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Addendum: B-Spline Interpolation in Medical Image
Processing

Thomas M. Lehmann , Member, IEEE, Claudia Gönner, and Klaus Spitzer

Abstract—This paper analyzes B-spline interpolation tech-
niques of degree 2, 4, and 5 with respect to all criteria that
have been applied to evaluate various interpolation schemes in
a recently published survey on image interpolation in medical
imaging (Lehmann et al., 1999). It is shown that high-degree
B-spline interpolation has superior Fourier properties, smallest
interpolation error, and reasonable computing times. Therefore,
high-degree B-splines are preferable interpolators for numerous
applications in medical image processing, particularly if high
precision is required. If no aliasing occurs, this result neither
depends on the geometric transform applied for the tests nor the
actual content of images.

Index Terms—Aliasing, B-splines, image resampling, interpola-
tion.

I. INTRODUCTION

Image interpolation is frequently applied in medical imaging
and novel techniques are continuously being introduced.
Therefore, a comprehensive survey of existing interpolation
methods has recently been published [1]. A uniform notation
for all methods was introduced and basic criteria, such as
interpolation versus approximation as well as dc-constancy
versus dc-inconstancy have been defined. Furthermore, it was
shown that the ideal interpolator has a rectangular shape in the
frequency domain, which corresponds to an infinite impulse
response in the spatial domain (Fig. 1). Ideal interpolation,
windowed and truncated sinc interpolation, linear, quadratic,
and cubic approximation and interpolation schemes, B-spline
interpolation of degree 3, as well as Lagrange and Gaussian
methods of different orders and kernel sizes were reviewed in
detail. In particluar, these methods were compared with respect
to spatial and Fourier analyses, computational complexity as
well as runtime evaluations, and qualitative and quantitative
interpolation error determinations for particular interpolation
tasks, which were taken from common situations in medical
image processing. In this addendum, the survey is extended to
B-spline interpolation of degree 2, 4, and 5.
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II. B-SPLINE INTERPOLATION

Using the notation of [1], the order determines the
number of supporting points of kernels with finite impulse
response (FIR). Basis spline (B-spline) approximators of order

, are piecewise polynomials of degree .
They are obtained from the -fold self-convolution of the
rectangular pulse that determines the nearest neighbor
interpolation kernel [1, Eq. (11)]. Therefore, the frequency re-
sponse of FIR-spline approximators with supporting
points yields

(1)

with

The approximator kernel’s explicit formula is given by [2]

(2)

where denotes the one-sided power function

The polynomial spline interpolant with infinite support has
the form of [1, Eq. (15)]

(3)

where the are derived from the image’s sample points
in such a way that the resulting curve interpolates the discrete
image. For B-spline interpolation of degree 2, 4, and ([1,
Eq. (16)] for the cubic case of 3) we obtain [3]

(4)

Similar to the cubic B-spline, which is derived in detail in
[1], the B-spline coefficients are obtained from the solu-
tion of a linear system of equations that involves a band diag-
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Fig. 1. Ideal interpolation. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

Fig. 2. B-spline interpolation of degreeM = 2. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

Fig. 3. B-spline interpolation of degreeM = 4. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

onal Toeplitz matrix [4]. The solution can be obtained most effi-
ciently by recursive digital filtering as described in [3] and [4].
By performing the same type of manipulation as in the cubic
case, we can apply the digital filter to the B-spline basis func-
tions and obtain an explicit expression for both the frequency
response of the spline interpolator [5], [6]

(5)

as well as its infinite impulse response (IIR) ([1, Eq. (21)] for

3)

(6)
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Fig. 4. B-spline interpolation of degree M = 5. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

The B-spline approximators are indicated by the
number of supporting points. Since B-spline interpolators

have infinite supporting points, they are indexed
by the degree of polynomial splines. However, all IIR-filters

have exponential decay [2]. The plots corre-
sponding to the spline interpolators of degree 2, 4, and 5 are
given in Figs. 2–4, respectively, while that of degree 3 is plotted
in [1, Fig. 14]. Note that B-spline interpolators of higher degree
tend to be more and more sinc-like while their frequency
responses get closer to the ideal lowpass filter. In fact, it has
been proven that the B-spline interpolators convergence to the
ideal bandlimited one as the degree tends to infinity [5], [6]. An
additional important property of B-spline interpolators is that
they perfectly reproduce all polynomials up to the degree .
In particular, this implies that they all satisfy the partition of
unity condition, which is equivalent to their dc-constancy [1].

III. RESULTS

The IIR kernels were compared in various situations typi-
cally encountered in medical applications. As it was done in
the survey [1], the efficiency and accuracy were evaluated by
analyzing Fourier properties, visual quality, interpolation error,
complexity, and runtime.

A. Fourier Analysis

The frequency analysis of Figs. 2–4 was focused on three
characteristics: passband , cutoff point , and
stopband . The passband characteristics of all B-spline
interpolators were similar to that of the ideal interpolator (Fig.
5). The constant gain equaled one until closely approaching the
cutoff point, especially for high degrees of B-splines ( 5).
Hence, only the highest frequency components were smoothed
by B-spline interpolation. Increasing the degree of B-spline
interpolation improved the passband characteristic by enlarge-
ment of the flat ridge at . Furthermore, the absolute slope
of the kernel’s frequency response at the cutoff point was in-
creased, also improving the frequency response of the inter-
polator for higher degrees of B-spline interpolation. In addi-
tion, the higher the degree of B-spline interpolation, the lower
the sidelobes within the stopband. For 5, sidelobes were
below 1%. In comparison to all other kernels [1, Figs. 5–24],

Fig. 5. Fourier transforms of B-spline interpolation of degrees M = 0, 2, 3,
4, 5, and 1 within the passband j!j < �, zoomed from panel (b) of Figs. 1–4.

B-spline interpolation of high degree ( 5) had a frequency
response closest to that of the ideal interpolator.

B. Interpolation Quality

A sharply focused 8-bit photograph of a human eye [Fig. 6(a)]
was interpolated by each of the B-spline interpolation methods
(as well as linear interpolation) to correct the photograph’s as-
pect ratio. To visualize the interpolation error, the aspect-ratio-
corrected image was interpolated again for downsizing to its
initial dimension. The same interpolation method was used for
both forward and backward transformation.

The interpolation quality was assessed visually by the pix-
elwise absolute difference of the original photograph with the
transformed photograph. All pixels that differ more than one
grey scale unit are shown in black, while all others are displayed
in white. The subtractions in Fig. 6 appreciably demonstrate the
superior quality of B-spline interpolation as compared to linear
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Fig. 6. Results of aspect ratio correction of a photograph (extends [1, Fig. 27]). Pixels with error>1:0 are displayed in black. The frame indicates the inner area
for quantitative error comparisons ignoring border effects: (a) Original photograph (512 � 512, 8-bit). (b) Linear interpolation. (c)–(f) B-spline interpolation of
degree M = 2 through M = 5, respectively.

interpolation. Note that all error images contain only very few
black pixels, which are located at image regions of highest con-
trast. In particular, B-spline interpolation of degree 4 and 5 [Fig.
6(e) and (f), respectively] result in the lowest number of error
pixels when compared to all other methods [1, Fig. 27].

C. Quantitative Error Analysis

All quantitative comparisons of the interpolation quality were
based on the normalized cross-correlation coefficient, [1, Eq.
(34)], calculated within a centered subimage before and after
distorting the image forward and backward. The subimage size
of 462 462 out of 512 512 pixel is marked by the inner
frame in Fig. 6(b)–(f). It was chosen to avoid border effects of
kernels with large support. Those effects are a minor problem in
medical image processing, because important details are usually
centered. In addition, a linear score, [1, Eq. (35)], was com-
puted to rank-order all similarities by setting the linear method
to zero and the cubic B-spline interpolation to one.

Table I shows the similarities and scores obtained by
the aspect ratio correction of the eye image [Fig. 6(a)]. While
the scores for the Lagrange kernels of sizes 5 and
7 were shown to exceed that for the cubic B-spline interpolator

TABLE I
RESULTS OF ASPECT RATIO CORRECTION

OF THE PHOTOGRAPH (EXTENDS [1, TABLE II ])

TABLE II
RESULTS OF ROTATING THE MR IMAGE (EXTENDS [1, TABLE III])

[1], the scores for the B-spline interpolators of degree 4 and 5
were larger compared with all other techniques [1, Table II].

A second interpolation evaluation was performed by rotating
a 12-bit magnetic resonance image (MRI). In contrast to
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Fig. 7. Runtimes measured on a Sparc Ultra 1 (extends [1, Fig. 28]). The runtimes refer to the entire task: interpolation and geometric transform. Limits resulting
from implementation via look-up tables (LUTs) of N �N FIR kernels filled with 10 000 elements per unit are given for N = 4, 6, and 8.

TABLE III
RESULTS OF PESPECTIVE PROJECTION OF X-RAY IMAGES

(EXTENDS [1, TABLE IV])

TABLE IV
RESULTS OF PESPECTIVE PROJECTION OF X-RAY IMAGES (NONALIASING)

the goemetries in the prior case of aspect ratio correction,
the number of pixels contributing to the image was nearly
unchanged, and almost all 256 256 pixels had to be recalcu-
lated for both forward and backward rotation. The 50 normal
distributed angles from [1] have been used for quantitative
evaluation of interpolation errors. The mean correlation and
standard deviation of corresponding forward and backward
rotations, Mean and StD , respectively, are summarized
in Table II. They were scored in the same fashion as in the
previous example. Again, higher degree B-spline interpolation
was scored larger than 1.0 and, hence, outperformed all other
techniques for this quantitative evaluation [1, Table III]. Note
that the improvement obtained by stepwise increasing the
degree of B-spline interpolation was statistically significant for
each step (Student’s -test, ).

In a third evaluation, a set of 50 radiographs were chosen arbi-
trarily from clinical records [1]. They were projected perspec-
tively both forward and backward. Again, the standard devia-
tion of the interpolation error as well as its mean were deter-
mined (Table III). The selected perspective transform approxi-
mately halved the number of pixels. With respect to [1], the re-
duction was computed first and, therefore, information was lost
during interpolation. Note that the Fourier spectrum of a discrete
image is composed from a periodical repetition of the sampled
spectrum corresponding to the continuous image. Decreasing
the number of spatial data points also reduces the periodicity of
this repeated spectra. It depends on the higher frequency char-

acteristics whether the repeated spectra overlap. In other words,
aliasing effects were introduced by inproper downsizing of im-
ages. As a result, the score tended to decrease for large FIR ker-
nels [1, Table IV] and for higher degrees of B-spline interpola-
tors (Table III). However, there was no statistical significance

within the large group of techniques resulting in
scores .

Table IV shows the results of the modified third experiment.
In order to fulfill the sampling theorem, the corresponding in-
verse perspective transform was applied resulting in a magnifi-
cation of the intermediate image by approximately doubling the
number of pixels. Although the standard deviation was about ten
times larger than in the case of different transforms that were
based on the same image (Table II), the improvement obtained
by increasing stepwise the degree of B-spline interpolation was
still statistically significant . Therefore, assuming
no aliasing, the impact resulting from B-spline interpolation was
independent of both the geometric transform as well as the spe-
cific content of an image.

D. Computational Complexity

Differences in complexity between the various interpolation
and approximation methods directly result from the complexity
of the kernel and of the prefiltering step in case of B-spline
interpolation. In general, a piecewise polynomial of de-
gree requires multiplications and additions per sample
point . During the one-dimensional convolution, the polyno-
mial is evaluated at sample points, resulting in
multiplications and additions. However, it depends on the speci-
cific polynomial whether all factors exist and, hence, the com-
plexity at certain positions often is lower. For example in a
straightforward implementation, the computation of the four
cubic B-spline coefficients requires 12 multiplications and eight
additions in total [1].

If B-spline interpolation is intended, the image must also be
prefiltered. Unser et al. have developed a fast recursive algo-
rithm, which in one dimension only needs additions
and multiplications per sample point [8]. In the case of
postfiltering with the cubic B-spline, these are two multiplica-
tions and two additions.

E. Runtime Measurements

The runtimes of the various interpolation schemes were mea-
sured on a Sun Ultra 1 (Fig. 7). A shell script was used to av-
erage 50 rotations of the MRI. Sources have been compiled
using GNU’s gcc version 2.95.2 without optimization, which
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allows direct comparison with the runtimes of all other methods
[1, Fig. 28].

The source code of the various B-spline interpolators was ob-
tained in ANSI-C from the internet [9] and integrated without
any modification. The internet distribution offers different de-
grees of splines, which were internally handled as variables, as
well as two choices of boundary extrapolation. This resulted in
some overhead, slowing down the computation. In comparison,
the existing implementation of the cubic B-spline interpolator
is specialized to the cubic degree only, but does not calculate
the B-spline coefficients in a recursive manner. Since the quan-
titative error analysis was based on a centered subimage to en-
sure the results were independent of certain boundary handling,
both B-spline implementations ran with the zero padding tech-
nique. This was fastest but offered only poor quality at the image
margin.

The rotation of the 256 256 pixel coordinates took approxi-
mately 0.10 s. Simple methods such as nearest neighbor or linear
interpolation were fastest and required less time for the inter-
polation itselve than for the rotation of the pixel coordinates.
The interpolating B-splines of degrees ranging from 2 to

5 took between 0.57 and 1.01 s, which is between nine
times to 18 times of the linear method, respectively. With effi-
cient implementation, the runtimes of all B-splines are expected
to reduce significantly. For example in the cubic case, a reduc-
tion from 0.59 to 0.26 s was measured (Fig. 7). This equals a
speedup about more than 50%, only five times slower than the
interpolation time for the linear method. Incorporating the recur-
sive sheme for coefficient determination will further accelerate
B-spline interpolation.

IV. DISCUSSION

Image interpolation is as old as computer vision and several
competitive techniques exist. As pointed out in [1], for any tech-
nique examples can be given where each scheme is advanta-
geous. High-degree B-spline interpolation hold impressive spa-
tial and Fourier properties as well as the lowest error in both,
qualitative and quantitative analyses. Particularly for those ap-
plications in medical image processing that require supreme
precision, high-degree B-splines are preferable interpolators.

Beside the runtime, there are some other aspects of B-spline
interpolators the user should take care of. In contrast to the

-decay of the ideal sinc interpolation, the infinite B-spline
interpolating kernels enjoy fast, exponential decay. Although
the arbitrary extrapolation of data does not extend very far in-
deed, appropriate techniques for data extension over the known
support of an image should be applied. Such techniques are de-
scribed precisely in the literature and they are also available in
C-code [9].

Furthermore, attention should be payed to the kind of geo-
metric transform requiring the interpolation. In our third numer-
ical investigation, the images are shrinked to approximately half
the number of pixels before they are reconstructed again. Hence,
a nonnegligible amount of aliasing takes place and interferes
with interpolation. In particular, high image frequencies majorly
are affected by aliasing during the downsampling step, which is
independent of the interpolation or approximation technique in
use. In our experiment, these distortions are preserved mainly
by large-sized interpolators during the reconstruction step in-
creasing the total error. Qualitatively spoken: the larger the spa-
tial kernel size, the more sharp the interpolator’s frequency re-
sponse and the higher the maintained aliasing error that is ob-
served in the third experiment (Table III). Although techniques
exist that allow to predict exactly the amount of aliasing for
each kernel [10], the satisfaction of Shannon’s sampling the-
orem should always be guaranteed beside the proper choice of
the interpolation method. In other words, appropriate smoothing
of an image must be performed before reducing the number of
pixels using any interpolation.
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