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Abstract. Recently, research in the field of content-based image
retrieval has attracted a lot of attention. Nevertheless, most existing
methods cannot be easily applied to medical image databases, as
global image descriptions based on color, texture, or shape do not
supply sufficient semantics for medical applications. The concept for
content-based image retrieval in medical applications (IRMA) is
therefore based on the separation of the following processing steps:
categorization of the entire image; registration with respect to proto-
types; extraction and query-dependent selection of local features;
hierarchical blob representation including object identification; and
finally, image retrieval. Within the first step of processing, images
are classified according to image modality, body orientation, ana-
tomic region, and biological system. The statistical classifier for the
anatomic region is based on Gaussian kernel densities within a
probabilistic framework for multiobject recognition. Special empha-
sis is placed on invariance, employing a probabilistic model of vari-
ability based on tangent distance and an image distortion model.
The performance of the classifier is evaluated using a set of 1617
radiographs from daily routine, where the error rate of 8.0% in this
six-class problem is an excellent result, taking into account the dif-
ficulty of the task. The computed posterior probabilities are further-
more used in the subsequent steps of the retrieval process. © 2003
SPIE and IS&T. [DOI: 10.1117/1.1525790]

1 Introduction

The importance of digital image retrieval techniques is
creasing in the emerging fields of medical imaging and p

Paper MIP-06 received May 1, 2001; revised manuscript received Oct. 16, 2
accepted for publication Jun. 1, 2002.
1017-9909/2003/$15.00 © 2003 SPIE and IS&T.
ture archiving and communication systems~PACS!. Up to
now, textual index entries were necessary to retrieve m
cal images from a hospital archive, even if the archive w
digital imaging and communications in medicine~DICOM!
compliant. Currently, much research is done in the field
image retrieval, but the majority of today’s content-bas
image retrieval~CBIR! approaches is intended for brow
ing large databases of arbitrary content@QBIC ~Ref. 1!,
Photobook,2 Blobworld3#, e.g., collected from the World
Wide Web.4 For thorough collections of techniques, we r
fer to special issues of notable journals, such asIEEE
Transactions on Pattern Analysis and Machine Intelligen
~vol. 18, no. 8, 1996!, IEEE Transactions on Knowledg
and Data Engineering~vol. 10, no. 6, 1998!, Computer
Vision and Image Understanding~vol. 75, no. 1–2, 1999!,
and Image and Vision Computing~vol. 17, no. 7, 1999!, or
comparative surveys, e.g., Refs. 5 and 6.

Usually, the features used for indexing characterize
entire image rather than image regions or objects, and
of the most effective features of such systems is col7

Unfortunately, color-based features are not suitable for
majority of medical images, which are usually gray-sca
images. Advanced CBIR approaches are reported~e.g.,
Ref. 8!, but their applicability to medical images remains
be shown. Resulting from the variety of images, comm
CBIR systems have only a rudimentary understanding
image content, with little or no distinction between impo
tant and negligible features or between different anatom
or biological objects in the image. But queries of diagnos

;
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relevance include searching for organs, their relative lo
tions, and other distinct features such as morphological
pearances. Therefore, common CBIR systems cannot g
antee a meaningful query completion when used in
medical context. In contrast to this, the image retrieval
medical applications~IRMA ! system—a joint project of
three RWTH Aachen University of Technolog
institutes—is being developed for use in daily clinic
routine.9

This paper presents the general, multistep approac
the IRMA project and reports details of the image class
cation step within the IRMA system. This first step is
major importance as the retrieval system must know
anatomical region presented in a given image to be abl
answer complex medical queries. We present a gen
probabilistic framework for object recognition and show
effectiveness for radiograph classification, where inva
ance to small image transformations is incorporated by
ing invariant distance measures. We also present a thoro
quantitative analysis of the performance of the classifi
which is rarely provided in the literature. The analysis
based on 1617 radiographs arbitrarily selected from clin
routine.

2 IRMA System

2.1 Medical Constraints to Image Retrieval and
Related Work

Since global color, texture, or shape analyses are ins
cient to characterize medical images, retrieval results
rather poor when common CBIR systems are applied
medical images.2,10,11 In recent reports, some approach
for content-based retrieval designed to support spec
medical tasks have been published. Kornet al. describe a
system for fast and effective retrieval of tumor shapes
mammogram x rays,12 where the morphological feature
are defined on binary images. To transfer this promis
approach to other tasks, redesign of the structuring
ments is required. One emphasis of their work is f
searching in the underlying database, which we do not c
sider explicitly in this paper. Other feature-extraction me
ods or similarity models are known, where especially
variant features are used for image retrieval.8,13 For
instance, shape histograms are used in Ref. 14 in comb
tion with a quadratic-form distance function comparable
the Mahalanobis distance with a structured covariance
trix. The automatic search and selection engine with
trieval tools~ASSERT! system operates on high resolutio
computed tomographies of the lung.15 A physician delin-
eates the region bearing a pathology and marks a se
anatomical landmarks when the image is entered into
database. Hence, ASSERT has high data entry costs, w
prohibit its application in clinical routine. Chuet al.present
a knowledge-based retrieval system with spatial and t
poral constructs.16 Brain lesions are automatically extracte
within three-dimensional~3-D! data sets from compute
tomography and magnetic resonance imaging. Their re
sentation model consists of an additional knowledge-ba
layer within the semantic model. This layer provides
mechanism for accessing and processing spatial, evolu
60 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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ary, and temporal queries. However, those concepts
medical image retrieval are task-specific and not direc
transferable to other medical applications.

Tagareet al. point out some of the unique challenge
retrieval engines are confronted with when dealing w
medical image collections.17 Medical knowledge arises
from anatomic and physiologic information, requiring r
gional features to support diagnostic queries. However,
terpretation of medical images depends on both image
query context. Since the context of queries is unkno
when images are entered into the database, the data
scheme must be generic and flexible. Particularly, the nu
ber and kind of features are subject to continuous evolut
Furthermore, categorization and registration of medical
ages are required to support diagnostic queries on a
level of image interpretation.

2.2 The Multistep Approach

In contrast to common approaches to image retrieval,
IRMA concept is based on a separation of the followi
seven steps to enable complex image cont
understanding9 ~Fig. 1!:

1. image categorization~based on global features!

2. image registration~in geometry and contrast!

3. feature extraction~using local features!

4. feature selection~category and query dependent!

5. indexing~multiscale blob representation!

6. identification~incorporating prior knowledge!

7. retrieval~on abstract blob level!

2.2.1 Categorization

Various imaging techniques require adapted image proc
ing methods. For example, ultrasonic images of vess
must be processed in a different manner than skeleta
diographs. Thus, if a radiologist is searching the datab
for all radiographs showing a pulmonal tumor, the IRM
system processes only radiographs that have a sufficie
high posterior probability for the class ‘‘chest.’’ Therefor
the categorization step not only reduces the computatio
complexity of an IRMA query, it will also reduce the false
alarm rate of the system, improving its precision. Based
global features, the IRMA approach distinguishes four m
jor categories:

1. image modality~physical!

2. body orientation~technical!

3. anatomic region~anatomical!

4. biological system~functional!

These categories build subclasses resulting in hierarchic
structured categories.9 Thus far, only the first level of the
anatomical hierarchy is used for classification experime

Modern modalities enable submission of textual info
mation about the examination. However, the medical s
often does not enter appropriate or sufficient data into
systems, as a recent study showed quantitatively@only one
out of four examined modalities included the correct digi
imaging and communication in medicine~DICOM! header
information and even in this case the information was
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Fig. 1 IRMA architecture.
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correct in 15.5% of the examined cases#.18 In a well-
managed DICOM-compliant PACS linked to a hospital
formation system, text-based retrieval will give excelle
results. But in many cases automatic indexing by ima
content is still a necessary component to provide suffic
information, where these two methods should not
viewed as mutually exclusive but as synergistic tools.

2.2.2 Registration

Diagnostic inferences derived from images are dedu
from an incomplete but continuously evolving model
normality.17 In the IRMA system, this model is represente
by prototype images, which are defined for each categ
by an expert based on prior medical knowledge or by s
tistical analysis. The prototypes are used for determina
of parameters for rotation, scaling, and translation as w
as contrast adjustment. However, the images are not tr
formed at this stage of processing.

2.2.3 Feature extraction

The processing of semantic queries drawn from med
routine requires local features, e.g., the local gradie
which are connected to pixels. Like the global features
categorization, the number of local feature images is ex
sible. Category-specific local features include segmenta
by active contours or active shapes,19 which enable the use
of prior shape knowledge from the categories.

2.2.4 Feature selection

It is important that feature extraction and selection
separate steps in the IRMA concept. This enables the la
task to be retrieval-dependent. Prior knowledge about
t

d

y
-

l
s-

l
,

-
n

r
e

image category as well as medical knowledge incorpora
into the query is used to select a precomputed set of
equate feature images. For example, the retrieval of ra
graphs with respect to bone fractures or bone tumors
done using an edge-based or texture-based feature se
spectively.

2.2.5 Indexing

For query processing, the amount of information proces
in the previous steps must be drastically reduced. Base
feature sets, the image is segmented hierarchically into
evant regions, which are described by invariant mome
resulting in structures called blobs.3 Thereafter, the blob
representation of the image is adjusted with respect to
parameters determined in the registration step.

2.2.6 Identification

The hierarchical blob tree has been registered with res
to a certain category, where categories are represente
prototypes. Since the local features reflect characteri
and discriminant properties of tissue, certain blobs cor
spond to well defined morphological structures in the i
age. Vice versa, prior medical knowledge on the cont
and structure of category prototypes can be used to bui
prototype blob structure with characteristic properties
blob identification and labels for semantic queries. Wh
blob identification probably will not be successful for a
blob entities, blob trees are an applicable data structur
incorporate medical knowledge into the IRMA system.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 61
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Keysers et al.
2.2.7 Retrieval

Retrieval is performed by searches in the hierarchical b
structures. In IRMA, a query is built from the followin
components:

1. a list of possible categories of the recall images

2. a query by example blob-structure on the optim
scale to process the query

3. the set of local features that best describe signific
properties for the query

However, not all of these components must be set for
queries. The assignment of categories to the images sig
cantly increases the performance of retrieval as only
blob structures for images of the possible categories hav
be compared. However, data structures and distance m
sures that have been described for image retrieval20 require
refining so that only selected blobs and features are rele
in the query.

2.3 Interdependence of the Steps

Care must be taken with~possibly false! local decisions
because of the interdependence of the steps. To improv
possibility of obtaining the overall best possible query
sult, it is necessary to work with a variety of different h
potheses throughout these steps. This holistic approach
shown superior performance over local decisions in m
applications, such as speech recognition.21 An example of
modeling of vague knowledge is the computation of pos
rior probabilities during the categorization step, whi
avoids the hard choice of a possibly false image categ
Thus, it is not necessary to correct a false decision later,
instead the entire process works on multiple hypothese
the same time. It is helpful to consider classification me
ods for CBIR because classification and image retrieval
at similar objectives, which has been pointed out bef
~e.g., in Ref. 11!.

3 Image Database

The image database used in the experiments consis
medical radiographs taken from daily routine~with the pa-
tient information erased!, which are secondary digital, i.e
they have been scanned from conventional film-based
diographs~Fig. 2!. The corpus consists of 110 abdome
706 limbs, 103 breast, 110 skull, 410 chest, and 178 sp
radiographs~2003 200 up to 25003 2500 pixels, 8 bits!,
summing to a total of 1617 images.22 The distribution of
the images reflects the clinical routine at the Departmen
Diagnostic Radiology, RWTH Aachen University Hospita
Germany. The quality of radiographs varies considera
and there is a great within-category variability~as caused
by different doses of x rays, varying orientations, imag
with and without pathologies or contrast agents, chang
scribor position, etc.!. Furthermore, there is a strong visu
similarity between many images of the classes abdom
and spine~Fig. 2!. Therefore, the classification problem ca
be considered being hard.

Furthermore, a smaller set of 332 images exists tha
used to test the generalization abilities of the classifier.
speed up the classification process, the original images
scaled down to a common height of 32 pixels~keeping the
62 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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original aspect ratio!. In previous experiments, it wa
shown that this downscaling does not affect classificat
performance significantly.22 Since there are only 1617 im
ages available, we apply a leaving-one-out approach
cross validation. That is, to classify an image we use
remaining 1616 images as references and report results
eraged over the entire 1617 experiments.

4 Feature Extraction

We make use of appearance-based pattern recognition,
each pixel of an image is interpreted as a feature. Thus
the information contained in an image is used for class
cation. As an additional feature throughout the experime
we use the aspect ratio of the images. Although invarian
play an important role for classifying radiographs, we
not extract invariant features. Instead, we incorporate th
invariances in the classification algorithm itself. This
done using distance measures that are—for instance, in
ant to transforms such as image rotation, axis deformatio
scaling or varying image brightness. In the following, w
denote images of dimensionI 3J by x5$xi j PR: i
51, . . . ,I , j 51, . . . ,J% with xi j being the gray level at
pixel (i , j ).

5 Statistical Framework and Classification

The first step of the IRMA concept is a classification tas
To classify an observationxPRI 3J we use the Bayesian
decision rule23

x°r ~x!5argmax
k

$p~k!p~xuk!%, ~1!

Fig. 2 Example radiographs taken from the IRMA database, scaled
to common height: left to right, top row, abdomen, limbs, breast,
middle row, skull, chest, and spine; bottom row, examples of varia-
tion within one class (limbs).
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Statistical framework
wherep(k) is the prior probability of classk andp(xuk) is
the class-conditional probability for the observationx given
classk ~Ref. 24!. The decision rule@Eq. ~1!# is known to be
optimal with respect to the number of classification err
~assuming equal cost for each error!, if the true probability
density functions are known.23 For multiple-object recogni-
tion, we extend the elementary decision rule into the f
lowing directions:

1. We assume that the scene$xi j % contains an unknown
number M of objects belonging to the classe
k1 , . . . ,kM5:k1

M . Reference modelsp(xumk) exist
for each of the classesk51, . . . ,K, and m0 repre-
sents the background.

2. We make decisions about object boundaries, i.e.,
original scene is implicitly partitioned intoM11 re-
gions I 0

M , whereI m,$( i , j ): i 51, . . . ,I , j 51, . . . ,J%
is assumed to contain them’th object, andI 0 repre-
sents the background.

3. The reference models may be subject to certain tra
forms~rotation, scale, translation, etc.!. That is, given
transformation parametersq1

M , them’th reference is
mapped tomkm

→mkm
(qm).

The idea is now to consider all unknown parameters,
M ,k1

M ,q1
M , and ~implicitly ! I 0

M and to search the hypoth
esis which best explains the given scene. This must be d
considering the interdependence between the image p
tioning, where partitioning is only part of the classificatio
process~holistic concept!. Note that this means that an
pixel in the scene must be assigned either to an object o
the background class. The resulting decision rule is

r ~$xi j %!5 argmax
M ,k1

M ,q1
M
H p~k1

M ! )
m50

M

p@xI m
umkm

~qm!#J , ~2!

where$xi j % denotes the scene to be classified, andxI m
is the

feature vector extracted from regionI m . Note that if not
searching for all of the parameters, a summation over
disregarded parameters should be performed. As the
density functions are not known in practical situations,
must choose models for these functions and estimate
parameters from the training data. Invariance aspects
directly incorporated into these models using a probabili
model of variability.24 In Eq. ~2!, p(k1

M) is a prior over the
combination of objects in the scene, which may depend
the transformation parameters and the combination of
jects ~e.g., a skull located close to a spine is more like
than close to a foot!.

The consideration of all the components of the presen
decision rule@Eq. ~2!# is a long-term goal. We started wit
the consideration of the interdependence between segm
tation and recognition. For classification of medical imag
the ‘‘scene’’ equals the radiograph to be classified and
assumeM51. Thus, Eq.~2! reduces to

r ~$xi j %!5argmax
k,q

$p~k!p~xI 0
um0!p@xI 1

umk~q!#%. ~3!
e
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Furthermore, the only transformation considered for
reference images in the experiments is horizontal shift~ver-
tical shifts do not occur as all images are scaled to the s
height and objects are assumed to be centered!. A simple
background model is used forp0 , assuming a constan
background of grayvalue zero and large variance. Based
the different sizes of observation and reference image
penalty term is introduced preferring images of roughly t
same size. To model the referencesp@xI 1

umk(q)#, kernel
densities are used:

p@xumk~q!#5
1

Nk
(
n51

Nk 1

Ak,g
expH 2

d@x,mkn~q!#

sk
2
•g

J , ~4!

whereNk is the number of reference images of classk, mkn

is then’th reference pattern of classk, sk denotes the class
specific standard deviation andd@x,m(mkn ,q)# one of the
~squared! distance measures introduced later~which are not
necessarily metrics!. To compensate for the fact that var
ances are usually underestimated if only few traini
samples are available, we multiply the estimated varian
with a factorg.1. Strictly speaking, the normalization fac
tor Ak,g depends on the classk, however, the dependency
weak and therefore neglected in the experiments. The p
probabilities are modeled using the relative frequenc
p(k)5 Nk /N with the total number of reference imagesN.
Similar approaches to model the distribution of feature v
tors are common practice, also in the processing of med
images. For example, a combinatorial search to find the
of most discriminative features for a kernel density clas
fier for brain images is applied in Ref. 11.

Resulting from the exponential decay with increasi
distance in Eq.~4!, only the closest reference patternsmkn
contribute substantially to the sum. Using more than the
closest matches with respect tod does therefore usually no
change classification results significantly. To determ
these closest matches, it is generally sufficient to compud
for the ~e.g., 100! closest references in terms of Euclide
distance, which can be efficiently determined.

6 Invariance

The kernel density classifier is based on invariant dista
measures. The baseline for the experimental results is
the distance corresponding to a Gaussian density, i.e.,
Mahalanobis distance.23 Because of the high dimensionalit
of the extracted feature vectors~e.g., for a region of size 32
3 32 we have 1024 features! in comparison to the numbe
of samples per class we used a multiplesk

2
•g•I of the

identity matrix as class specific covariance matrix in t
experiments. Note that the tangent distance can be in
preted in a probabilistic framework,25 implying that the
term ‘‘Gaussian kernel densities’’ is still applicable for ta
gent distance when the tangent vectors are based on
references. Strictly speaking, when using the image dis
tion model, the density functions are not Gaussian a
more.

6.1 Tangent Distance

In 1993, Simardet al. proposed an invariant distance me
sure called tangent distance~TD!, which proved to be es-
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 63
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Keysers et al.
pecially effective in the domain of optical charact
recognition.26 The authors observed that reasonably sm
transforms of certain image objects do not affect the cl
membership. Simple distance measures such as the Eu
ean distance do not account for this. Instead, they are
sensitive to affine transformations such as scaling, tran
tion, rotation or axis deformation. When an imagex
PRI 3J is transformed~e.g., scaled and rotated! by a trans-
formation t(x,a), which depends onL parametersaPRL

~e.g., the scaling factor and rotation angle!, the set of all
transformed patterns,

M x5$t~x,a!:aPRL%,RI 3J, ~5!

is a manifold of at most dimensionL in pattern space. The
distance between two patterns can now be defined as
minimum distance between their respective manifolds,
ing truly invariant with respect to theL regarded trans-
forms. However, computation of this distance is a hard n
linear optimization problem and the manifolds concern
generally do not have an analytic expression. Theref
small transformations of the patternx are approximated by
a tangent subspaceM x̂ to the manifoldM x at the pointx.
This subspace is obtained by adding tox a linear combina-
tion of the vectorsvl ,l 51, . . . ,L that are the partial de
rivatives of t(x,a) with respect toa l and span the tangen
subspace. We obtain a first-order approximation ofM x :

M x̂5H x1(
l 51

L

a l•vl :aPRLJ ,RI 3J. ~6!

The one-sided tangent distancedTD(x,m) is then defined as

dTD~x,m!5minaH I x1(
l 51

L

a l•vl2mI 2J . ~7!

The tangent vectorsvl can be computed using finite differ
ences between the original imagex ~or m) and a small
transformation of that image.26 In the experiments, we
computed the six tangent vectors for affine transforms~two
translations, rotation, scaling and two axis deformations! as
proposed by Simardet al., but replaced the tangent vecto
for ‘‘line thickness’’ ~which is important for optical charac
ter recognition! by a ‘‘brightness’’ tangent vector~Fig. 3!.
All elements of this vector were set to a constant value

Fig. 3 Example images generated using linear approximations of
affine transforms and image brightness: (a) original image, (b) left
shift, (c) down shift, (d) hyperbolic diagonal deformation, (e) hyper-
bolic axis deformation, (f) scaling, (g) right rotation, and (h) in-
creased brightness.
64 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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model the image brightness, which is determined by
x-ray dose and other factors. A two-sided TD can also
defined, where both manifolds are approximated and
distance is minimized over possible combinations of
respective parameters. Furthermore, the approximation
the manifolds can be improved by an iterative proced
based on Newton’s method, which is computationally mo
expensive.26,27

6.2 Image Distortion Model

Although TD alone is already a very effective means
compensate for small global transformations of an image
is highly sensitive to local image transformations. The
are, e.g., caused by noise, pathologies, varying collima
fields, or changing scribor positions in a radiograph. W
therefore propose the following image distortion mod
~IDM !. When calculating the distance between two imag
x and m, local deformations are allowed, i.e., the ‘‘bes
fitting’’ pixel in the reference image within a certain neigh
borhoodRi j is regarded instead of computing the squar
error betweenxi j andm i j . Figure 4 shows a 1-D exampl
for the IDM where individual pixel displacements are ind
pendent compared to the TD, where displacements
coupled forming an affine transform~here scaling!. The re-
sulting distance is

dIDM~x,m!5(
i , j

min
~ i 8, j 8)PRi j

$ixi j 2m i 8 j 8i
21Ci ji 8 j 8%. ~8!

The cost functionC>0 represents the cost for deforming
pixel xi j in the input image to a pixelm i 8 j 8 in the reference
image. It compensates for the fact that in an unrestric
distortion model~i.e., C[0) wanted as well as unwante
transformations can be modeled. With growing neighb
hood Ri j the admissible transformations may violate t
assumption that they respect class membership, but an
propriate choice ofRi j significantly improves radiograph
classification even when the cost function is disregard
To determineC, one may want to learn it from the trainin
data or choose it empirically, e.g., by using a weight
Euclidean distance between the corresponding pixel lo
tions. The latter approach leads to a preference of local o
long-range transformations and was done in the exp
ments.

Note that the TD and the proposed distortion model c
be easily combined to a so-called distorted TD. In that ca
the tangent distance is used to register the~sub!images and
the distortion distance is then computed between the re
tered images.24,28

Fig. 4 One-dimensional comparison of IDM (left) and TD (right)
(Ref. 27).
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6.3 Relating TD and IDM

It is interesting to see that the positive effects of the TD a
IDM are additive in the case of radiograph classificatio
When trying to relate these two approaches, it becom
clear that one can be expressed in terms of the oth27

Generalizing the IDM yields

dC,F~x,m!5min
f PF

FC~ f !1(
i , j

ixi j 2m f ( i , j )i2G , ~9!

where F,(R3R) I 3Jis a class of functions assigning t
each pixel its~interpolated! counterpart andC:F→R>0 a
cost function for these assignment functions. For the ID
one has

FIDM5$ f : f ~ i , j !PRi j %, CIDM~ f !5(
i , j

Ci j f ( i , j ) , ~10!

while, for the TD,C andF have the following representa
tion:

FTD5$ f : f affine%, CTD~ f !50. ~11!

This general expression is an intuitive representation o
distance being invariant to arbitrary functionsf of some
classF. Computing Eq.~9! may be computationally expen
sive with some classes and cost functions~e.g., for the
warping model presented in Ref. 29 no polynomial mi
mization algorithm is known!, but the TD and IDM are two
examples with known effective solutions.@In the case of
TD this is true at least for a reasonable approximation si
strictly speaking, Eq.~11! models the true manifold dis
tance.#

7 Experimental Results

The experimental results are summarized in Table 1. As
images are scaled to the same height, the possible reg
that are hypothesized in Eq.~2! are restricted to rectangula
areas of the same height, which enables efficient max
zation. The baseline results were obtained using the Ma

Table 1 Error rates in percentages for the IRMA database (statisti-
cal approach with kernel densities using leaving-one-out).

This Work

Thresholding

Distance measure No Yes

Mahalanobis distance 14.0 11.2

TD 13.3 11.1

IDM 12.1 9.0

Distorted TD 10.4 8.0

Results for Comparison

Squared images, 1-NN 18.1

Squared images, kernel densities 16.4

1 aspect ratio 14.9

Cooccurrence matrices 29.0
s

e
ns

-
l-

anobis distance, resulting in an error rate of 14.0%. Us
the presented image distortion model with a region size
33 3 pixels, the error rate was reduced to 12.1%. Althou
the distortion model is straightforward, it effectively com
pensates for local variations in radiographs. Using only
TD, the error rate was 13.3%. This gain was not as large
for the distortion model, but is still remarkable. In anoth
experiment, it was investigated whether the improveme
of the TD and the IDM are additive. This sounds reaso
able, as the TD compensates for global image transfor
tions, whereas the IDM deals with local perturbations.
deed, using the distorted TD, the error rate was furt
reduced to 10.4%. As a few large differences in pixel v
ues can mislead classifiers based on squared error dista
~e.g., Ref. 30!, a local threshold was introduced to limit th
maximum contribution of a single pixel difference to th
distance between two images. This is especially justifi
here, because the images may be subject to artifacts tha
not affect class membership, such as noise or changing
bor position in radiographs. Applying this thresholding a
proach, the error rate was reduced to 8.0%.

To make sure that no overfitting occurred in the expe
ments, the 332 previously unseen radiographs were use
test images and the 1617 images of the IRMA databas
references. Using the optimal parameters for the datab
determined by the leaving-one-out strategy, the algorit
misclassified 30 of the new radiographs~9.0%!, which
means that the classifier proposed here generalizes
well.

Regarding the computational complexity, the distan
functions require a different amount of computation
comparison to the Mahalanobis distance~which is a mul-
tiple of the Euclidean distance here!. For the one-sided tan
gent distance the tangents for the prototypes can be ca
lated before classification. Thus, only the projection in
the subspace must be calculated in the recognition s
which increases the computational cost approximately b
factor of (L11). If the tangent vectors are calculated o
the basis of the observations, the cost for the computa
and orthogonalization of the tangent subspace must
added. In the IDM, the number of comparisons of pix
values is increased roughly proportional to the size of
regarded regionRi j .

In the course of this work, various other experimen
were carried out, some of which are worth mentioning. F
example, several tangents based on other transforma
~e.g., projective! were tested in experiments, but no im
provement over the combination of affine and brightne
transforms was obtained. Furthermore, experiments c
cerning the creation of virtual data~a method that was very
successful for the task of optical character recognition27!
did not yield improvements on this particular dataset.

The use of cooccurrence matrices31 is often considered
to be helpful for content-based medical image retriev
However, our experiments on radiograph classification
not support this thesis. In two experiments, we used glo
cooccurrence matrices for feature analysis within a syn
getic classifier32 and within a kernel density based class
fier. In both cases, we were not able to obtain classifica
error rates below 29%. Apparently, cooccurrence matri
do not provide discriminative features for radiograph cla
sification. Nevertheless they might still be useful for t
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 65
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Keysers et al.
subsequent IRMA steps, e.g., for tumor localization with
a ~previously categorized! radiograph. In this case, cooccu
rence matrices would be computed from small parts of
image, not from the complete image.33

8 Discussion

8.1 IRMA Concept

Figure 1 summarizes the multistep approach of the IRM
system. The seven processing steps are sequentially
bined, where the interdependence of local decisions m
be regarded as mentioned above. These processing
correspond to five semantic layers for knowledge repres
tation. Like other systems, the unprocessed images form
first layer, which is called the raw data layer. Categorizat
~which is presented in detail here! and registration within
each category are the first level where medical knowle
is incorporated into the IRMA system. Hence, both ste
result in the second semantic layer, which is called the r
istered data layer. While other medical CBIR systems
restricted to a certain modality or diagnost
procedure,12,15,16the registered data layer in IRMA enable
queries across all kind of medical images regardless of
dality, orientation, body region, or biological system. Fu
ther semantic layers are the feature layer, the scheme l
the object layer, and the knowledge layer.9 Since retrieval is
performed on the knowledge layer, all other layers are p
cessed at data entry time. Hence, they are not critical
the system performance. In general, the IRMA concep
related to the Blobworld project.3 However, there are sev
eral important extensions of the Blobworld concept es
cially designed for medical purposes,9 which allow prior
knowledge on both image and query content to be used
content-based image indexing.

8.2 Database

The size of the database used with currently less than
thousand images, may seem small in comparison w
large-scale databases with millions of entries that mus
be handled in real-world PACS. Nevertheless, to the bes
our knowledge, the IRMA database is the first database
this size containing medical images from daily routine th
are labeled by an expert, enabling a detailed evaluatio
the classification performance. On larger databases it
be necessary to reduce the computational load using kn
algorithms for the access of large databases.7,12,14

8.3 Statistical Framework

Once the maximizing arguments in the decision r
@Eq. ~2!# have been determined, it is straightforward to co
struct a parse tree as a description of the image from
implicit segmentation information, which is done using
neural net approach in Ref. 34. Special attention to
subject of occlusion is paid in Ref. 35, where mainly obje
contours are considered for recognition, not the obje
themselves. Some considerations with respect to a sta
cal model for multiple images can also be found in Ref.
Here, the author concentrates on determining the unkn
3-D transformation parameters in the recognition proces
well as improving feature extraction. Localization was im
proved by explicit modeling of the background, although
global optimization was not performed in the experimen
66 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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This approach has recently been extended.37 Since the op-
timization determines the computational complexity of t
method, iterative and locally optimal algorithms such as
expectation maximization algorithm can also
considered.38 Note that the framework presented here do
not impose any restriction on the type of feature extract
used. This ensures extensibility to multimodal datas
where aligned images can be treated as one image wit
extended feature vector per pixel. Furthermore, the ex
sion to multidimensional images is straightforward, but t
search space that must considered grows rapidly with
number of dimensions. However, the resulting difficulti
can be handled by using efficient search strategies.

8.4 Transformation Models

Conceptionally, both TD and IDM can be extended to m
timodal and multidimensional datasets. Multimodali
~again assuming a reasonable registration! can be treated
using extended feature vectors. Whereas more than the
sidered two dimensions do not require changes in the
gent model and for the IDM only the considered regio
must be adjusted. Nevertheless, the applicability of the
proach to such datasets remains to be evaluated experi
tally.

Concerning the generalized transformation mo
@Eq. ~~9!#, it is interesting to investigate which other cas
~besides TD and IDM! may be useful for invariant patter
recognition, and whether one can learn the functions e
ciently from training examples. For instance, the IDM c
be extended naturally to introduce a dependency betw
the displacements of pixels in a neighborhood, such t
displacements in the same direction are ‘‘cheaper’’ th
those in opposite directions. This leads to more comp
minimization problems, where one example with intere
ing properties but high computational complexity is 2
warping29 and its extensions.39

8.5 Results

The result for the TD using a local threshold is only sligh
better than that of Mahalanobis distance~11.1 versus
11.2%!. A possible explanation for this behavior is that u
ing the thresholding approach may mimic the behavior
the TD in this particular application, because the subsp
projection minimizes the sum of squared pixel differenc
Note also that in previous experiments, all IRMA imag
were scaled down to a common size of 32332 pixels prior
to classification~more information on that approach
given in Refs. 22 and 24!. In these experiments, the TD
significantly outperformed the Mahalanobis distance~with
and without the thresholding approach!. Thus, it seems pos
sible that the main effect of the TD is the compensation
image shifts~which is now inherent in the classificatio
approach by optimizing over all possible image position!.
Interestingly, the background model with independent pi
assignments used in Ref. 37 also results in local thresh
ing and can be interpreted as its probabilistic justificatio

9 Conclusions

A statistical framework for model-based IRMA was pr
sented. Based on a classification of the image content,
IRMA concept provides a high amount of content und
standing and enables highly differentiated queries on
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Statistical framework
abstract information level. Furthermore, the concept fulfi
the demands for medical image retrieval systems postul
by Tagare et al. and therefore, it promises satisfacto
query completion.17 Note, however, that the concept r
mains to be tested and so far only parts of it have b
evaluated in detail.

We presented an approach to statistical classificatio
radiographs, which is applied in the first step of the IRM
system. We introduced a probabilistic framework f
~multi-! object recognition and proved its effectiveness
applying it to radiograph classification~being a single-
object recognition task!, obtaining an excellent result. In
variance was incorporated into the appearance-based
proach by using invariant distance measures. We propo
an effective IDM to compensate for local transformatio
and motivated a combination with the TD, which is we
suited for global transformations.

The classifier was evaluated by applying it to the IRM
database of radiographs, consisting of 1617 images of
major body regions taken from daily routine. A thoroug
quantitative analysis of classification like the one presen
here is rarely found for medical image retrieval. The b
classification error rate of 8.0% was achieved by using
distorted TD in a kernel density classifier within the stat
tical framework. This is a relative improvement of 42
with respect to the baseline statistical system with 14.
error rate and a relative improvement of 56% with resp
to the error rate of 18.1% obtained by a nearest-neigh
classifier using the Euclidean distance.

Future work on the categorization step will include im
proved background models and extensions of the algori
with respect to scale and other transformations. Furth
more, extensions of the generalized distortion model w
respect to regularization properties will be considered.
addition, more global features will be considered in com
nation with a finer level of the hierarchical structure
categories.

The very satisfying results obtained on the hard ima
classification task can be regarded a solid basis for the
ther development of the IRMA system.
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