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ABSTRACT 
The aging societies require disruptive technologies and digitization 
of health is one of these. Similar to the controller area network bus 
of (smart) cars we have developed a bus-based system for smart 
homes. We consider both, vehicles and homes as private spaces, 
which, in contrast to smart wearables or smart clothes, provide 
sufficient power supply, computer, and storage hardware. Today’s 
homes and cars are already equipped with a variety of sensors that 
deliver data relevant with respect to health. The daily delay between 
opening of bedroom and bathroom doors, or the time between 
opening the car’s door and starting its engine indicates mobility. 
We further empower eHealth if private spaces are equipped with 
medical sensors (Step I of the required transforms). However, 
unobtrusive continuous monitoring of vital signs and biosignals is 
no yet explored clinically, and data to train artificial intelligence is 
missing. We propose steering wheel integrated electrocardiography 
(ECG) recording in smart vehicles and capacitive ECG recording 
in the chair and bed of the smart home for stroke prevention due to 
early detection of latent atrial fibrillation. Furthermore, the 
processing unit needs data warehousing and analytics (Step II). The 
communication interface needs semantic operability and secure 
channels, which we propose to establish using the international 
standard accident number (ISAN) (Step III). Finally, the 
combination with a medical application such as stroke prevention 
(Step IV) turns smart environments into private diagnostic spaces.    

CCS Concepts 
•Information systems→Data management systems→Database 
design and models • Human-centered computing→Ubiquitous 
and mobile computing→Ubiquitous and mobile computing 
systems and tools • Applied computing→ Life and medical 
sciences→Health informatics 

Keywords 
Smart home; Smart car; eHealth; mHealth; Health-enabling 
technology; Stroke prevention 

1. INTRODUCTION 
There is a paradigm change for computing machinery in healthcare. 
In the 1968, Peter l. Reichertz founded at Hannover Medical School 
the first scientific institute for Medical Informatics in Germany. He 
worded the paradigm: “The right information at the right time at the 
right place” [1].  

Fifty years later in 2018, we have updated this paradigm: “An 
accurate forecast for a specific individual longest before the 
predicted event” [2]. In other words, medical informatics is 
changing from computer-aided diagnosis towards continuous 
health monitoring and maintenance to predict adverse events and to 
take according actions in order to prevent the foreseen event. 

While todays medicine is based on highly expensive and high-
precision data generators such as computed tomography (CT), 
magnetic resonance imaging (MRI), or four-dimensional 
ultrasound systems (US), we now have inexpensive low-quality 
data generators such as motion and activity trackers, respiration and 
pulse frequency measuring devices, or skin temperature recorders. 
While CT, MRI, US etc. are taken only after symptoms occur and 
in public spaces like a hospital, the novel devices record data 
continuously in rather private spaces (Fig. 1).  

 
Figure 1. Public and private spaces for health data recording 

Today, the patients still need to be transported to the hospital (Fig. 
1, top line). In future, we will install the recording devices close to 
the subjects, which are not yet patients (Fig. , bottom line). Medical 
decision making still is based on data, but picture archiving and 
communication systems (PACS) data storage in the hospital will be 
replaced by cloud-based data repositories (Fig. 1, blue color). 

Smart clothes, smart wearables, smart vehicles, or smart homes 
form such private spaces. The latter two have advantages with 
respect to individual power supply, computing and storage 
capacities, and battery-free communication interfaces. In other 
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words, smart cars and smart homes have the potential to replace 
diagnostic devices in public hospitals with individual data recorders 
for continuous health monitoring [3].  

In this paper, we briefly overview the state-of-the-art in smart 
environments (Section 2) and analyze the four steps which are 
required to transform from smart cars and smart homes into private 
diagnostic spaces (Section 3). In Section 4, we refer to stroke 
prevention as exemplarity application. The discussion of the paper 
follows in Section 5, and a conclusion with take-home messages is 
given in Section 6. 

2. STATE-OF-THE-ART 
Since the early 1990th, ubiquitous computing has been analyzed in 
many applications. According to the general definition, smart 
devices are integrated in smart environments that support smart 
interaction [4]. Hence, any smart environment necessarily requires 
all three components: (i) sensing devices for data recording, (ii) 
processing units for data analytics and (iii) communication 
interfaces for interoperation with other smart environments, 
computing machineries, or digital services. 

Today, novel vehicles as well as smart homes are equipped with a 
lot of sensing devices as well as a central processing unit 
(computer). They both have an independent power supply and can 
easily integrate data storage capacities. In smart cars, the controller 
area network (CAN) bus system connects all sensing and acting 
devices. In smart homes, Schwartze et al. have developed a similar 
bus-based approach for building automation by a scalable 
intelligent system (BASIS) [5,6]. The bus knots link sensors and 
actors, which are grouped by segment controllers. The segment 
controllers are connected to the building manager, which also 
interconnects to the Internet (Fig. 2). 

 
Figure 2. The BASIS system for home automation [4] 

As a result, smart cars and smart apartments are of similar 
technological nature and can likewise form private diagnostic 
spaces. However, medical meaningful use of the sensors is not yet 
explored, as they are used exclusively for driving assistance and 
climate / energy control. 

In the following, we will therefore not differ both smart 
environments anymore. Instead, we will consider the sensing 
devices that are integrated in these spaces, computers, interfaces, 
and applications. These sensors and their use do the stepwise 
transformation of smart homes and smart cars into private 
diagnostic spaces. 

3. DESIGNING DIAGNOSTIC SPACES 
We have identified in total 4 steps that are required to transform 
smart vehicles and smart homes into private diagnostic spaces.  

3.1 Transforming the Sensing Devices 
In this subsection, we exclusively focus on medical use of the smart 
environments. The aim is unobtrusive measurement of medical 
meaningful data.  

3.1.1 Secondary Use of Environmental Sensors 
To reach this goal, the first step is using the data that is already 
recorded. For instance, the seat belt control system in the car detects 
occupied seats by an integrated scale. Such data can be used to 
monitor the body weight of a driver or passenger, who is, for 
instance, daily commuting by car and suffering from heart 
insufficiency. Another example are steering wheel and pedals, 
which record smallest motions that may indicate for special risk 
group morbus parkinson in early stages. 

Similarly in smart homes, existing sensors can be used medical 
meaningfully. Today, we consider a home as smart if we are able 
to control heating / air condition, light systems and windows 
wireless via apps to save energy and to deliver personalized room 
climate (although a smart home should do that all automatically). 
To achieve this aim, the smart home tracks all doors and windows 
for opening and closing. Additionally, it may monitor hot- and 
cold-water consumption as well as all the power outlets.  

Fig. 3 shows smart-home tracked events, which are recorded 
continuously. A circle spans 24 hours and each circle represents a 
full day, stacked from inner to outer rings. The colors indicate 
different sensors, but it is irrelevant which color indicates which 
sensor. On the left hand side of Fig. 3, we can see morning and 
evening periods (maybe, the red color indicates the use of hot water 
in the bathroom), nights with only a few events, and also a resting 
periods at noon. The most important feature, however, is that all 
days are likewise, as elderly tend to have a very structured and 
regulated day flow.  

 
Figure 3. Regular and irregular use of a smart home 

The diagram on the right hand side of Fig. 3, contrarily, does not 
show any such regularity. A pattern change from one to the other 
obviously indicates medical problems at early stages such that 
according action can be taken long before a serious adverse event 
actually occur [2]. 

Furthermore, both, smart homes as well as smart cars can monitor 
mobility. Simply taking the time it takes the elderly from opening 
the sleeping room door in the morning until she crosses the hallway 
and opens the bathroom door indicates any trend in gaining or 
loosing mobility. Same, for instance, from opening the driver’s 
door of the car until starting the engine. Of course, there will by 
strong outliers (e.g., if the phone rings during the procedure), but 
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trends will be detected robustly and at early stages, i.e. “longest 
before the predicted event” [2].  

3.1.2 Integrating Additional Medical Sensors 
The advantage of the CAN and BASIS bus systems is that 
additional sensors and actors can be integrated easily. So, we can 
equip the smart environments additionally with medical sensors, 
exclusively designed to monitor vital signs and biosignals. 

Usually, there are four primary vital signs, which are standard in 
most medical settings: (i) body temperature, (ii) heart rate or pulse, 
(iii) respiratory rate, and (iv) blood pressure. Oxygen saturation (as 
measured by pulse oximetry) and end-tidal CO2 are often referred 
to as fifths [7] and sixed [8] vital sign, respectively. 

Leonhardt et al. recently reviewed unobtrusive vital sign 
monitoring in automotive environments [9]. Based on 
cardiorespiratory and thermoregulatory couplings, we obtain 
bioelectrical, mechanical, and thermal effects (Fig. 4). Sensors, 
such as electrocardiography (ECG), capacitive ECG (cECG), radar, 
ballistocardiography (BCG) and seismocardiography (SCG), video 
imaging, photoplethysmography (PPG) and PPG imaging (PPGI), 
magnetic induction (MI), and thermography capture body surface 
potentials, displacements and temperatures, the superficial 
perfusion, and the intrathoracic impedance. 

 
Figure 4. Unobtrusive vital sign monitoring [8] 

In the following, we are focusing on video cameras, accelerometers, 
and electrical electrodes as sensing devices. 

With increased computational power, camera-based vital sign 
monitoring is becoming more evident [10]. Not only for motion 
analysis but also for color measures, such as with PPGI, video 
forms an inexpensive sensing technology. Zaunseder et al. recently 
reviewed cardiovascular assessment by PPGI. Beside the mean 
heart rate, video-imaging data can be further processed and 
analyzed for heart rate variability (HRV), pulse oximetry, 
morphology effects related to vasculature, and pulse transit time 
(PTT) [11]. However, being continuously video-controlled, in 
particular at home, has not adopted sufficient compliance so far. 
Hence, we see the lack of user acceptance as main limiting factor 
of this bio-monitoring technology.  

BCG and SCG technology is likewise inexpensive. However, 
robustness of acceleration-based body-motion assessment becomes 
crucial in cars when driving (on bumpy roads). Surprisingly, it 
seems possible to measure seatbelt-integrated BCG, if we place the 
data sensor near the buckle lock [12] and use a second sensor to 
capture noise only [13]. Fig. 5 illustrates in-car BCG sensor 
placement for noise cancelling. 

 
Figure 5. In-car BCG with noise-cancelling [13] 

On a first glance, unobtrusive sensors and contacting electrodes 
yield a contradiction. However, in cars as well as homes, there are 
places where the hands rest regularly, e.g. the steering wheel or 
gearshift as well as the television-chair’s armrest, respectively. 
Hence, electrodes for ECG or skin impedance can be integrated 
here and deliver signal only when hands are placed appropriately. 
The same holds for PPG sensing devices. In all these cases, the 
technical challenge is to differ robustly the noisy signal-recording 
periods from noisy non-recording periods. 

The top-left panel in Fig. 6 shows an experimental setup for ECG 
in-car measurement. In addition, cECG can be integrated to cars 
and homes. Here, one electrode and the subject’s skin from a 
capacitor that injects the ECG-driven electric potential to a signal 
amplifier. Textile electrodes allow convenient integration of the 
sensing device into the car seat (Fig. 6, top right, © Ford motor 
company), an armchair (Fig. 6, bottom left) or a bed as a mattress 
topper (Fig. 6, bottom right).  

 

 
Figure 6. ECG and cECG recording in smart environments 

Luo et al. recently determined blood pressure in a contactless 
manner using a camera-based technology called transdermal 
optical imaging (TDOI). This technology processes imperceptible 
facial blood flow changes from videos and uses advanced machine 
learning to determine blood pressure from the captured signal [14]. 
The authors enrolled 1328 normotensive adults and used 70%, 15%, 
and 15% of the data to train and test the model, and to validate the 
model performance, respectively. The predicted blood pressure had 
a bias of 0.39, -0.20, and 0.52 mm Hg for systolic, diastolic, and 
pulse pressure, respectively. 

We picked the work of Lou et al. exemplarily to emphasize that 
novel machine learning algorithms – in particular when combining 
different sensors – will close the gaps for unobtrusive vital-sign 
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monitoring towards all vitals. It is beyond the scope of this paper to 
list all recent work aiming at completely delivering the vital sings 
from a distant, i.e., unobtrusively (Tab. 1). 

Table 1. Unobtrusive vital sign monitoring 

No Vital Sign Sensing Device 
1 Body temperature Camera, Machine learning 
2 Heart rate Accelerometer, ECG, cECG, PPG 
3 Respiratory rate Accelerometer, ECG, Camera 
4 Blood pressure Camera, Machine learning 
5 Oxygen saturation PPG, Camera 
6 End-tidal CO2 Camera, Machine learning 

3.2 Transforming the Central Processing Unit 
We consider the central processing unit as the core of a smart 
environment. Like the sensing devices, this core needs to transform 
into a diagnostic space with respect to its hardware and software 
for data warehousing and analytics. 

3.2.1 Hardware 
According to the BASIS concept, the smart homes has a central 
processing unit, which is integrated in the fuse box. This location 
is advantageous with respect to the bus connection, but also for 
security reasons [5].  

Fig. 7 illustrates that server, storage devices, and connection 
interfaces are available to be mounted into the fuse box. 

 
Figure 7. PC components integrated in the fuse box 

Designing diagnostic spaces, we need sufficient computational 
power and storage for all data continuously monitored over at least 
one year, wireless local area network (WLAN), and Bluetooth (low 
energy) interfaces.  

3.2.2 Data Warehousing 
According to Dimitrov, for instance, we also suggest a data 
warehouse approach for the data delivered by all the sensing 
devices and mappings between structured concepts such as the 
Logical Observation Identifiers Names and Codes (LOINC) codes 
or the International Classification of Diseases-9 (ICD9) and ICD10 
codes. However, we also need integration of the environmental 
sensors [15]. Schwartze et al. already introduced a Health Level 
Seven (HL7) Fast Healthcare Interoperability Resources (FHIR)-

1 https://aei.plri.de/de/projects/the-isan-project 

based object model for a home-centered data warehouse in 
ambient-assisted living environments [16]. 

3.2.3 Data Analytics 
In near future, health-related alerts will be generated autonomously 
from the private diagnostic spaces. Therefore, the smart 
environments must extract the appropriate information form the 
data warehouse. Dimitrov and others consider artificial intelligence 
(AI) algorithms as key technology here [15]. In particular, the 
aggregated warehouse data forms the basis of effective data 
analytics. In addition, such AI technology is also fast (e.g., Google 
is retrieving suggestions from billions of record options 
instantaneously as-you-type in a search bar). 

3.3 Transforming the Communication 
Interface 
So far, we considered our smart environment as stand-alone system. 
For data security reasons, we built the data warehouse as a silo that 
does not allow access from outside the closed environment. To 
transform such a system into a diagnostic space, the communication 
interface must be opened securely not only to request information 
from other sources (such as a cloud-based electronic health record) 
but also to initiate interaction with other systems (such as that of 
the medical rescue services). 

3.3.1 Semantic Interoperability 
Communication of medical information has a syntactical as well as 
a semantical level. Using the HL7-FHIR-based object model by 
Schwartze et al., we obtain semantic interoperability. The smart 
environment can then collect data from many different sources, 
normalize it into a consistent structure in the data warehouse, and 
resolve it around unique patient identifiers (PID) with a particular 
medical history. Only then, the data becomes truly useful [16].  

3.3.2 The ISAN Project 
A technical approach to establish secure data exchange from smart 
homes and smart cars is the International Standard Accident 
Number (ISAN).1 When we buy books, the International Standard 
Book Number (ISBN) is a valuable resource, since it provides a 
unique identifier disregarding different publishers or editions. 
Accordingly, the ISAN aims at establishing a unique identifier for 
adverse events such as accidents, medical events, and emergencies. 

The ISAN is generated from global positioning system (GPS) 
coordinates of the event, date and time stamps as well as an 
identifier of the creating system. The alerting system, e.g., a smart 
home that detected the fall of an elderly resident, communicates the 
token to a trustee for encryption and passes it to the alert receiver. 
Furthermore, the trustee may generate a quick response (QR) code 
(Fig. 8). 

 
Figure 8. Quick response (QR) ISAN code 
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Thereafter, for instance, the emergency rescue team can contact the 
smart home via the trustee using the ISAN as credentials for access 
from outside, and request a floor plan indicating the room of 
happening as well as the best way to get there. It can inform the 
smart home on arrival electronically, such that the door opens 
automatically, or the smart home sends the key-code back to the 
rescue team and they manually open the door. 

3.4 Adding Context for an Application 
As a last step of the transform, we add context information in terms 
of particular applications. The diagnostic space need to know about 
the individual it is observing, her weaknesses and her medical 
record. For instance, an altered mobility pattern needs different 
understanding according to the age and health status, or depending 
on illnesses and the medical history. 

4. EXAMPLE APPLICATION: STROKE 
We now present a future scenario of transforming smart homes and 
smart vehicles into private diagnostic spaces. As we pointed out 
already in the previous subsection, an application domain needs to 
be identified such that the diagnostic spaces can be adjusted 
appropriately with respect to sensitivity and specificity of 
automatically generated alerts. 

We now consider stroke as serious adverse event. According to the 
Centers for Disease Control and Prevention (CDC) in the United 
States (US) of America, stroke 

• Is the fifth leading cause of death, killing about 140,000 
Americans each year; one every four minutes; 

• Reduces mobility in more than half of its survivors aged 65 
and over; 

• Costs the American nation $34 billion annually [17]. 

Fig. 9 indicates that in the southeast of North America, up to 200 
strokes occur annually per 100,000 inhabitants aged 35 years and 
above – one out of 500 adulted individuals is affected. 

In this example application, we do not aim at alerting a stroke that 
already happens but at forecasting strokes before they happen to 
allow their prevention. We also know that atrial fibrillation (AF) is 
a reliable indicator of forthcoming strokes [18]. Unfortunately, 
humans cannot feel irregularities on their heart beets and hence, 
most AF patients remain undetected until the stroke hits.  

 
Figure 9. CDC stroke map.2 

2 https://www.cdc.gov/dhdsp/maps/national_maps/stroke_all.htm 

However, not effective pulsation of blood may yield clots in the left 
ventricle. When a latent AF period ends, the heart pumps the clots 
into the large arteries, where they may block the blood supply of 
the brain: the stroke has happened. ECG, heart rate, and HRV are 
valuable signs to predict individually increased stroke risk. 

In our vision, private diagnostic spaces such as smart vehicles and 
smart homes will robustly identify first signs of stroke – “longest 
before the adverse event” [2], and enable comprehensive 
diagnostics and preventive treatment of the subject keeping them in 
a healthy and regular way of life. While contact electrodes or ECG 
patches are not tolerated more than 2 or 14 days [18], the 
combination of smart homes and smart cars allows continuous 
everyday monitoring, although limited to certain periods within a 
day. 

5. DISCUSSION 
In this paper, we shared a vision of future health care [2], where 
paradigms are changing (i) from symptom-driven diagnostics 
towards continuous health monitoring and prevention; and (ii) from 
expensive recording devices in public spaces towards inexpensive 
recorders installed in private spaces, such as smart vehicles or smart 
homes.  

In order to enable continuous health monitoring as well as to serve 
the growing healthcare needs, affordable, non-invasive and easy-
to-use healthcare solutions are critical. As such, we are in line with 
Majumder & Deen [19]. However, as they see the ever-increasing 
penetration of smartphones, coupled with embedded sensors and 
modern communication technologies making it attractive for 
continuous and remote monitoring of an individual's health, we are 
promoting smart homes and smart cars over smart clothes and smart 
wearables, as such private environments offer unobtrusive health 
monitoring. 

With recent information and communication technologies and 
biosensors, the access to continuing health monitoring is becoming 
real [20]. We agree with Gruson & Gouget that the development of 
efficient, accurate, and interactive solutions for continuing health 
monitoring will contribute to an improved care of chronic diseases 
like hypertension, diabetes or heart failure.  

However, as we see AI-based analytics as the core component for 
data understanding, we need large sets of appropriately labeled data 
(so-called ground truth) for training and testing. With respect to 
heart failure and other chronic diseases, such data does not exist. 
Still, computational algorithms are validated using small sets of 
highly accurate measures rather than large sets of continuous data 
recorded with low-cost and low-quality devices [21].  

Bai et al. [22] further pointed out that available reference data 
annotates records rather than events. For instance, ECG recordings 
of several minutes are labeled as AF vs. non-AF, but it is not 
indicated when exactly the AF period occurs within the 
measurement.  

In future, unobtrusive monitoring may also include skin-mounted 
devices [23]. Skin is the largest organ of the human body, and it 
offers a diagnostic interface rich with vital biological signals from 
the inner organs, blood vessels, muscles, and dermis/epidermis. As 
such, soft, flexible, and stretchable electronic devices may provide 
a novel platform to interface with soft tissues for continuous health 
monitoring [23].  
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The Medical Informatics Initiative Germany (MII) 3  is fostering 
another change in computing-machinery paradigms: In future, we 
will distribute algorithms rather than building data warehouses (Fig. 
10). This avoids handling of pseudonyms but allows complete de-
identification at time of the data-evaluation request. The ISAN may 
play an important role for building data integration centers that 
connects the data silos from private diagnostic spaces. 

 
Figure 10. Distributed queries replace the data warehouse [2] 

6. CONCLUSION 
In conclusion, we word the following take-home messages: 

• Private environments such as smart cars and smart homes 
transform into diagnostic spaces by (i) meaningful use of 
existing sensors; (ii) integrating additional sensors for 
unobtrusive vital-sign monitoring; (iii) transforming data 
storage into warehouses; (iv) adding semantic interoperability 
and analytics; and (v) opening communication channels. 

• If a smart environment records private or medical data, the 
ISAN concept supports secure communication of that data 
with external IT systems, e.g., those the rescue chain is 
operating. 

• Annotated reference data of vital signs continuously recorded 
with low-cost devices still is unavailable, and hence, AI lacks 
appropriate training. 

• Designing private diagnostic spaces for stroke prevention, we 
may avoid 70,000 deaths in the US (50%) and hence, save $17 
billion annually only in the US. 
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