empha-
sis is placed on invariance, employing a probabilistic model of vari-
ability based on tangent distance and an image distortion model.
The performance of the classifier is evaluated using a set of 1617
radiographs from daily routine, where the error rate of 8.0% in this
six-class problem is an excellent result, taking into account the dif-
ficulty of the task. The computed posterior probabilities are further-
more used in the subsequent steps of the retrieval process. © 2003
SPIE and IS&T. [DOI: 10.1117/1.1525790]

1 Introduction

The importance of digital image retrieval techniques is in-
creasing in the emerging fields of medical imaging and pic-
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ture archiving and communication systefPACS. Up to
now, textual index entries were necessary to retrieve medi-
cal images from a hospital archive, even if the archive was
digital imaging and communications in medici(i2lCOM)
compliant. Currently, much research is done in the field of
image retrieval, but the majority of today’s content-based
image retrievallCBIR) approaches is intended for brows-
ing large databases of arbitrary cont¢@BIC (Ref. 1),
Photobook Blobworld?], e.g., collected from the World
Wide Web? For thorough collections of techniques, we re-
fer to special issues of notable journals, suchlBEE
Transactions on Pattern Analysis and Machine Intelligence
(vol. 18, no. 8, 199§ IEEE Transactions on Knowledge
and Data Engineeringvol. 10, no. 6, 1998 Computer
Vision and Image Understandingol. 75, no. 1-2, 1999
andImage and Vision Computingol. 17, no. 7, 1999 or
comparative surveys, e.g., Refs. 5 and 6.

Usually, the features used for indexing characterize the
entire image rather than image regions or objects, and one
of the most effective features of such systems is color.
Unfortunately, color-based features are not suitable for the
majority of medical images, which are usually gray-scale
images. Advanced CBIR approaches are repof&d.,
Ref. 8, but their applicability to medical images remains to
be shown. Resulting from the variety of images, common
CBIR systems have only a rudimentary understanding of
image content, with little or no distinction between impor-
tant and negligible features or between different anatomical
or biological objects in the image. But queries of diagnostic
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relevance include searching for organs, their relative loca-ary, and temporal queries. However, those concepts for
tions, and other distinct features such as morphological ap-medical image retrieval are task-specific and not directly
pearances. Therefore, common CBIR systems cannot guartransferable to other medical applications.
antee a meaningful query completion when used in a Tagareet al. point out some of the unique challenges
medical context. In contrast to this, the image retrieval in retrieval engines are confronted with when dealing with
medical applicationgIRMA) system—a joint project of medical image collection¥. Medical knowledge arises
three RWTH Aachen University of Technology from anatomic and physiologic information, requiring re-
institutes—is being developed for use in daily clinical gional features to support diagnostic queries. However, in-
routine? terpretation of medical images depends on both image and
This paper presents the general, multistep approach ofjuery context. Since the context of queries is unknown
the IRMA project and reports details of the image classifi- when images are entered into the database, the database
cation step within the IRMA system. This first step is of Scheme must be generic and flexible. Particularly, the num-
major importance as the retrieval system must know theber and kind of features are subject to continuous evolution.
anatomical region presented in a given image to be able toFurthermore, categorization and registration of medical im-
answer complex medical queries. We present a generaRgdes are required to support diagnostic queries on a high
probabilistic framework for object recognition and show its level of image interpretation.
effectiveness for radiograph classification, where invari-
ance to small image transformations is incorporated by us-2.2  The Multistep Approach

ing invariant distance measures. We also present a thorougl contrast to common approaches to image retrieval, the
quantitative analysis of the performance of the classifier, |RMA concept is based on a separation of the following
which is rarely provided in the literature. The analysis is seven steps to enable complex image content
based on 1617 radiographs arbitrarily selected from clinical uynderstandiny(Fig. 1):
routine.

1. image categorizatiofbased on global features

image registratiorin geometry and contrgst
feature extractioifusing local features

feature selectiofcategory and query dependgnt
indexing(multiscale blob representatipn
identification(incorporating prior knowledge
retrieval(on abstract blob levgl

2 IRMA System

2.1 Medical Constraints to Image Retrieval and
Related Work

Since global color, texture, or shape analyses are insuffi-
cient to characterize medical images, retrieval results are
rathgr poor whelr}) 1clommon CBIR systems are applied 105,54 Categorization
medical image$1°! In recent reports, some approaches _ ] _ ) _ )

for content-based retrieval designed to support specificVarious imaging techniques require adapted image process-
medical tasks have been published. Ketral. describe a ~ INg methods. For example, ultrasonic images of vessels
system for fast and effective retrieval of tumor shapes in must be processed in a different manner than skeletal ra-
mammogram x ray¥ where the morphological features d|ographs_. Thus, if a rao!lolog|st is searching the database
are defined on binary images. To transfer this promising for all radiographs showing a pulmonal tumor, the IRMA
approach to other tasks, redesign of the structuring ele-System processes only radiographs that have a sufficiently
ments is required. One emphasis of their work is fast high posterior probability for the class “chest.” Therefore,
searching in the underlying database, which we do not con-the categorization step not on_ly r_educes the computational
sider explicitly in this paper. Other feature-extraction meth- complexity of an IRMA query, it will also reduce the false-
ods or similarity models are known, where especially in- alarm rate of the system, improving its precision. Based on
variant features are used for image retriévs!. For _global featL_Jres, the IRMA approach distinguishes four ma-
instance, shape histograms are used in Ref. 14 in combinalOr categories:

tion with a quadratic-form distance function comparable to
the Mahalanobis distance with a structured covariance ma- ] ] .
trix. The automatic search and selection engine with re- 2. body orientatior{technical

trieval tools(ASSERT) system operates on high resolution 3. anatomic regiorfanatomical

computed tomographies of the lufyA physician delin- 4. biological systenffunctiona)

eates the region bearing a pathology and marks a set of

anatomical landmarks when the image is entered into theThese categories build subclasses resulting in hierarchically
database. Hence, ASSERT has high data entry costs, whictructured categori€sThus far, only the first level of the
prohibit its application in clinical routine. Chet al.present  anatomical hierarchy is used for classification experiments.
a knowledge-based retrieval system with spatial and tem- Modern modalities enable submission of textual infor-
poral construct® Brain lesions are automatically extracted mation about the examination. However, the medical staff
within three-dimensional3-D) data sets from computed often does not enter appropriate or sufficient data into the
tomography and magnetic resonance imaging. Their represystems, as a recent study showed quantitati\aiyy one
sentation model consists of an additional knowledge-basedut of four examined modalities included the correct digital
layer within the semantic model. This layer provides a imaging and communication in medicitBICOM) header
mechanism for accessing and processing spatial, evolutioninformation and even in this case the information was in-

No ook o

1. image modality(physica)
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Fig. 1 IRMA architecture.

correct in 15.5% of the examined cak¥sIn a well- image category as well as medical knowledge incorporated
managed DICOM-compliant PACS linked to a hospital in- into the query is used to select a precomputed set of ad-
formation system, text-based retrieval will give excellent equate feature images. For example, the retrieval of radio-
results. But in many cases automatic indexing by imagegraphs with respect to bone fractures or bone tumors is
content is still a necessary component to provide sufficientdone using an edge-based or texture-based feature set, re-
information, where these two methods should not be spectively.

viewed as mutually exclusive but as synergistic tools.

2.2.2 Registration .
2.2.5 Indexing

Diagnostic inferences derived from images are deduced . . )

from an incomplete but continuously evolving model of FOr query processing, the amount of information processed
normality’’ In the IRMA system, this model is represented In the previous steps must be drastically reduced. Based on
by prototype images, which are defined for each categoryf€ature sets, the image is segmented hierarchically into rel-
by an expert based on prior medical knowledge or by sta-8vant regions, which are described by invariant moments
tistical analysis. The prototypes are used for determination'®Sulting in structures called bloBsThereafter, the blob

of parameters for rotation, scaling, and translation as well 'éPresentation of the image is adjusted with respect to the
as contrast adjustment. However, the images are not transParameters determined in the registration step.

formed at this stage of processing.

2.2.3 Feature extraction 226

The processing of semantic queries drawn from medical
routine requires local features, e.g., the local gradient,
which are connected to pixels. Like the global features for
categorization, the number of local feature images is exten-
sible. Category-specific local features include segmentatio
by active contours or active shap@syhich enable the use
of prior shape knowledge from the categories.

Identification

The hierarchical blob tree has been registered with respect
to a certain category, where categories are represented by
prototypes. Since the local features reflect characteristic
and discriminant properties of tissue, certain blobs corre-
nspond to well defined morphological structures in the im-
age. Vice versa, prior medical knowledge on the content
and structure of category prototypes can be used to build a
. prototype blob structure with characteristic properties for
2.2.4  Feature selection blob identification and labels for semantic queries. While
It is important that feature extraction and selection are blob identification probably will not be successful for all
separate steps in the IRMA concept. This enables the latteblob entities, blob trees are an applicable data structure to
task to be retrieval-dependent. Prior knowledge about theincorporate medical knowledge into the IRMA system.
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2.2.7 Retrieval

Retrieval is performed by searches in the hierarchical blob
structures. In IRMA, a query is built from the following
components:

1. a list of possible categories of the recall images

2. a query by example blob-structure on the optimal
scale to process the query

3. the set of local features that best describe significant
properties for the query

However, not all of these components must be set for all
queries. The assignment of categories to the images signifi-
cantly increases the performance of retrieval as only the
blob structures for images of the possible categories have to|
be compared. However, data structures and distance mea
sures that have been described for image retri@vagjuire
refining so that only selected blobs and features are relevant
in the query.

2.3 Interdependence of the Steps

Care must be taken witlpossibly fals¢ local decisions
because of the interdependence of the steps. To improve the
pOSSIIbI.llty of obtaining the Ove_ra" beSF pOSSIbl_e query re- Fig. 2 Example radiographs taken from the IRMA database, scaled

sult, it is necessary to work with a variety of different hy- to common height: left to right, top row, abdomen, limbs, breast,
potheses throughout these steps. This holistic approach hasiddle row, skull, chest, and spine; bottom row, examples of varia-
shown superior performance over local decisions in manytion within one class (limbs).

applications, such as speech recognifibAn example of

modeling of vague knowledge is the computation of poste-

rior probabilities during the categorization step, which original aspect ratip In previous experiments, it was
avoids the hard choice of a possibly false image category.shown that this downscaling does not affect classification
Thus, it is not necessary to correct a false decision later, buperformance significant8# Since there are only 1617 im-
instead the entire process works on multiple hypotheses atges available, we apply a leaving-one-out approach for
the same time. It is helpful to consider classification meth- cross validation. That is, to classify an image we use the
ods for CBIR because classification and image retrieval aimremaining 1616 images as references and report results av-
at similar objectives, which has been pointed out before eraged over the entire 1617 experiments.

(e.g., in Ref. 11

4 Feature Extraction

3 Image Database L

) ) ] ] We make use of appearance-based pattern recognition, i.e.,
The image database used in the experiments consists oach pixel of an image is interpreted as a feature. Thus, all
medical radiographs taken from daily routitwith the pa-  the information contained in an image is used for classifi-
tient information eras@dwhich are secondary digital, i.e., cation. As an additional feature throughout the experiments
they have been scanned from conventional film-based rawe use the aspect ratio of the images. Although invariances
diographs(Fig. 2). The corpus consists of 110 abdomen, play an important role for classifying radiographs, we do
706 limbs, 103 breast, 110 skull, 410 chest, and 178 spinenot extract invariant features. Instead, we incorporate these
radiographg(200 200 up to 2500< 2500 pixels, 8 bitk invariances in the classification algorithm itself. This is
summing to a total of 1617 imagé&The distribution of  done using distance measures that are—for instance, invari-
the images reflects the clinical routine at the Department ofant to transforms such as image rotation, axis deformations,
Diagnostic Radiology, RWTH Aachen University Hospital, scaling or varying image brightness. In the following, we
Germany. The quality of radiographs varies considerably denote images of dimensiordxJ by x={x;; e R:i
and there is a great within-category variabiligs caused -1 | j=1,... J} with x;; being the gray level at
by different doses of x rays, varying orientations, images pixel (i,j). !
with and without pathologies or contrast agents, changing '
scribor position, etg. Furthermore, there is a strong visual o o
similarity between many images of the classes abdomerP Statistical Framework and Classification
and spingFig. 2). Therefore, the classification problem can The first step of the IRMA concept is a classification task.
be considered being hard. To classify an observatiore R'*” we use the Bayesian

Furthermore, a smaller set of 332 images exists that isgecision rulé®

used to test the generalization abilities of the classifier. To
speed up the classification process, the original images arg—r (x)=argmaxp(k)p(x|k)}, (1)
scaled down to a common height of 32 pixéigeping the k
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wherep(k) is the prior probability of clask andp(x|k) is Furthermore, the only transformation considered for the
the class-conditional probability for the observatiogiven reference images in the experiments is horizontal $iéft-
classk (Ref. 24. The decision rul¢Eq. (1)] is known to be tical shifts do not occur as all images are scaled to the same
optimal with respect to the number of classification errors height and objects are assumed to be cenjefedimple
(assuming equal cost for each ejaf the true probability ~ background model is used fqy,, assuming a constant
density functions are knowft.For multiple-object recogni-  background of grayvalue zero and large variance. Based on
tion, we extend the elementary decision rule into the fol- the different sizes of observation and reference images, a
lowing directions: penalty term is introduced preferring images of roughly the

. same size. To model the referenq&{sqlmk(ﬂ)], kernel

1. We assume that the scepe; | contains an unknown  jaensities are used:
number M of objects belonging to the classes

ki, ... ky=:k). Reference modelp(x|uw,) exist 1 Mg A%, fin(9)]
for each of the classés=1,... K, anduo repre-  p[X|u(9)]= 5~ A—exp{ — 2—”] , (4)
sents the background. kn=1%ky ok Y

2. We make decisions about object boundaries, i.e., theWhereN is the number of reference images of cliis
original scene is implicitly partitioned inttl +1 re- K 9 P

. M wh o o is then'th reference pattern of class o denotes the class
gionslg', wherel ”‘Cf{(' ’J)',I =L =1 I specific standard deviation amfix, u(wuy,, )] one of the
is assumed to contain the'th object, andlo repre- (s areqidistance measures introduced latghich are not
sents the background. necessarily metrigs To compensate for the fact that vari-
3. The reference models may be subject to certain trans-ances are usually underestimated if only few training
forms (rotation, scale, translation, eicThat is, given  samples are available, we multiply the estimated variances
transformation parametes®)’ , them'th reference is  with a factory> 1. Strictly speaking, the normalization fac-
mapped toMkm—>,ukm(z‘}m). tor Ay , depends on the clagshowever, the dependency is
weak and therefore neglected in the experiments. The prior
The idea is now to consider all unknown parameters, i.e.,probabilities are modeled using the relative frequencies
M, kM, o) and (implicitly) 1Y and to search the hypoth- p(k)= Ny/N with the total number of reference imagss
esis which best explains the given scene. This must be don&imilar approaches to model the distribution of feature vec-
considering the interdependence between the image partitors are common practice, also in the processing of medical
tioning, where partitioning is only part of the classification images. For example, a combinatorial search to find the set
process(holistic concept Note that this means that any Of most discriminative features for a kernel density classi-
pixel in the scene must be assigned either to an object or tdier for brain images is applied in Ref. 11.
the background class. The resulting decision rule is Resulting from the exponential decay with increasing
distance in Eq(4), only the closest reference pattenag,
M contribute substantially to the sum. Using more than the 10
M closest matches with respectdaloes therefore usually not
a>{p(k1 )ngo p[xlml’ukm(ﬁm)] ’ @ change classification results significantly. To determine
these closest matches, it is generally sufficient to comghute
for the (e.g., 100 closest references in terms of Euclidean
where{x;;} denotes the scene to be classified, &nds the distance, which can be efficiently determined.

feature vector extracted from regidp,. Note that if not .
searching for all of the parameters, a summation over theS Invariance
disregarded parameters should be performed. As the truédhe kernel density classifier is based on invariant distance
density functions are not known in practical situations, we measures. The baseline for the experimental results is here
must choose models for these functions and estimate theithe distance corresponding to a Gaussian density, i.e., the
parameters from the training data. Invariance aspects aréahalanobis distanc€.Because of the high dimensionality
directly incorporated into these models using a probabilistic of the extracted feature vectdies.g., for a region of size 32
model of variability?* In Eq. (2), p(k'f') is a prior over the X 32 we have 1024 featurgs comparison to the number
combination of objects in the scene, which may depend onof samples per class we used a multipié v-1 of the
the transformation parameters and the combination of ob-identity matrix as class specific covariance matrix in the
jects (e.g., a skull located close to a spine is more likely experiments. Note that the tangent distance can be inter-
than close to a fot preted in a probabilistic framewofR, implying that the

The consideration of all the components of the presentedterm “Gaussian kernel densities” is still applicable for tan-
decision rulgEq. (2)] is a long-term goal. We started with gent distance when the tangent vectors are based on the
the consideration of the interdependence between segmeneferences. Strictly speaking, when using the image distor-
tation and recognition. For classification of medical images, tion model, the density functions are not Gaussian any
the “scene” equals the radiograph to be classified and wemore.
assumeM =1. Thus, Eq(2) reduces to

r({x;;})=argm
M kY ol

6.1 Tangent Distance

f({Xij})=argma){p(k)p(X|0|Mo)p[X|1|Mk(19)]}- (3 In 1993, Simarcet al. proposed an invariant distance mea-
k, 9 sure called tangent distan¢€D), which proved to be es-
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g l Q Fig. 4 One-dimensional comparison of IDM (left) and TD (right)
‘ * (Ref. 27).
(e) () (8) (b)

Fig. 3 Example images generated using linear approximations of
affine transforms and image brightness: (a) original image, (b) left

shift, (c) down shift, (d) hyperbolic diagonal deformation, (e) hyper- model the image brightness, which i_S determined by the
bolic axis deformation, (f) scaling, (g) right rotation, and (h) in- x-ray dose and other factors. A two-sided TD can also be
creased brightness. defined, where both manifolds are approximated and the

distance is minimized over possible combinations of the
respective parameters. Furthermore, the approximation of
the manifolds can be improved by an iterative procedure
based on Newton’s method, which is computationally more
expensive®?’

pecially effective in the domain of optical character
recognition?® The authors observed that reasonably small
transforms of certain image objects do not affect the class
membership. Simple distance measures such as the Euclid-

ean distance do not account for this. Instead, they are very; Image Distortion Model

sensitive to affine transformations such as scaling, transla- ) )
tion, rotation or axis deformation. When an image Although TD alone is already a very effective means to

e R is transformede.g., scaled and rotateby a trans- compensate for small global transformations of an image, it
formationt(x, ) which. dépends ol parametersy e R- is highly sensitive to local image transformations. These

. : are, e.g., caused by noise, pathologies, varying collimator
E?Aﬁg’fé?riesﬂ;?e:ﬁgw and rotation anglthe set of all fields, or changing scribor positions in a radiograph. We

therefore propose the following image distortion model
(IDM). When calculating the distance between two images
x and u, local deformations are allowed, i.e., the “best-
is a manifold of at most dimensidnin pattern space. The fitting” pixel n the referel_'lce image within a_certaln neigh-
distance between two patterns can now be defined as th&0roodR;; is regarded instead of computing the squared
minimum distance between their respective manifolds, be-€rror betweerx;; and u;; . Figure 4 shows a 1-D example
ing truly invariant with respect to thé regarded trans-  for the IDM where individual pixel displacements are inde-
forms. However, computation of this distance is a hard non-pendent compared to the TD, where displacements are
linear optimization problem and the manifolds concerned coupled forming an affine transforthere scaling The re-
generally do not have an analytic expression. Therefore sulting distance is

small transformations of the pattexnare approximated by

a tangent subspad"é\x to the manifoldM, at the pointx.

M, ={t(x,a):ae R-}CR"™, (5)

This subspace is obtained by addingkta linear combina- ~ diom(X, ) = .E min - {{lxij— wirj 2+ Cijivj b (8)
tion of the vectorsy,,I=1, ... L that are the partial de- bnineR;

rivatives oft(x,«) with respect toa; and span the tangent

subspace. We obtain a first-order approximatioVgf: The cost functiorC=0 represents the cost for deforming a

pixel x;; in the input image to a pixek;,;. in the reference
' image. It compensates for the fact that in an unrestricted
CR™ (6) distortion model(i.e., C=0) wanted as well as unwanted
transformations can be modeled. With growing neighbor-
hood R;; the admissible transformations may violate the
assumption that they respect class membership, but an ap-
propriate choice oR;; significantly improves radiograph
7) classification even when the cost function is disregarded.
To determineC, one may want to learn it from the training
data or choose it empirically, e.g., by using a weighted
The tangent vectorg can be computed using finite differ- Euclidean distance between the corresponding pixel loca-
ences between the original image(or x) and a small  tions. The latter approach leads to a preference of local over
transformation of that imag®. In the experiments, we long-range transformations and was done in the experi-
computed the six tangent vectors for affine transfottws ments.
translations, rotation, scaling and two axis deformati@ss Note that the TD and the proposed distortion model can
proposed by Simardt al., but replaced the tangent vector be easily combined to a so-called distorted TD. In that case,
for “line thickness” (which is important for optical charac- the tangent distance is used to register(#d)images and
ter recognition by a “brightness” tangent vectofFig. 3). the distortion distance is then computed between the regis-
All elements of this vector were set to a constant value to tered image$*28

L

I\//I\X= X+2 oV iaeRt
=1

The one-sided tangent distantg, (X, ) is then defined as

L
X+ > o vi—u|?
=1

drp(X, ;)= mina[
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Table 1 Error rates in percentages for the IRMA database (statisti- anobis distance, resulting in an error rate of 14.0%. Using
cal approach with kemel densities using leaving-one-out). the presented image distortion model with a region size of
3 X 3 pixels, the error rate was reduced to 12.1%. Although

This Work _ the distortion model is straightforward, it effectively com-
Thresholding pensates for local variations in radiographs. Using only the
Distance measure No Yes TD, the error rate was 13.3%. This gain was not as large as
for the distortion model, but is still remarkable. In another
Mahalanobis distance 14.0 11.2 experiment, it was investigated whether the improvements
D 13.3 1.1 of the TD and the IDM are additive. This sounds reason-
IDM 121 9.0 able, as the TD compensates for global image transforma-
Distorted TD 104 8.0 tions, whereas the IDM deals with local perturbations. In-
deed, using the distorted TD, the error rate was further
Results for Comparison reduced to 10.4%. As a few large differences in pixel val-
Squared images, 1-NN 181 ues can mislead classifiers based on squared error d_istances
) ' » ' (e.g., Ref. 30 a local threshold was introduced to limit the
Squared images, kemel densities 16.4 maximum contribution of a single pixel difference to the
* aspect ratio 14.9 distance between two images. This is especially justified
Cooccurrence matrices 29.0 here, because the images may be subject to artifacts that do

not affect class membership, such as noise or changing scri-
bor position in radiographs. Applying this thresholding ap-

. proach, the error rate was reduced to 8.0%.

6.3 Relating TD and IDM To make sure that no overfitting occurred in the experi-

It is interesting to see that the positive effects of the TD and ments, the 332 previously unseen radiographs were used as
IDM are additive in the case of radiograph classification. test images and the 1617 images of the IRMA database as
When trying to relate these two approaches, it becomesreferences. Using the optimal parameters for the database
clear that one can be expressed in terms of the éther. determined by the leaving-one-out strategy, the algorithm
Generalizing the IDM yields misclassified 30 of the new radiograpl®.0%), which
means that the classifier proposed here generalizes very

o 2 well.
dcf(x’“)_?]'g C(f)+i2’j i = el ©) Regarding the computational complexity, the distance
- functions require a different amount of computation in
comparison to the Mahalanobis distan@ehich is a mul-
tiple of the Euclidean distance her&or the one-sided tan-
M gent distance the tangents for the prototypes can be calcu-
' lated before classification. Thus, only the projection into
the subspace must be calculated in the recognition step,
which increases the computational cost approximately by a
Fow={f:f(i,j) eR;}, Coom(H)=2, Cijt(ij) » (10 factor of (L+1). If the tangent vectors are calculated on
L the basis of the observations, the cost for the computation
) i and orthogonalization of the tangent subspace must be
while, for the TD,C and F have the following representa- 54ded. In the IDM, the number of comparisons of pixel

where FC (RXR)""Jis a class of functions assigning to
each pixel its(interpolatedl counterpart andC: F—R=° a
cost function for these assignment functions. For the 1D
one has

tion: values is increased roughly proportional to the size of the
it - _ regarded regiomR;; .
Fro={f:f affine}, Cyp(f)=0. 1y In the course of this work, various other experiments

were carried out, some of which are worth mentioning. For
example, several tangents based on other transformations
(e.g., projectivg were tested in experiments, but no im-
provement over the combination of affine and brightness
transforms was obtained. Furthermore, experiments con-
cerning the creation of virtual data method that was very
successful for the task of optical character recognftion
did not yield improvements on this particular dataset.

The use of cooccurrence matridkss often considered
to be helpful for content-based medical image retrieval.
However, our experiments on radiograph classification do
: not support this thesis. In two experiments, we used global
7 Experimental Results cooccurrence matrices for feature analysis within a syner-
The experimental results are summarized in Table 1. As thegetic classifiet> and within a kernel density based classi-
images are scaled to the same height, the possible regionfier. In both cases, we were not able to obtain classification
that are hypothesized in E(R) are restricted to rectangular error rates below 29%. Apparently, cooccurrence matrices
areas of the same height, which enables efficient maximi-do not provide discriminative features for radiograph clas-
zation. The baseline results were obtained using the Mahalsification. Nevertheless they might still be useful for the

This general expression is an intuitive representation of a
distance being invariant to arbitrary functiohf some
classF. Computing Eq(9) may be computationally expen-
sive with some classes and cost functiqesg., for the
warping model presented in Ref. 29 no polynomial mini-
mization algorithm is known but the TD and IDM are two
examples with known effective solutionfin the case of
TD this is true at least for a reasonable approximation since
strictly speaking, Eq(11) models the true manifold dis-
tance]
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subsequent IRMA steps, e.g., for tumor localization within This approach has recently been extentleSince the op-
a(previously categorizedadiograph. In this case, cooccur- timization determines the computational complexity of the
rence matrices would be computed from small parts of themethod, iterative and locally optimal algorithms such as the

image, not from the complete image. expectation maximization algorithm can also be
considered® Note that the framework presented here does

8 Discussion not impose any restriction on the type of feature extraction
used. This ensures extensibility to multimodal datasets,

8.1 IRMA Concept where aligned images can be treated as one image with an

Figure 1 summarizes the multistep approach of the IRMA extended feature vector per pixel. Furthermore, the exten-
system. The seven processing steps are sequentially confion to multidimensional imag_es is straightforwz_;\rd, bgt the
bined, where the interdependence of local decisions mussearch space that must considered grows rapidly with the
be regarded as mentioned above. These processing stegsimber of dimensions. However, the resulting difficulties
correspond to five semantic layers for knowledge represencan be handled by using efficient search strategies.
tation. Like other systems, the unprocessed images form the .
first layer, which is called the raw data layer. Categorization 8-4  Transformation Models
(which is presented in detail hgrand registration within ~ Conceptionally, both TD and IDM can be extended to mul-
each category are the first level where medical knowledgetimodal and multidimensional datasets. Multimodality
is incorporated into the IRMA system. Hence, both steps (again assuming a reasonable registratican be treated
result in the second semantic layer, which is called the reg-using extended feature vectors. Whereas more than the con-
istered data layer. While other medical CBIR systems aresidered two dimensions do not require changes in the tan-
restricted to a certain modality or diagnostic gent model and for the IDM only the considered regions
proceduré?>!8the registered data layer in IRMA enables must be adjusted. Nevertheless, the applicability of the ap-
queries across all kind of medical images regardless of mo-proach to such datasets remains to be evaluated experimen-
dality, orientation, body region, or biological system. Fur- tally.
ther semantic layers are the feature layer, the scheme layer, Concerning the generalized transformation model
the object layer, and the knowledge lay&ince retrieval is  [Eq. ((9)], it is interesting to investigate which other cases
performed on the knowledge layer, all other layers are pro-(besides TD and IDMmay be useful for invariant pattern
cessed at data entry time. Hence, they are not critical forrecognition, and whether one can learn the functions effi-
the system performance. In general, the IRMA concept isciently from training examples. For instance, the IDM can
related to the Blobworld projeétHowever, there are sev- be extended naturally to introduce a dependency between
eral important extensions of the Blobworld concept espe-the displacements of pixels in a neighborhood, such that
cially designed for medical purposgsyhich allow prior displacements in the same direction are “cheaper” than
knowledge on both image and query content to be used forthose in opposite directions. This leads to more complex
content-based image indexing. minimization problems, where one example with interest-
ing properties but high computational complexity is 2D
8.2 Database warpingg)9 and its extension$.

The size of the database used with currently less than two
thousand images, may seem small in comparison with8> Results

large-scale databases with millions of entries that must toThe result for the TD using a local threshold is only slightly
be handled in real-world PACS. Nevertheless, to the best ofbetter than that of Mahalanobis distan¢gl.1 versus
our knowledge, the IRMA database is the first database of11.2%. A possible explanation for this behavior is that us-
this size containing medical images from daily routine that ing the thresholding approach may mimic the behavior of
are labeled by an expert, enabling a detailed evaluation ofthe TD in this particular application, because the subspace
the classification performance. On larger databases it willprojection minimizes the sum of squared pixel differences.
be necessary to reduce the computational load using knowrNote also that in previous experiments, all IRMA images

algorithms for the access of large databdsgs’ were scaled down to a common size 06322 pixels prior
o to classification(more information on that approach is
8.3 Statistical Framework given in Refs. 22 and 24 In these experiments, the TD

Once the maximizing arguments in the decision rule significantly outperformed the Mahalanobis distaraéth

[Eq. (2)] have been determined, it is straightforward to con- and without the thresholding approacfihus, it seems pos-
struct a parse tree as a description of the image from theSible that the main effect of the TD is the compensation of
implicit segmentation information, which is done using a image shifts(which is now inherent in the classification
neural net approach in Ref. 34. Special attention to the@pproach by optimizing over all possible image positjons
subject of occlusion is paid in Ref. 35, where mainly object Interestingly, the background model with independent pixel
contours are considered for recognition, not the objectsassignments used in Ref. 37 also results in local threshold-
themselves. Some considerations with respect to a statistiing and can be interpreted as its probabilistic justification.
cal model for multiple images can also be found in Ref. 36. .

Here, the author concentrates on determining the unknowr? ~ conclusions

3-D transformation parameters in the recognition process asA statistical framework for model-based IRMA was pre-
well as improving feature extraction. Localization was im- sented. Based on a classification of the image content, the
proved by explicit modeling of the background, although a IRMA concept provides a high amount of content under-
global optimization was not performed in the experiments. standing and enables highly differentiated queries on an
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abstract information level. Furthermore, the concept fulfills
the demands for medical image retrieval systems postulated ™
by Tagareet al. and therefore, it promises satisfactory
query completiort/ Note, however, that the concept re- 8.
mains to be tested and so far only parts of it have been
evaluated in detail. 9.
We presented an approach to statistical classification of
radiographs, which is applied in the first step of the IRMA
system. We introduced a probabilistic framework for
(multi-) object recognition and proved its effectiveness by
applying it to radiograph classificatiotbeing a single-
object recognition tagk obtaining an excellent result. In-

11.

variance was incorporated into the appearance-based apt?:

proach by using invariant distance measures. We proposed

an effective IDM to compensate for local transformations 13.

and motivated a combination with the TD, which is well-
suited for global transformations.

The classifier was evaluated by applying it to the IRMA 14.

database of radiographs, consisting of 1617 images of six
major body regions taken from daily routine. A thorough

quantitative analysis of classification like the one presentedis.

here is rarely found for medical image retrieval. The best
classification error rate of 8.0% was achieved by using the

distorted TD in a kernel density classifier within the statis- 16.

tical framework. This is a relative improvement of 42%

with respect to the baseline statistical system with 14.0% 17.

error rate and a relative improvement of 56% with respect

to the error rate of 18.1% obtained by a nearest-neighboris.

classifier using the Euclidean distance.
Future work on the categorization step will include im-

proved background models and extensions of the algorithm?9.

with respect to scale and other transformations. Further-
more, extensions of the generalized distortion model with
respect to regularization properties will be considered. In
addition, more global features will be considered in combi- 21.
nation with a finer level of the hierarchical structure of .,
categories.

The very satisfying results obtained on the hard image
classification task can be regarded a solid basis for the fur-
ther development of the IRMA system. 23,
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