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Abstract

Unsupervised segmentation is a key challenge for automated
quantification of medical images. Although a balloon model is able
to detect arbitrarily shaped objects in images, it requires careful
adjustment of parameters prior to segmentation.
     Based on global texture analyses, our method allows to set these
parameters automatically for heterogeneous images such as MRI,
ultrasound, or microscopy. Cooccurrence matrices are extracted
from prototype images and used as feature vectors to train a
synergetic classifier. These matrices are computed likewise for all
other images. To control segmentation, similarity measures for
these features are applied to weight the linear combination of the
prototype parameters.
     The method was tested on 81 synthetic images and applied to a
set of 1616 heterogeneous radiographs. Setting the parameters of
active contour models by the proposed method improves the
acceptance rate of unsupervised segmentation from 31% up to 71%.
Keywords: unsupervised segmentation, active contours, balloon
model, parameterization, texture analysis

1 Introduction

In medical imaging, quantitative analyses require segmentation to identify objects
of interest [1]. Since manual segmentation is tedious, automatic or semi-automatic
segmentation methods have been examined [2]. Unsupervised segmentation of
images is a key challenge for any automated analysis of images and major goal of
research in bio-medical image processing.
     So far, systems for automated quantification rely on reproducibly acquired
images with similar appearance of considered objects. However, in medical
imaging this assumption often is violated. Normalization and fixed units for image
values are obtained from computed tomography but neither from magnetic
resonance, ultrasound, radiographic, nor microscopic imaging. Furthermore,
biological tissue often drastically varies in material properties the imaging is based
on (e.g. radiometric density or sonographic reflection coefficients). Hence, the
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appearance of medical images is not constant even if images are captured by
identical devices.
     When carefully adapted, active contours have been shown to result in reliable
segmentation [2,3,4]. However, the adjustment of parameters is required for each
task or application and still performed manually by technical experts. In our
approach, the parameter adjustment is done automatically. Different sets of
parameters are handled by texture-adaptive categorization of images.
     Following a brief introduction to the balloon model that is used for segmentation
(Sec. 2.1), we describe the training phase of a synergetic classifier for texture
discrimination (Sec. 2.2) and the adaptive parameterization for individual images
using this classifier (Sec. 2.3). In Section 2.4, our method is generalized to color
images. The classification that is based on the logarithm of coocurrence matrices is
evaluated in Section 3.1. Results are presented for a synthetic images (Sec. 3.2) as
well as a heterogeneous archive of radiographs (Sec. 3.3).

2  Method

Our method combines a robust and well-known balloon model with an a-priori
texture analysis that is used to determine the similarity of the current image with
trained images. This allows to adapt the parameterization of the segmentation
procedure.

2.1  Balloon model for segmentation

For segmentation of medical images, we apply a generalized balloon model [3] that
is based on finite element meshes [4]. The edge elements of simplex meshes move
under mechanical influences until they contact significant borders of objects in the
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Figure 1: Influences acting on the balloon during iterative segmentation of a radiograph.
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image. The edges of a polygon are moved iteratively by forces resulting from the
pressure of the balloon, a deformation force that is reducing the 2nd order
derivative of the polygons, and image influences (Fig. 1). The gray or color values
are interpreted as image potentials resulting in region-based external forces and
give local resistance to the movement of edges (Fig. 2).
     Based on this model, the algorithm locates arbitrarily shaped structures in
images without any initial contour. In comparison to classic snake approaches and
all their variations [5], the balloon-based algorithm requires more careful
consideration of the parameters controlling the segmentation. For our model, the
following influences for the finite elements have to be adjusted according to the
image:
• The maximal and minimal length of edges of the polygonal contour.
• The scale of gradients in the image occurring at the border or relevant objects.
• The appearance and intensity of these gradients, which are coded in the

potentials of image values.
• The strength of the deformation force.
• The strength of the pressure force.
     A unique set of segmentation parameters can be used for all images with similar
appearance of objects of interest [6]. To enable automatic segmentation of arbitrary
images, a training phase is needed prior to segmentation.

2.2  Training of texture

For unsupervised segmentation of heterogeneous image sets, the parameters have to
be adjusted without a-priori knowledge on image contents. Therefore, global
texture statistics are used to determine the similarity of appearances between

Figure 2: Visualization of image potentials for the radiograph in Figure 1.
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images. In a training phase, we browse a representative subset of images to identify
significant differences in appearance. For each class of appearance, a prototype
image is chosen arbitrarily. The parameters for this prototype image are set using
an automated method that employs an exemplary manual segmentation. Therefore,
this initialization can be done easily by physicians [6]. Then, the appearance of
those prototypes is described by their cooccurrence-matrix [7]. Such texture
statistics are frequently used for texture classification [8,9].
     All prototypes are downscaled to 256x256 pixels and the gray-scale is reduced
to 64 using nearest-neighbor interpolation [10]. Cooccurrence matrices are
extracted for these images with a displacement of 5. The segmentation parameters
must be adjusted such that the balloon model is allowed to overcome irrelevant
structures in the image but stops at the border of considered objects, where notable
changes in the appearance of tissues occur. Therefore, the interesting entries in the
cooccurrence matrix lay with distance to the main diagonal. Even for large
displacements, the entries along the main diagonal significantly are larger than all
others. Hence, mathematical operations that compute discriminative measures for
these matrices face the danger of numerical instability. Therefore, the logarithm is
applied to all entries of the cooccurrence matrix (Fig. 3). The resulting matrix is
regarded as a high-dimensional feature vector c

�

 and normalized to mean zero and
length one. For these features, we use the synergetic classifier proposed in [11] to
achieve robust similarity measures.

     This classifier relies on an orthonormal basis of adjoint vectors +
jc

�

 for the

prototype features ic
�

. We demand

ijji cc δ=⋅ +��

(1)

for all prototype feature vectors, where δ denotes the Kronecker delta symbol with

0,1 jiij =∀=δ else. The adjoint cooccurrence features +
jc

�

 are build as a linear

g1 g1

g2 g2

a b

Figure 3: The cooccurrence matrix for gray values g1 and g2 of a radiograph are displayed
without and with the logarithm of all values, (a) and (b), respectively. The histograms of
both images have been stretched individually for contrast enhancement.
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combination of all n prototype features kc
�

:

∑
=

+ =
n

k
kjkj cac

1

��

(2)

Multiplying (2) with the prototype vectors ic
�

 and using (1) for the left side, we

obtain a system of n2 linear equations
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with I denoting the identity matrix. The ajk can be calculated by inverting the
matrix of the scalar products of all prototype feature vectors
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They are used to compute the adjoint prototype vectors +
jc

�

 in (2).

2.3  Texture-adaptive parameterization

The parameter sets for prototype images resulting from training as well as the

adjoint cooccurrence feature vectors +jc
�

 are used for the segmentation of

heterogeneous images.
     During segmentation, a cooccurrence feature vector is computed for each image.
The scalar products of this vector with the adjoint vectors of all prototypes
represent similarities. Therefore, these scalar products are used to automatically
create an individual set of parameters for the image.
     Let imagec

�

 denote the cooccurrence matrix of an image that has to be segmented

and jP
�

 be a vector containing the parameters that are used for the segmentation of

prototype image j. Then, the required parameters imageP
�

 are calculated from the

similarity of the cooccurrence feature imagec
�

 and the adjoint prototype features +jc
�
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When segmenting an image, the parameters of the balloon model linearly are
interpolated from all parameter sets of the prototypes using the weights wj, which
depend on the scalar products with the respective adjoint features. The balloon
model detects significant contours in the image by a balance of all forces acting on
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an edge. Note that mechanical forces strictly are additive. This allows linear
interpolation of their strengths.

2.4  Color images

For color images, the feature vector is composed by combining the within- and
cross-cooccurrence matrices of the color channels [12]. The within-cooccurrence
matrices contain separate entries for all color channels using the same displacement
whereas the cross-cooccurrence matrices count the presence of image values at the
same image position in different channels. For an RGB image, this results in a
feature vector containing the cooccurrence matrices of the red, green, and blue
channel as well as the cross-cooccurrence between red and green, red and blue, and
green and blue. The dimension of this feature vector is six times the dimension of a
grayscale feature vector. Since the complexity of similarity measures that are based
on adjoint feature vectors only linearly depends on the dimension of the feature
vectors, the method can be applied easily to color images.
     External influences for the segmentation method are combined from all color
channels and weighted according to the intensity of color gradients that occur at the
border of objects of interest in the color channels. This gives also need to set
appropriate parameters for each color channel separately. This setting is handled by
the automated method described in [6].

3  Evaluation and Results

Numerical tests are performed to evaluate the stability of the adjoint vector
computation, the segmentation of synthetic phantoms, and that of radiographs
taken from diagnostic procedures in clinical routine.

3.1  Logarithm of cooccurrence matrix entries

So far, it has been postulated that the use of the logarithm increases the numerical
stability of distance measures that are computed from the cooccurrence matrices. A
test was performed to validate this supposition.
     Four color images were extracted from an endoscopic video of vocal folds.
Single frames do not contain textures of high contrast [12] and their histograms are
compact. The numerical stability of the computation of adjoint feature vectors were
assessed by the error measure

( )ijji

n

ji

cce δ−⋅= +

=

��

max
1,

(6)

It determines the maximal deviation of the scalar products between all feature
vectors and all corresponding vectors of prototypes.
     In our test, we used single-precision floating point instructions of a Pentium II
processor. The matrix inversion was taken from the image analysis tool Khoros 2
compiled under Linux with a standard GNU compiler. Using normalized
cooccurrence matrices for the feature vectors, the error measure e reached

392 T. Lehmann, J. Bredno, and K. Spitzer



unacceptable 0.78. It was reduced to 0.006 applying the logarithm to all entries in
the cooccurrence matrices prior to normalization.

3.2  Evaluation using synthetic images

Gold-standards yielding a valid segmentation usually do not exist in medical
imaging. Inter- as well as intra-observer variability hinder the quantification of
segmentation quality. In order to give quantitative measures, 81 synthetic images
have been created. These images of the size 128x128 pixel contain a centered object
described by )sin(0 ϕkrrr ∆+<  with r0=50, r∆ =10 and k=5. Inside and outside

are filled with Gaussian-distributed noise of mean µin and µout, respectively, and
standard deviation σ. In order to prevent high gradients at the object’s border, the
gray values linearly are interpolated from inside to outside within a five pixel
region (Fig. 4). Parameters for the creation of synthetic images were combined
from }150,140,130{∈inµ , }20,10,5{∈−=∆ inout µµµ  and }10,6,2{∈σ . Each

combination is based on three different images, giving an amplitude signal-to-noise
ration of

σ
µ∆= log20SNR (7)

ranging from -6dB to 20dB. These images were segmented using either a fixed
parameter set trained for the image with 140=inµ , 150=outµ , and 6=σ (see the

third example from the left in Fig. 4) or using an adaptive parameter set resulting
from training of 4 or 8 prototype images from this set, respectively. The mean and
Hausdorff (maximum) distances were calculated using the vertex positions in a
Chamfer distance-transformed image of the original object. Additionally, the
overlap measure

BA

BA
O

∪
∩= (8)

was calculated with A and B denoting the segmented and the original object,
respectively. Segmentations were accepted for O > 85%.
     Segmentation using the balloon model fails if a fixed parameter set is used (Tab.
1). The contours either collapse or expand over the object towards the image border
resulting in large distances and a small overlap measure. Only one third of all

Figure 4: Synthetic images are used for evaluation. The parameters ),( σµ∆  that are used to
create the displayed images are from left to right: (20,2), (20,6), (10,6), and (5,10). Note
that the images have been histogram optimized for printing.
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images is segmented sufficiently without parameter adaptation. Using 4 different
images in training, nearly 80% of all segmentations are accepted. The mean
difference reduces from about 20 down to 4.4. When 8 different prototypes are
trained, the rate of acceptance raises to 89%. Now, the mean distance between all
segmentations and the real contour is below 2 pixels. Nevertheless, the average
Hausdorff distance about 7 still is notable. In many images, only parts of the
contour are detected correctly due to the high amount of noise.

3.3  Segmentation of an heterogeneous image archive

The method was applied to a set of 1616 radiographs from the IRMA-project [13].
The images have been taken from daily routine at the Department of Diagnostic
Radiology, Medical School, Aachen University of Technology. The radiographs
were acquired by several modalities and partly scanned from film using different
scanners. Aim of the IRMA-project is content-based access to medical image
archives without manual indexing. Therefore, the main contours of imaged body
regions have to be segmented automatically without user supervision. First, the
balloon model was parameterized by an analysis of the images’ histograms. Using
the same model, all images were segmented again with the parameters
automatically set by the method described above. All together, 19 different
appearances have been identified. One of each class was used as a prototype.
     All results were manually rated (Fig. 5). A physician either accepted or rejected
the segmentation subjectively following his visual impression. Note that it is easier
and less time consuming to decide whether a given segmentation result matches the
expectation than to draw a manual segmentation. Furthermore, manual reference
segmentations are not reproducible.
     Using the heuristic histogram analysis, the relevant contours were detected
sufficiently in only 496 out of 1616 images. Using the texture adaptation of the
balloon model, the automatic segmentation was accepted for 1145 radiographs. The
method improves the ratio of acceptance from 31% to 71%. As a main problem, the

parameter set mean distance
σµ ±

Hausdorff distance
σµ ±

overlap
σµ ±  in %

# accepted /
# total

fixed 19.9 ± 13,7 37.9 ± 24.7 45.1 ± 38.5 27 / 81

adaptive,
4 prototypes

4.4 ± 7.8 9.5 ± 12.8 83.7 ± 22.7 64 / 81

adaptive,
8 prototypes

2.0 ± 3.6 7.1 ± 10.2 90.9 ± 9.3 72 / 81

Table 1: Results for the segmentation of synthetic images with and without adaptive
parameterization.
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segmentation method was disturbed by collimator fields in the radiographs that
were neither manually cut nor chosen according to image quality.

4.  Discussion

Unsupervised segmentation of medical images can be done by balloon models.
However, the parameterization of active contours is time consuming and requires
expert knowledge on the model so far. Using global texture analysis, this
parameterization is done automatically. Numerical robustness of texture
calculations is increased by logarithm of cooccurrence matrices that are based on
images with similar content and weak texture.
     The IRMA archive that is used for evaluation of our method contains images of
various regions of body, orientations, imaging modalities and scanning devices.
The imaging parameters were not optimized to show contours but for the ability to
perform findings in diagnostic regions of interest. Therefore, the increase of 31% to
71% and hence, acceptance of more than two thirds of all segmentations is
absolutely reliable. Further improvement may result from optimizing both, texture
feature extraction and similarity measures.
     So far, the texture-adaptive parameterization method has been used for a balloon
model. Note that this method of parameter adjustment is not bound to balloons and
could be used for many other segmentation methods that require the choice of
appropriate parameters. However, not all segmentation algorithms may be suitable
for a linear interpolation of parameters according to the similarity to image
prototypes.
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