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ABSTRACT 

Skeletal maturity is assessed visually by comparing hand radiographs to a standardized reference image atlas. Most 
common are the methods by Greulich & Pyle and Tanner & Whitehouse. For computer-aided diagnosis (CAD), local 
image regions of interest (ROI) such as the epiphysis or the carpal areas are extracted and evaluated. Heuristic 
approaches trying to automatically extract, measure and classify bones and distances between bones suffer from the high 
variability of biological material and the differences in bone development resulting from age, gender and ethnic origin. 
Content-based image retrieval (CBIR) provides a robust solution without delineating and measuring bones. In this work, 
epiphyseal ROIs (eROIS) of a hand radiograph are compared to previous cases with known age, mimicking a human 
observer. Leaving-one-out experiments are conducted on 1,102 left hand radiographs and 15,428 metacarpal and 
phalangeal eROIs from the publicly available USC hand atlas. The similarity of the eROIs is assessed by a combination 
of cross-correlation, image distortion model, and Tamura texture features, yielding a mean error rate of 0.97 years and a 
variance of below 0.63 years. Furthermore, we introduce a publicly available online-demonstration system, where 
queries on the USC dataset as well as on uploaded radiographs are performed for instant CAD. In future, we plan to 
evaluate physician with CBIR-CAD against physician without CBIR-CAD rather than physician vs. CBIR-CAD. 

1. INTRODUCTION 
To estimate the maturity of patients, bone age assessment (BAA) based on hand radiographs constitutes a frequent yet 
time-consuming task for radiologists. The two most commonly used methods are based on image comparison. In the 
method of Greulich & Pyle [1], the radiologist compares all bones of the hand to radiographs in the standard atlas. In the 
method of Tanner & Whitehouse (TW3) [2], a certain subset of bones is examined.  

In order to relieve the radiologist, several approaches have been made to (partially) automate the process [3-7] and 
recently a commercial application has been introduced [7]. All require a reliable localization and delineation of bone 
segments. Yet it is well known that automatic segmentation of medical images is error-prone and requires interactive 
solutions [8] and that previous approaches have only limited abilities to construct the bone borders [7]. Concerning hand 
radiographs, one can easily identify the following problems: 

1. The summation effect projecting 3D structures onto 2D images yields irritations in the segmentation. This 
affects especially the area between metacarpal and carpal bones, but also regions of bones overlapping in the 
projection. 

2. Varying radiation dose and noise add difficulties for the training of segmentation algorithms. 

3. The exact hand pose, aperture, e.g., including radius or ulna, and resolution are not standardized. 

4. The differences between reference groups of identical chronological or bone age, gender, and ethnic origin, are 
high, so that individual methods or models need to be developed (Fig. 1).  

5. High variation may frequently occur even within a certain reference group [1,9]. Hence, it becomes difficult to 
gather enough cases for a statistically sound training.  

                                                 
*Corresponding author: Dipl.-Inform. Benedikt Fischer. Department of  Medical  Informatics, RWTH Aachen University,  
Pauwelsstr. 30, 52057 Aachen, Germany, email: bfischer@mi.rwth-aachen.de; phone: +49 241 80 85174, fax: +49 241 80 33 5174 

Medical Imaging 2011: Computer-Aided Diagnosis, edited by Ronald M. Summers, Bram van Ginneken, 
Proc. of SPIE Vol. 7963, 79630P · © 2011 SPIE · CCC code: 0277-786X/11/$18 · doi: 10.1117/12.878839

Proc. of SPIE Vol. 7963  79630P-1

Downloaded from SPIE Digital Library on 23 Jan 2012 to 134.130.12.208. Terms of Use:  http://spiedl.org/terms



 

 

Even when setting any segmentation problems aside, existing approaches to BAA do not always provide plausible 
results. A radiologist should not have to rely on a black box solution, even when complex algorithms turn out with a 
good solution but the results are incomprehensible and hindering evidence-based medicine. We therefore not only aim at 
avoiding the problems of segmentation but we also strive for providing fully comprehensible results.  

We achieve this by computing the bone age from similarities to earlier cases. The similarities are obtained by content-
based image retrieval (CBIR), and the radiologist is provided visually with what our system regards as the best 
correspondences in the database. The radiologist then can directly estimate the usefulness of the offered second opinion. 
This approach is consistent with the case-based reasoning (CBR) paradigm which has been frequently applied in medical 
decision support [10] and has already come to attention for medical applications in conjunction with CBIR [11, 12].  

Based on the image retrieval in medical applications (IRMA) framework (http://irma-project.org), we propose a web-
based CAD tool for bone age assessment.  

2. METHODS 
The methodology for the CBIR-based bone age assessment is based on comparing image content from a new case to 
earlier cases. All clinically used BAA methods refer to the epiphyseal area between the bones. We therefore extract those 
areas as epiphyseal regions of interest (eROIS) of each image in a standardized way. Instead of applying a query on the 
complete image, every eROI is used for an individual query to the database. The BAA process therefore can be 
performed in four stages (Fig. 2), [13]: 

1. The centers of 14 epiphyseal regions are located in the image either automatically or manually. 
2. The eROIs are extracted, geometrically oriented into an upright position, and uniformly scaled. 
3. Each eROI is used for individual queries to the retrieval engine. For each eROI, a list of best matching 

correspondences is retrieved from the case database together with their age and similarity score.  
4. From these, the respective ages are accumulated at first for each eROI and then for an overall age prediction.  

2.1 Center Localization and eROI Extraction 

The eROI centers can either be determined automatically [14] or set manually by a customized web interface. If set 
manually, the user also defines the top and bottom of the hand by clicking above the topmost fingertip and the top of the 
ulna to ensure proper scaling for the subsequent comparisons. Details on orientation, scaling and extraction of the eROIs 
are provided in [13].  

2.2 Case Comparison 

Once the eROIs have been extracted, each one is subjected to an individual query to the case database to retrieve the 
most similar reference cases. As each eROI is labeled by its position, only corresponding eROIs are compared, e.g. 
eROIs of position 9 (distal eROI of the middle finger, see Fig. 5c) are only compared to other eROIs with the same 
position-label. For the similarity computation we use a combination of the cross-correlation function (CCF), the image 
distortion model (IDM) [15,16] and texture features proposed by Tamura et al. [17]. 

 

2.5y, male 10y, male 18y, male7y, male8m, male 4y, male

Figure 1: Variances in skeletal development: Shown are successive stages of skeletal development of healthy male subjects. The 
radiographs have been acquired during radiological routine at the University Hospital Aachen, Germany.  
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In contrast to other similarity measures, the CCF is easy to compute and robust regarding the radiation dose. In addition, 
translation within the search window is normalized. As described above, our procedure of eROI extraction ensures 
invariance to orientation and scaling. The similarity of a query eROI q to an eROI p in the retrieval database is therefore 
computed by: 
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The variables p  and q  denote the respective mean gray values of p and q. In our experiments, we use 16 x 16 scaled 
versions of the eROIs, i.e., X=Y=16, and a warp range of d=2 to determine the maximum correlation. 

While the CCF considers global displacements, the image distortion model (IDM) is able to model local deformations 
within an image as a distance [15]: 
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Each pixel of the database query eROI q is mapped onto some pixel in p, but the opposite does not necessarily have to be 
the case. W1 defines the size of the search window. To prevent a totally unordered pixel mapping, the local neighborhood 
is incorporated as a context when evaluating the correspondence hypothesis [16]. The size of this context within the 
search window is controlled by W2.  

Tamura et al. proposed a set of texture features to reflect coarseness, contrast, and directionality which is stored in a 
three-dimensional histogram quantized into M = 6 x 8 x 8 = 384 bins [17]. Two eROIs p and q can then be compared by 
applying the Jensen-Shannon divergence [18] on their histograms H(p) and H(q): 
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The combination of CCF, IDM, and Tamura features is achieved by their weighted sum after normalizing the values. The 
normalization for a distance measure d(q,p) such as dIDM and dTamura is computed over all similarities d’(pi,q), i=1,…,N 
between query eROI q and all database eROIs pi: 
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Figure 2: CBIR approach to bone-age assessment: For a hand of unknown age, the epiphyseal centers are localized and the 
corresponding eROIs are compared to the references in the database. The ages of the K most similar ones for each eROI yield the 
predicted age. 
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Since the CCF is not a distance measure but a similarity, d(p,q) := 1 - sCCF =:dCCF’(p,q) is used in (4) for its 
normalization. The combined distance measure then results in: 

 1where),,('),('),('),( TamuraIDMCCFTamuraTamuraIDMIDMCCFCCFcombined =++⋅+⋅+⋅= λλλλλλ qpdqpdqpdqpd  (5) 

In order to be able to preserve our previously published age estimation (7), we transform (5) back into a similarity 
measure which additionally can stress the importance of more similar eROIs by the exponent α:  
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2.3 Age Estimation 

The database delivers the K most similar correspondences for each eROI r in a sorted list ),( kr∂  for k ={1,…,K} and 
the known BAA as aknown(k,r). The implemented age prediction weighs each eROI r of R regarded positions with 
identical influence. The ages of K most similar eROIs of known cases are weighed according to their similarity which 
has been obtained from (6):  
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2.4 Validation Experiments 

The retrieval database contains a set of 1,102 hand radiographs from the USC database along with the patients’ 
chronological ages and two maturity readings by independent radiologists [6]. For the experiments, manually localized 
center coordinates of the eROIs are used. As a quality measure, the mean and variance of the absolute difference 
between the two radiologists’ average readings and the bone age as predicted by (7) is computed.  

All parameter settings are based on the experiments from [13]: K=3 most similar cases are considered, the choice of 
eROI positions is set to the six eROIs 11, 15, 7, 18, 3, and 10 (Fig. 5c). The CCF- and IDM-computations are performed 
on 16 x 16 versions of the eROIs, while the texture features are computed on patches of 32 x 32 pixels. The parameters 
for CCF and IDM are set to d=2, W1=2, W2=1. 

In the experiments, we analyze the influence of the similarity exponent α in (6) and different weights for CCF, IDM, and 
Tamura in (5). All experiments are run in leaving-one-out manner with the USC hand atlas as the underlying ground 
truth. 

The prediction quality of our CBIR-based BAA system is measured by the mean absolute prediction error in comparison 
to the average of the two readings from the USC database and the standard deviation: 
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Here, N denotes the number of hand radiographs available for comparison. 

2.5 Web Interfaces 

The integration of CAD systems in clinical workflow is facilitated by web-based systems and investigations have shown 
that physicians prefer web search engines and web-based interfaces to retrieve interesting image data from archives 
[19,20]. Our web-based system for BAA-CAD features two operating modes: 

• In the “demonstration mode”, the user browses through available radiographs from the reference database prior to 
selecting one, which is then analyzed using the remaining ground truth data.  
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• In the “local mode”, the user can upload an appropriate radiograph from a local system to the web server and a BAA 
estimate is returned as a second opinion. Again, the USC data is used as ground truth. 

An overview of the complete web-based scenario is illustrated in Fig. 3. The implementation utilizes the IRMA 
framework. This provides Smarty templates for web-based GUI design and a large functionality for extended query 
refinement and relevance feedback including complete query logging of all user/system-interaction [20]. PHP is used to 
interface a PostgreSQL database with an Apache web server on a Linux-based server PC running a 64bit Debian Linux.  

3. RESULTS 
3.1 Validation experiments 

The results of the validation experiments are summarized in Tab. 1. Further results with intermediate steps on α have 
been computed but are omitted from the table as they do not contribute to the understanding. The overall best results of a 
mean absolute error of 0.9655 and 0.9659 are obtained by the parameters (α,λCCF, λIDM,λTamura) = (22, 0.6, 0.4, 0.0) and 
(32, 0.6, 0.4, 0), respectively. With respect to the parameter α, results improve from α=2 to α=22 and diminish 
afterwards.  

Concerning the individual similarity weightings, i.e., one of the λ-values is set to 1, dCCF delivers the best results for all 
values of α. The range is approximately 0.97 to 0.99. dTamura shows values between 1.58 and 1.61, while dIDM shows the 
poorest performance between 3.15 and 3.18. For a mixed weighting, dCCF is most important for smaller values of α, then 
dIDM gains more importance while dTamura is disregarded throughout the course. 

 

3.2 Web interface 

The web interface for the presented research prototype is publicly accessible1. The graphical user interface (GUI) is 
partitioned horizontally into distinct sections such as header bar, parameter field, status and navigation bar, and output 
field, where the icons of available images are displayed. This is consistent with all other IRMA interfaces and ensures 
easy orientation switching between interfaces [21].   

 
α λCCF λ IDM λTam. μ σ² α λCCF λ IDM λTam. μ σ² α λCCF λ IDM λTam. μ σ² α λCCF λ IDM λTam. μ σ²
2 0.0 0.0 1.0 1.595 1.693 12 0.0 0.0 1.0 1.581 1.751 22 0.0 0.0 1.0 1.597 1.839 32 0.0 0.0 1.0 1.611 1.886
2 0.0 0.2 0.8 1.608 1.672 12 0.0 0.2 0.8 1.580 1.671 22 0.0 0.2 0.8 1.578 1.702 32 0.0 0.2 0.8 1.583 1.748
2 0.0 0.4 0.6 1.602 1.662 12 0.0 0.4 0.6 1.583 1.654 22 0.0 0.4 0.6 1.572 1.659 32 0.0 0.4 0.6 1.569 1.670
2 0.0 0.6 0.4 1.596 1.662 12 0.0 0.6 0.4 1.584 1.655 22 0.0 0.6 0.4 1.575 1.650 32 0.0 0.6 0.4 1.568 1.649
2 0.0 0.8 0.2 1.580 1.597 12 0.0 0.8 0.2 1.576 1.598 22 0.0 0.8 0.2 1.572 1.599 32 0.0 0.8 0.2 1.568 1.600
2 0.0 1.0 0.0 3.184 4.408 12 0.0 1.0 0.0 3.169 4.390 22 0.0 1.0 0.0 3.157 4.368 32 0.0 1.0 0.0 3.145 4.350
2 0.2 0.0 0.8 1.152 0.748 12 0.2 0.0 0.8 1.153 0.756 22 0.2 0.0 0.8 1.171 0.787 32 0.2 0.0 0.8 1.183 0.811
2 0.2 0.2 0.6 1.133 0.712 12 0.2 0.2 0.6 1.119 0.697 22 0.2 0.2 0.6 1.123 0.707 32 0.2 0.2 0.6 1.130 0.725
2 0.2 0.4 0.4 1.094 0.659 12 0.2 0.4 0.4 1.081 0.644 22 0.2 0.4 0.4 1.076 0.641 32 0.2 0.4 0.4 1.077 0.647
2 0.2 0.6 0.2 1.047 0.596 12 0.2 0.6 0.2 1.039 0.591 22 0.2 0.6 0.2 1.982 2.072 32 0.2 0.6 0.2 1.033 0.592
2 0.2 0.8 0.0 0.986 0.628 12 0.2 0.8 0.0 0.982 0.627 22 0.2 0.8 0.0 0.978 0.626 32 0.2 0.8 0.0 0.975 0.625
2 0.3 0.3 0.3 1.041 0.594 12 0.3 0.3 0.3 1.030 0.586 22 0.3 0.3 0.3 1.032 0.591 32 0.3 0.3 0.3 1.039 0.600
2 0.4 0.0 0.6 1.062 0.613 12 0.4 0.0 0.6 1.064 0.630 22 0.4 0.0 0.6 1.080 0.656 32 0.4 0.0 0.6 1.092 0.671
2 0.4 0.2 0.4 1.039 0.597 12 0.4 0.2 0.4 1.031 0.591 22 0.4 0.2 0.4 1.041 0.602 32 0.4 0.2 0.4 1.052 0.614
2 0.4 0.4 0.2 1.017 0.544 12 0.4 0.4 0.2 1.004 0.538 22 0.4 0.4 0.2 1.001 0.544 32 0.4 0.4 0.2 1.004 0.552
2 0.4 0.6 0.0 0.984 0.630 12 0.4 0.6 0.0 0.976 0.627 22 0.4 0.6 0.0 0.969 0.626 32 0.4 0.6 0.0 0.966 0.627
2 0.6 0.0 0.4 1.023 0.559 12 0.6 0.0 0.4 1.027 0.579 22 0.6 0.0 0.4 1.044 0.602 32 0.6 0.0 0.4 1.054 0.614
2 0.6 0.2 0.2 1.003 0.519 12 0.6 0.2 0.2 0.992 0.521 22 0.6 0.2 0.2 0.998 0.540 32 0.6 0.2 0.2 1.006 0.554
2 0.6 0.4 0.0 0.982 0.630 12 0.6 0.4 0.0 0.969 0.626 22 0.6 0.4 0.0 0.966 0.629 32 0.6 0.4 0.0 0.967 0.634
2 0.8 0.0 0.2 0.996 0.515 12 0.8 0.0 0.2 0.994 0.534 22 0.8 0.0 0.2 1.008 0.556 32 0.8 0.0 0.2 1.016 0.572
2 0.8 0.2 0.0 0.982 0.628 12 0.8 0.2 0.0 0.967 0.627 22 0.8 0.2 0.0 0.970 0.639 32 0.8 0.2 0.0 0.975 0.652
2 1.0 0.0 0.0 0.974 0.623 12 1.0 0.0 0.0 0.972 0.640 22 1.0 0.0 0.0 0.983 0.664 32 1.0 0.0 0.0 0.992 0.678  

Table 1: Experiment outcome for varying similarity exponent and different feature weights. The best result for 
each block is indicated by a box, the best global result is highlighted. 

                                                 
1 http://irma-project.org/onlinedemos_en.php 
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The user either selects a hand radiograph from the database in “Demonstration mode” (Fig. 4) or uploads a new image in 
the “Local Mode” from the user’s local computer. A new image is at first cropped from the distal fingertip to the ulna by 
two clicks (Fig. 5a). The same interface is used to localize the eROI centers in a new image (Fig. 5b). The eROIs are 
then extracted automatically, subjected to the CBIR engine and the bone age is estimated. 

In both operating modes, the result is displayed with the original image and the extracted eROIs at the top of the browser 
window. The K most similar eROIs for each extracted eROI are shown below in decreasing order of similarity (Fig. 6). 

 

≅

…

≅
≅

≅

…

 

Figure 3: Complete processing pipeline for the web-based BAA: Both modes compute similarities to the cases of the USC hand 
atlas. 
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Each column corresponds to one eROI position. For each retrieved eROI, the computed similarity to the query eROI as 
well as the recorded bone age is shown. 

For the website, the number of retrieved most similar eROIs has been set to K=10 to provide a better overview than 
using only K=3. The number of eROI positions has been pre-selected to six (eROI no. 11, 15, 7, 18, 3, and 10 in Fig. 5c), 
which corresponds to the above experiments and provides a good fit into the typical display resolutions with 1,280 pixels 
width. All shown thumbnails are clickable to open a new window with the original resolution for detailed inspection.  
 

 

 

Figure 4: Example screen for browsing the available database before selecting an image for analysis. A detailed view of a 
hand radiograph is available by clicking on the thumbnails. 
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Figure 5: Point Editor interface for setting the top and bottom crop marks (a) and labeling the epiphyseal centers (b), and the 
labels used throughout the experiments and in the result display (Fig. 6) (c). 
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4. DISCUSSION 
The extension of the similarity computation by the combination of CCF, IDM and Tamura features and the similarity 
exponent α have improved the quality measure in comparison to the previously published results [13].  

The CCF alone almost reaches the performance of the optimal set combination. If only two decimal places are used, the 
results are even identical at an absolute mean prediction error of 0.97. Interestingly, the IDM, which individually does 
not perform very well, leads to a better error rate in conjunction with the CCF. On the contrary, the Tamura features do 
not add to the prediction quality of a set even if they have only half of the error rate of IDM if taken individually. The 
results for the combination of IDM and CCF with increasing α maybe a hint, that the linear normalization of CCF and 
IDM as in (4) is not just. With increasing α, IDM is gaining importance in the combination and improves individually, 
while CCF results are going in the opposite direction. Yet higher values of α have not been computed and are not 
considered to be useful because of the limitations in computation accuracy. Nevertheless, the introduction of α can be 
seen as successful as it improves the estimation results and the best overall set has been reached with α=22.  

In contrast to other approaches, our web-based system visually provides relevance facts, i.e. the previous cases that are 
considered most similar for each region. This makes the prediction comprehensible and understandable to the user. The 
research prototype is available to the scientific community on the internet, and we are hoping to gain important feedback 
from independent users. The system's performance can be tested within the USC database or on new radiographs 
uploaded by the user. Being a prototype, the web-based interface still suffers from a number of drawbacks: so far, only 
uploads of PNG images of at least 256 pixels height are supported and the number of required mouse-clicks still needs 
optimization to increase the usability of the system.  

Our results of a mean error of below one year may not yet have reached the accuracy of the commercial system 
BoneXpert [7].  But keeping in mind, that the maximum inter-observer difference for the USC readings is 2.5 years and 
variations of the appearance of two years are considered natural [22], and considering our superior relevance feedback 

 

  

Fig. 6: Result display in demonstration mode for six eROIs. Query image and extracted eROIs are shown at the top. Their most 
similar counterparts retrieved from the database are shown below (scrollable) in decreasing similarity and with the previously 
diagnosed bone age. The estimated and the known bone age are shown right below the query image. In the local mode with a 
newly uploaded image, the known bone age is not available. 
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mechanism, our results suggest readiness for further evaluation in clinical settings. For this, 800 cases taken from daily 
routine at the University Hospital Aachen are currently being prepared in terms of ground truth and eROI centers. We 
will then evaluate the performance of a physician with CBIR-CAD against a physician without CBIR-CAD – rather than 
a physician vs. CBIR-CAD. Additional similarity computations on age prototypes as well as the extension of the web 
frontend by feedback mechanisms will enhance the age prediction further. 

5. CONCLUSIONS 
We have presented a novel method for bone age assessment that is based on image content comparison. Avoiding the 
error-prone segmentation that is required with all other methods of automated BAA, we provide the radiologist a second 
opinion rather than a machine-based “diagnosis”. The system, however, was evaluated on the computer-aided diagnosis 
paradigm and has proven sufficient reliability for routine testing. We have introduced a web-based interface to foster 
integration into the radiological workflow. 
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