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Abstract. Recent research has suggested that there is no general simi-
larity measure, which can be applied on arbitrary databases without any
parameterization. Hence, the optimal combination of similarity measures
and parameters must be identified for each new image repository. This
optimization loop is time consuming and depends on the experience of
the designer as well as the knowledge of the medical expert. It would be
useful if results that have been obtained for one data set can be trans-
ferred to another without extensive re-design. This transfer is vital if
content-based image retrieval is integrated into complex environments
such as picture archiving and communication systems. The image re-
trieval in medical applications (IRMA) project defines a framework that
strictly separates data administration and application logic. This permits
an efficient transfer of the data abstraction of one database on another
without re-designing the software. In the ImageCLEF competition, the
query performance was evaluated on the CasImage data set without op-
timization of the feature combination successfully applied to the IRMA
corpus. IRMA only makes use of basic features obtained from grey-value
representations of the images without additional textual annotations.
The results indicate that transfer of parameterization is possible with-
out time consuming parameter adaption and significant loss of retrieval
quality.

1 Introduction

Classical architectures of content-based image retrieval (CBIR) systems consist
of an image repository, along with visualization tools and query functionality.
The principle of data storage and visualization does not vary notably among dif-
ferent databases whereas classes of retrieval approaches are differentiated by the
query principle. In medical applications, this becomes a fundamental question
since several requirements for data entry, retrieval time, and content represen-
tation must be considered [1L12].

The first class of approaches associates and stores the secondary annotated
content descriptions with each image. When textual information is used, the
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retrieval task becomes a text search in the descriptions. Since the information
is added by a human observer, it can be subjective based on the annotator and
reflects his semantical view on the image content. However, inter- and intra-
individual variances in perception, knowledge and capability of expression lead
to different descriptions for a single issue, as do homonyms and synonyms in
standardized medical language. Due to the fact that each image has to be cat-
egorized manually, the effort at data entry time is high, which is infeasible in
clinical applications. Furthermore, there is no means of objective verification for
the added data.

The second class of retrieval approaches overcomes the data entry problem
by making use of information that is exclusively contained in the image. Here,
the retrieval task is the detection of the nearest neighbors to the query image in
the image database. This is based on the similarity of abstract representations
of images in a feature space. Consequently, CBIR depends on an appropriate
selection of the similarity measure, which again depends on the considered image
features. In general, explicit selection of feature computations and similarity
measures cannot be done by a physician in clinical routine. Thus, an abstraction
from the low-level feature handling is required [3].

Besides the data entry cost and the content representation a third problem
arises from the state of the image database: In a clinical environment the set
of available images is continuously growing. This must be considered since one
aims at CBIR to make clinical routine data available as a source of knowledge
for education and diagnostics. Consequently, the feature selection and similarity
computation must be as flexible as possible [4].

The image retrieval in medical applications (IRMA) project integrates these
three aspects of query design into a single framework [5]. In this paper, the ap-
plication of the IRMA framework to the previously unknown Caslmage database
of the University Hospitals of Geneva [6] is described with respect to the Image-
CLEF competition. This work has two main goals. It is verified if it is possible to
transfer the IRMA query approach to another domain without significant loss of
retrieval quality and if it is sufficient to focus on basic image features for content
description in contrast to text or text/feature combinations.

2 Designing a Query in the IRMA Framework

2.1 Feature Computation

Numerous features are described in the literature. They are roughly categorized
into shape [7], color [§] and texture [9]. Those features are extracted from an
image and form a size-reduced representation of the content. The first task in
query design is the definition of relevant features. With respect to the large
variety it is useful to provide as many features as possible and to select an ap-
propriate subset for a distinct task. In the IRMA system, each newly presented
image is automatically transformed into all available feature representations.
This causes computational time for initial database processing but ensures short
update and querying cycles when presenting unknown single images as well as
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implementing new features since only the new information must be calculated.
For this purpose, IRMA provides an automated storage concept that applies
the implemented image-to-feature mappings at data entry time [10]. A new fea-
ture computation is integrated into an image processing chain by providing the
transformation code. The actual database handling is hidden from this imple-
mentation by an interface providing an exclusive view on the image.

2.2  Feature Comparison

A query is modeled as a nearest neighbor classification. Consequently, it is de-
signed by defining a similarity measure as a metric in the feature space. The
corpus is represented as a sorted list, where the most similar images with the
smallest distance to the query image form the head. The selection of actually
correct matches must be made from this list. This is task specific and, there-
fore, a runtime parameter of the system that cannot be determined in advance.
Furthermore, the selection depends on the actual number of relevant images in
the database. Thus, a sufficient set of results must be presented to the user who
has to make the final decision. For this purpose, the IRMA system offers a set
of database processing sequences, which enable the sequential or parallel access
to the stored image features via iteration or fan-in/fan-out processing over the
corpus. Those sequences are combined on a binary execution level by abstract
methods. Consequently, the data handling is also hidden from the application
by specialized data flow interfaces [10].

2.3 Integration of New Image Data

The component-based software architecture provides a platform where new data
is integrated without re-implementing the available features and distance mea-
sures. New images typically require the adoption of existing feature extractions
and similarity computations. Yet when introducing a new image corpus there is
no a-priori knowledge on the classes of images and their sizes. Therefore, finding
the appropriate features and similarity measures equals the optimization task to
find an unknown target function. However, brute force learning approaches for
optimal query parameters can only be performed if the ground truth is known.
Alternatively, a manual optimization of query methods to a distinct database
is inapplicable for clinical routine solutions, since there is simply no time to
supervise the learning process. Thus, the designer of an application combines a
set of features and similarity methods in advance and then hands it over to the
medical expert who has to verify the results. Once such a retrieval engine is inte-
grated, for instance, into a picture archiving and communication system (PACS),
it can hardly be modified or optimized, since the database continuously evolves.
In contrast, the IRMA framework allows a hot swap of the feature extraction,
similarity computation and database without affecting each other [10].

In case of the Caslmage data set there was no ground truth given, so the
results could only be generated by transfer of successfully applied query settings
from other applications. This was performed for the ImageCLEF task. Main
objective was the transfer of already implemented code and associated experience
from recent experiments onto a new domain without parameter adaption.
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3 Applied Features and Queries

The methods were taken from recent applications on the IRMA database con-
sisting of 10,000 images from clinical routine, which were categorized by medical
experts and used to train parameters [5]. Thus, the unmodified transfer of the
methods is reasonable. Since the IRMA system processes only gray-scale images,
RGB color conversion was done by using the standard color weighting [11]:
v — 6969 - R + 23434 - G + 2365 - B ()
B 32768
Recent experiments indicated that spatial and intensity features must be
considered equally to obtain reasonable results [12,[13].

3.1 Texture Features by TAMURA

TAMURA et al. use coarseness, contrast and directionality to capture an image’s
texture properties [I4]. Those features are computed per pixel and reflect the
texture affiliation. The value ranges for coarseness, contrast and directionality
are quantized into 6, 8 and 8 equidistant intervals, respectively. They form the
6 x 8 x 8 = 384 bins of a three-dimensional histogram, which serves as the
global texture description. However, different image sizes result in different and
therefore incomparable histogram counts. To obtain comparable features, each
image is scaled to a size of 256 x 256 pixels, ignoring the aspect ratio.

To compare the TAMURA histograms of two images Hr(Q) and Hrp(R) with
M = 384 bins each, the Jensen-Shannon divergence is used [I5], where @ and R
denote the query and verified image, respectively:

M

Dys(Q, R) = ;mZ:l [HF(Q) log H?(QQI;I%—:(?I;(R)JF
2H7'(R)

HIEN8 f @) + g () )

3.2 Aspect Ratio

Comparing the aspect ratio of images is an unspecific measure. Yet it is useful to
consider the dimension of images. Since normalization for some texture features
requires the deformation of the image dimensions into a square shape, the aspect
ratio of an original image is a means of image comparison. Furthermore, the
aspect ratio is characteristic for different classes of medical images. For instance,
slices from magnetic resonance imaging (MRI) have identical edge dimensions
while radiographs of limbs are rectangular elongated in direction of the principal
bone. The aspect ratio is compared by:

Du(@7) = | 3 ~ 7| 3

Y(Q) Y(R)

where X (I) and Y (I) denote the size of an image I: (X,Y) :— z € {0.X—-1},y €
{0.Y — 1}.
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3.3 Image Distortion Model

While histogram-based methods provide invariance against some transforms such
as translation, scaled representations of the original images can preserve spatial
properties, which are especially important to recognize medical images [16]. A
drastic reduction in size also reduces noise and small image defects. The im-
age distortion model (IDM) expands the naive pixel-by-pixel comparison of the
scaled representations. It allows local displacements for each pair of pixels com-
pared within the distance measure. This is especially useful for medical images
due to individual anatomical properties in each image. The policy is to match
each pixel of the sample image to one in the reference image. This ensures that all
sample information is evaluated. To prevent a completely unordered vector field
of pixel mappings between two images, it is useful to include the local context
into the search process for a correspondence hypothesis. Denoting the coordinate
offsets by z” and y”, while 2’ and y’ term the offsets within the search window
for a corresponding pixel, the distance is computed by:

X Y
DIDM(Q7R):ZZ| /Ir‘nli‘riw { Z ||R(Jf+x’+x’/’y—|—y’—|—y//)_
w=1y=1"""WIETE gy <wy

Qz 42",y + y”)llz}(4)

The results are improved if the image gradient is used instead of the intensity
values. For our experiment, we used W7 = 2 (5 x 5 pixel-sized search window
for corresponding pixels) and Wo = 1 (3 x 3 pixels of local context). The images
were scaled to a fixed maximal height or width of 32 pixels keeping their original
aspect ratio.

3.4 Classifier Combination

A parallel classifier combination is used. In order to avoid value domination of
a single large addend, the results of each classifier are transformed to a common
scale. This is done by dividing each result for a single classifier by the sum of all
distances of the respective classifier. The weighting for each addend determines
the combined vote for a distinct classifier. The described similarity measure is
finally obtained from:

p(Q,R) = a-Djys(Q,R)+ - Dipm(Q, R) +v-Dar(Q, R) (5)

As a matter of fact a, § and  are parameters of the function p. Yet for the
retrieval application described in this paper they are considered as constants that
were empirically determined beforehand on the IRMA medical image corpus.

3.5 Determination of Relevance

The relevance of an image with respect to the query image @ is computed by
sorting the database DB into a sequence:



786 C. Thies et al.

n = |B| denotes the number of images in the repository. Relevance determi-
nation applies the classifier to all elements of the database. Consequently, time
consuming p-functions are computed for many irrelevant comparisons. For this
purpose, a sieve is applied to reduce the number of potentially relevant refer-
ences. It is computed by selecting a fixed number of elements from the beginning
of a list, which has been sorted with respect to the applied similarity measure. In
the IRMA framework, the sieve is applied to the IDM classifier by the following
steps. First, a neighbor list is computed by using Euclidian distance on 16 x
16 representations of the query image and the database images. Afterwards, the
IDM is applied to the closest k database images. Consequently, the computation
time is reduced by the factor n/k. Based on this sieve function, the most rele-
vant images are selected by the application of Srgr(Q, sieve(Q, B, k)), where
the IDM can only reorder the results.

images[] sieve(image QueryImage, image B[], int CutOff)
Let image Q = scale (QueryImage, 16x16); //downscale query image

Let int N=bound(B[]); //Size of the database B

Define image P[N]; //Buffer for B processing
Define double deltal[N]; //for distance computation
For (i = 0; i < N; i++) //downscale each image in
Bs[i] = scale (B[i], 16x16); //the database and compute

deltal[i] = euclidian_distance (P[i],Q); //euclidian distance to query

sort (P, delta); //sort database by distance
sieve = P[0] .. P[min(CutOff,N)]; //truncate list at cutoff

4 Experiments

The experiments aim at verifying whether the query design that yielded good
results on the IRMA database could be transferred into another image domain
such as the Caslmage database without parameterization. This approach was
chosen since the ImageCLEF task was explicitly laid out to demonstrate the
current state of CBIR research [6]. With respect to the competitive character of
the workshop, it is instructive to learn to which degree sophisticated techniques
for optimization on the given image domain is necessary to obtain useful results.

4.1 Reference Data

The Caslmage database consists of 8,723 images and represents a mixture of
diagnostic images from clinical routine and drawings for medical education.
Furthermore, there are images with secondary added contents such as pseudo-
colorings of segmentation or manual annotations for operation planning.

From this data set, i = 26 samples were arbitrarily selected as queries ;. The
experimental task was to extract similar images to each of the samples and pro-
vide a list of retrievals for manual evaluation [6]. Thus, the ground truth for each
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Table 1. The weights for the classifiers as used for the similarity functions in the

experiments
Classifier a 15 5y
Dar 0.0 0.0 1.0
Dis 1.0 0.0 0.0
Dipm 0.0 1.0 0.0

Ci & C! 0225 0.675 0.1
C&Cy 025 0.75 0.0

query was a-priori unknown and optimization was only possible in an empirical
and heuristic manner. In this work, no heuristic manipulation of the parameters
for result optimization was performed. Hence, there is no specific quantization
and threshold computation to cut off the list from Sgrgr,(Q;, B) with respect to
each Q;. Since the actual amount of relevant images in the database is unknown
for each Q;, a fixed set of possible results is returned. In the IRMA concept a
combined evaluation of precision, recall, and visual plausibility is used to evalu-
ate and parameterize the system for different applications. Since automatically
generated quality measures like precision and recall do not necessarily reflect
the visual relevance of query results moreover it must be verified manually by
an expert. This demands a trade-off between full database processing and inter-
actively manageable results. For this purpose the cutoff value for the size of the
result set is required. Its automated computation is applictation specific and not
yet integrated in the IRMA concept. A fixed cutoff value of 100 images was found
to be a suitable compromise with respect to common class sizes in the IRMA
database. For comparable quantitative evaluation of the CasImage database, a
ground truth is provided by three medical experts from the Geneva University
Hospital [6].

4.2  Quality of Results

Similarity Function. The adjustment of p(Q, R) as defined in (fl), means the
empirical adaptation of the weights a, 8 and +, as explained in Section [3.4
Table [ lists the settings that were tested for the combined classifier weights.
Each of the distance measures Dagr, Djs, and Dipy is verified separately by
setting the respective weight to 1 and all others to 0. Based on those experiments
two weighted combinations C; and Cg were acquired on the IRMA database [12],
which were also applied to the Caslmage database. The corresponding runs were
submitted as mi_combinel (C;) and mi_combine2 (Cz). C; combines Dag, Djysg,
and Dipy while Cy combines Djg and Dipy. The sieve function sieve(Q, B, k)
must be evaluated separately, since the cutoff after k& images eventually affects
the retrieval results, causing two additional parameterizations C} and Cj.

Result Evaluation. For each query image Q;, the first 100 images from the
sequence Sggr(Q;, B) were compared to the ground truth by the usual measures
of precision and recall:
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# of relevant images
100 Q)
# of relevant images
(8)

Ground truth was the pisec_total data set, which was provided by the medical
experts from the Geneva University Hospital [6]. Due to the restriction to 100
replies, the recall will never reach 100% for queries with more than 100 relevant
results in the database. Precision will as well be low for query images, which have
significantly less than 100 images among the data set. This bias is accepeted with
respect to the compromise between visual verification and automated quality
measurement.

precision :=

1l :=
reca # of relevant images in B

4.3 Runtime Behavior

Finally, the setup of the parameters has to be efficient for fast verification cycles.
For this purpose, the IRMA framework supports the separate consideration of
the feature extraction at the image entry time (Sec. 2]) from the actual feature
comparison (Sec. 2.2]). Furthermore, runtime is optimized by preliminary appli-
cation of the sieve function to reduce the number of necessary similarity com-
putations. In the conducted experiments, the cutoff value was set to k& = 500.
For quality comparison the combinations C; and Cy are applied to the result of
sieve(Q, B, 500), which extends the set of experiments by C} and C/, (Tab. [I).

5 Results

5.1  Quality of Results

The precision for each of the classifier combinations is listed in Table 2l For the
combined classifiers C; and Cs, the best precision was obtained for Q24 and the
worst precision for image ()14. While best recall for the combined measures was
also for image @14 the worst recall for C; and Csy was for image Q23. Overall,
C; yielded the highest average precision. For query @7 only, Dagr returns no
relevant image while the precision constantly increases with Djg, and Dipm
and finally obtains the highest value of 0.36 with C;. Only for @11, no useful
result could be retrieved. The results for C| and C) on the reduced datasets are
only slightly inferior with respect to average precision. Several single results are
even better such as for query Q5. For query images @1, ¢, @15, Q24, precision
is perfect or near perfect, whereas several query images yielded unsatisfactory
results. Especially, queries Q4, @11, @14, Q17 and Q23 returned only 43, 9, 11,
31, and 74 relevant images, respectively.

5.2 Runtime Behavior

The computation of all required feature representations takes approximately
7.5 hours while the query computation for the combined measures for a single
image requires about 5 minutes on a standard Pentium PC running at 2.4 GHz
(Tab. B]). The sieve-based computation of the combined measures C; and Cj
yields a significantly faster runtime of 18.7 seconds for a single query.
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Table 2. Precision for the experiments. The boxes indicate the best and least precise

result
Q: Dar Djs DM Cy C, Cj Cy
1 010 063 097 097 097 097 097
2 001 070 066 081 082 071 0.72
3 008 023 025 035 029 027 027
4 009 002 002 004 003 002 0.02
5 003 003 036 040 039 043 042
6 020 081 094 097 099 096 0.95
7000 024 024 036 031 035 033
8 009 006 011 023 020 011 0.11
9 00l 016 015 025 029 026 0.26
10 004 017 041 042 038 037 042
11000 001 000 003 003 000 0.00
12023 047 069 067 072 072 0.71
13002 010 036 042 038 037 035
14 001 0.03 0.0l 0.04 0.02 0.01
15 014 096 087 097 098 088 0.89
16 0.02 057 034 058 051 034 034
17000 004 007 010 011 011 0.11
18 020 010 043 036 038 038 0.39
19 00l 08 050 073 078 0.67 0.68
20 006 006 010 010 0.09 0.09 0.08
21 002 011 052 040 039 035 0.33
22 010 036 068 059 064 059 0.60
23 003 006 010 015 0.08 0.15 0.09
24 015 0.80 1.00 1.00  0.99 1.00
25 038 041 036 046 041 042 040
26 013 021 002 030 020 032 0.21

avg 0.08 031 0.39 0.45 0.44 0.42 041

Table 3. Integral running times of the feature extraction for all 8,728 images, of the
feature comparison for all 26 query images and of a single query on a standard PC
running at 2.4 GHz

Classifier feature Query  Single
extraction 26 Images  Query

Dar 0.5h <ls <1s
Djs 4 h 13 s <1ls
Dipm 3h 0.25 h 300 s
Cq 7.5h 0.25 h 300 s
Cs 7h 0.25 h 300 s

Ci 7.5h 0.15h  18.7s

c 7h 0.15h 18.7s
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5.3 ImageCLEF Ranking

Within the ranking of all ImageCLEF submissions the mean average precision
(MAP) was chosen as a measure for the quality of a result [6]. According to the
overall evaluation the IRMA approach yielded a MAP of 0.2980 with C; and
a MAP of 0.2809 for Cs, which corresponded to rank 24 and 31 from 44 runs
submitted [6]. The MAPs were ranging from the best value of 0.48 to the worst
of 0.1, where the mean of all MAPs was 0.29 with a standard deviation of 0.11.
There were 19 submissions where no query expansion and additional textual
information was used. In this more comparable ranking, the IRMA approach
achieves the 9th and 11th position respectively. Here, the mean of all MAPs is
0.26 while the standard deviation remains 0.11.

6 Discussion

Since the MAPs lie within the standard deviation of the MAPs for all sub-
mitted runs in the ImageCLEF task, the outcome is encouraging,. Note that
there was no effort taken in task specific optimization of the parameters. In
the ImageCLEF task, the ranked retrieval results are a mixture of text-based,
content-based, and hybrid approaches with eventual query expansion. However,
the IRMA framework neither takes advantage of

e multichannel information such as color nor of
e textual annotations,

but still, the results are in the center field of the ranking.

By application of the query related sieve on the database, the number of
costly IDM comparisons is significantly reduced with only slight loss of average
precision and recall. This also encourages the use of sophistically implemented
classifiers for online retrieval applications such as differential diagnosis support
via queries to a PACS. In such routine applications the physician needs imme-
diate response to compare a given image to possibly related cases with known
findings.

7 Conclusion

The application of a parameterization and evaluation concept that was optimized
for the IRMA domain yields useful retrieval results on the previously unknown
CasImage domain. It was one of the two main goals of this work to show that
it is possible to obtain good results with the IRMA system without parameter
adoption. Even if the results are not optimal time consuming training cycles are
avoided. This is important since optimization of powerful classifiers such as Dipu
is infeasible in online systems such as PACS due to running times of several hours.
The second goal was to verify the need for sophisticated features and similarity
measures. It can be stated that complex integration of multichannel and textual
information yields better results in comparison to the basic IRMA approach.
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However the trade-off between time input for parameter adjustment and flexible
domain adoption must be considered.

By separating the application logic from the storage concept, the software
architecture also supports the transfer of new features and classifiers as well as
images without changes in the existing implementation. Furthermore, there is
still the commonly observed gap between fast computable query designs and
good retrieval results. Powerful classifiers as required for medical applications
still need computation times, which are not applicable in fast reacting retrieval
environments. This remains a field of ongoing research, where the IRMA system
provides a supporting framework for efficient verification and also application.
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