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Abstract—Bone age assessment (BAA) on hand radiographs iscomplex as TW. Furthermore, the gender has to be treated
a frequent and time consuming task in radiology. We present a with care, since the growth spurts differ significantly forlg
method for (semi)automatic BAA which is done in several steps: and boys [3], resulting in an even more complex process. For

(i) extract 14 epiphyseal regions from the radiographs, (ii) for . L
each region, retain image features using the IRMA framework, these reasons, an automated BAA is definitely preferable.

(iii) use these features to build a classifier model (training phase), ~Already in 1996, Al-Taani et al. [4] reported an automatic
(iv) evaluate performance on cross validation schemes (testing BAA approach based on a point distribution model of 130
phase), (v) classify unknown hand images (application phase). feature points. During training, examples of bones fromheac
In this paper, we combine a support vector machine (SVM) |55 are collected so that the allowable shape defornsation
with cross-correlatlon to a prototype image for each class. These are learned. The system was tested classifying two bones of
prototypes are obtained choosing one random hand per class. ¢ e Y ) . 9

A systematic evaluation is presented comparing nominal- and the third finger, the distal and the middle phalanx. A set of
real-valued SVM with k nearest neighbor (kNN) classification on 120 images of nine age classes was used for evaluation, and
1,097 hand radiographs of 30 diagnostic classes (0 — 19 years)the classification rates were 70.5% and 73.7%. About 50% of
Mean error in age prediction is 1.0 and 0.83 years for 5-NN the errors were only one stage off.

and SVM, respectively. Accuracy of nominal- and real-valued In 2001. Pietk t al h ivel . d |
SVM based on 6 prominent regions (prototypes) is 91.57% and n » Flelka el al. comprehensively reviewed early

96.16%, respectively, for accepting about two years age range attempts on BAA_and —_fQHOWing a promising strategy -
Index Terms—Bone Age Assessment, Support Vector Machine, developed semantic (heuristic) features for BAA by measguri

Classification, Cross Correlation, Prototypes the gap between metaphyses and diaphyses [5]. A multiple-
step processing pipeline was suggested: (i) preproce$sing
| INTRODUCTION orientation correction and background removal, (i) |oza

] tion of phalangeal tips by superimposing wedge functiores ov
B ONE AGE ASSESSMENT (BAA) usually is based onpe hand image, (i) detection of phalangeal long axis) (iv
L) hand radiographs and constitutes a frequent as well @graction of epiphyseal regions of interest (eROI)s, and (
time consuming task in diagnostic radiology. The bone ag@ermination of global size and distance measures (egéathy
reflects the skeletal maturity and indicates disease whien (Hap). Discrimination power was proven based on 200 hand
fering significantly from the chronological age. For BAA,dw radiographs of limited age ranges (mate 14y, female <
conventional methods are common. In the method developfg,)_ Providing rather a solid view on fundamental prinipa

by Greulich & Pyle (GP) [1], the radiologist visually compar ;. BAA, age computation was not performed.
all bones of the left hand with a standard atlas and assesseg, approach that seems to be inspired by Pietka et al.
the bone age according to his perception. Applying the niethRag peen presented by Martin-Fernandez et al. [6]. First, th
of Tanner & Whitehouse (TW) [2], only a certain subset of;ihors locate regions of interest (ROIs) as landmarks in
bones is considered and described individually with reéSpgg|evant hand radiographs and describe the finger positjoni
to the epiphyseal gap and shape. The radiologist classifiGg 5 wire model. This model is matched with a reference
regions into several stages, which are described lite&ly \qqe| puilt from a template hand and is therefore directlycus
do not rely on visual comparison with an atlas. The bone ag& comparison. For registration, several affine transtoare
is calculated by scoring and adding up the scores of classifigyjied to the entire hand as well as to individual fingers, an
regions. Both conventional methods have the drawback fal information is used in a second stage of registration
being highly subjective, like especially GP, or being ey  £xperiments on age prediction, however, were not performed
M. Harmsen, B. Fischer, and T. M. Deserno are with the Depairtroén An'attempt using fuzzy methOdOIO_g_y has be?n introduced
Medical Informatics, RWTH Aachen University, 52057 Aacherr@any. by Aja-Fernandez et al. [7]. A decision tree is used as a
H. Schramm is with the University of Applied Sciences, Kiekr®any.  strajghtforward representation of rules given from the TW
T. Seidl is Wltl’_\ the Data Management and Data Exploration @Gr&wWTH method. Six computational features are derived. For the rul
Aachen University, Germany. : p e - - : ]
Corresponding author: T. M. Deserno, Institiit Medizinische Informatik, based system, large training data is avoided and expersment
Universitatsklinikum Aachen, Pauwelsstr. 30, 52074 Aachen, Gernfany, gra reported on 85 diagnosed radiographs from girls. Acyura
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neural networks was published by Bocci et al. [8], where 2iptimized completely. For instance, some weak points have

individual bones and regions of TW2 method were classifidiben identified in the method of Fischer et al. [13]: (i)

and based on 120 images for training and 40 images farfixed amount ofk neighbors is used for classification,

testing, a maximum error of 1.4 years is reported. which — depending on the dataset — may not be optimal;
Such approaches are based on more or less direct (igethe classification considers the eROls to be independen

of GP or TW method. In contrast, Hsieh et al. [9] andnd uses only a (weighted) age average of these regions for

Chang et el. [10] extract radiographic features of phalangage determination; (iii) the gender is disregarded cormaplet

or carpal bones and analyze them by computerized shape altdough male and female growth spurts differ significantly

area description using a classifier. Evaluation is performév) BAA is performed strictly data-driven disregardingyan

on larger data. The authors use a private database of $08dical knowledge of growth spurts; and (v) computation is

radiographs, 465 male pattern of 12 groups aged from 2 é®pensive, since the cross-correlations between theneste

8 years, and 444 female patterns of 14 groups, aged from arid all existing references are determined.

to 10 years. The lowest mean error was 0.5 years in femalesln the past few years, the support vector machine (SVM)

Based on pure radiolucency analysis, a mean error of 1.5yelhas been introduced into many classification fields and has

is reported [10]. demonstrated state-of-the-art performance. For example,
The idea of using eROIs in a pattern-based approach wasmbination of SVM with CBIR has been successfully applied

suggested by Kim & Kim [11]. After segmenting nine relevanto detect malign structures in mammography [18]. Despite of

eROIs automatically, discrete cosine transform and linetreir broad applicability, some essential problems havbeto

discriminant analysis are applied for BAA. In contrast taddressed when using SVM. Besides the fundamental choices

Pietka et al., this approach does not require heuristizifeat of features, attributes and parameters, the SVM only applie

extraction. A private dataset of 396 radiographs (93 ma&g, 3to binary problems, i.e., a classification into more than two

female) was collected to report an average error of 0.6 yeatkasses requires several SVMs, and the class size has to be
Further standardization of experiments and improved comshosen carefully.

parability of approaches was achieved by Gertych et al. [12]In this work, our method on automatic CBIR-based

when publishing a reference database for BAA computatioBAA [13] is extended to class prototypes with SVM clas-

This digital hand atlas has been established at the Uniyersiification. It is evaluated critically with respect to tharstiard

of Southern California (USC) and therefore is referred to &NN classifier.

USC hand atlas. It is composed of 19 age classes, four ethnic

groups and both genders, with ten to forty images carefully Il. MATERIALS AND METHODS

selected into each individual class, summing up to a total ofthin the IRMA framework, global, local, and structural

1,097 digitized radiographs that still are publicly avhi&. features are supported to describe the image, an eROI, or a
A method based on content-based image retrieval (CBIR)nstellation of eROIs, respectively [19]. In the folloginwe

of eROI patches extracted from USC data has been presenjgdcrine the eROI and feature extraction, prototype géinara

recently by Fischer et al. [13]. Using all 19 eROIs of the|assification using kNN and SVN, age computation, and our
query image, similar patches are retrieved from the damb%%sign of experimental validation.

using the Image Retrieval in Medical Applications (IRKA
framework [14], [15]. The retrieval approach is based onkhe A eROI extraction

nearest neighbor (kNN) method and — as a novelty due to the ) . )
metric nature of age — BAA is calculated algebraically from Automatic extraction of eROIs has been presented previ-

a weighted sum of reference ages linked to the most simifSly [19]-{21]. Essentially, a structural prototype iaitred,
patterns. An error rate of 0.97 years is reported. where the phalanges and metacarpal bones are represented by

Currently, the leading commercial product for BAA ishodes, and location, shape as well as texture parameters are
BoneXperf. The BoneXpert approach uses an active Sharqudeled with Gaussians. In a recently published web interfa
model to estimate bone structures and directly follows t€2], @ manual procedure is also offered, where the user
methods of GW and TW to compute the bone age with a me8dHickly hits the centers of relevant epiphyses. Theregattér

error of 0.72 years computed on an extract of USC data [16fRO!s are extracted (Fig. 1), rotated and geometricalgnat
[17]. into an upright position, and inserted into the IRMA databas

Although a reference database is available, it is still gecoWith reference to the according hand radiography. Hende, al
nized insufficiently, and — if experiments have been publish Patterns are in upright position and uniformly scaled, adisr
at all — some groups investigated only a specific age range. g&rding individual finger positioning in the original radi@aph
instance, BoneXpert is focused on 2 — 17 years. Dependitigd- 2)-
on the gender, the method of Hsieh et al. considers ranges of
1 — 8 years or 2.5 — 10 years. B. Smilarity measure

The results of Fischer are based on the entire age rangqhe cross-correlation function (CCF) is (i) easy to compute
of USC data but non-commercial approaches might not g robust regarding the radiation dose, (iii) robust netiag

Inttp: // www i pi | ab. or g/ BAAweb/ translation for a given range, (iv) normalizes intensityd :ﬁv)'

2nttp://irma-project.org has already been used successfully in BAA tasks [13]. Disad-

Sht t p: / / waw. bonexpert. com vantages of CCF, such as sensitivity to rotation and scaling
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N TABLE |
; ® AGE CLASSES AND THEIR CORRESPONDING AGE RANGE
~ 5 | ‘x £ Class Age range in years Class Age range in years
M 10 00 0.00 - 0.66 15 05.00 - 05.50
1 01 0.66 - 0.83 16 05.50 - 06.00
= 02 0.83 - 1.00 17 06.00 - 07.00
‘2\ 03 1.00 - 1.16 18 07.00 - 08.00
\‘ 04 1.16 - 1.33 19 08.00 - 09.00
L 3\ 05 1.33 - 1.50 20 09.00 - 10.00
") 06 1.50 - 1.66 21 10.00 - 11.00
\ | 07 1.66 - 2.00 22 11.00 - 12.00
‘ 08 2.00 - 2.33 23 12.00 - 13.00
| 09 2.33-2.50 24 13.00 - 14.00
10 2.50 - 3.00 25 14.00 - 15.00
11 3.00 - 3.50 26 15.00 - 16.00
12 3.50 - 4.00 27 16.00 - 17.00
13 4.00 - 4.50 28 17.00 - 18.00
Fig. 1. eROls and corresponding numbers as used in this paper. 14 4.50 - 5.00 29 18.00 - 99.00

information is not used so far for class building. In Figure 3
a subset of prototypes for a specific region (no. 15) is shown.

. D. Feature extraction

For each han@d and each region, the CCF similarities are
computed between the eROI imagdg:, r) and all correspond-
ing prototypesP(r,c), wherec € {0,1,---,29} represents
the class label. The prototypes were chosen randomly. This

Fig. 2. eROI extraction. From distances of eROIls and ortamta of eROI yields:
interconnections, a geometric model is derived and used tmalize the
eROlIs regarding rotations and scalings.
garding g Sccr (I(h,r)

, ), P(r,0))
N SCCF (I(h,r),P(r, 1))
) ) ) . Fecr(h,r) = ) 2
are less important in our framework since such alternatiwas :
corrected in the extraction process based on the congtellat Sccr (I(h,r), P(r,30))
of epiphyses centers. The similarity between two images —

more specifically two eROls & andb is hence computed by: FOr €ach region- of the hand radiograplt, a vector is
obtained. The resulting feature vector:

X Y h
3 4p o
b) = el 1 . =
Sccr(a,b) |mr\fl|%}\(§d X v X v @) F(h) = IiCCF(h’l) ()
Z Z A2. Z Z B2 FCCF(h,Q)
rz=1y=1 z=1y=1
with Focr(h,r)

(z=m,y—n)-a is composed of gender informatianand all region-specific

A=a
B =b(z,y) —b feature vectorsEccr(h,r). For female and male, we set

where @ and b denote the mean gray values ofand b, (97 = Ligm = 0) and (g = 1,95 = 0), respectively.

respectively. The position ranges andn of correlation are All other values are scaled to the rangel, +1] avoiding
limited to d, i.e., m,n < d. According to [13], we setl = 2 attributes in greater numeric ranges that dominate those in

and use a scaled version of the eROIs with>332 pixels. smaller ranges. A database is used to sfofk) and index all
extracted features.

C. Class prototypes

To address the problem of class size, the data is grougedK-Nearest-Neighbor Algorithm
according to the growth spurts. Using the ontology defined bykNN is a simple method for classifying objects based on
Gilsanz & Ratib [23], reference ages are quantized in stépsthe k£ closest training examples in feature space. Since all
2m, 4m, 6m, and 12m for the intervals [8m ...20m), [20momputation is only done at classification time, kNN is known
...28m), [2.5y ...6y), and [6y ...18y], respectively, wheras a lazy learning classifier. A feature vectoe R", where
m and y denote month and year, respectively. This creates alenotes the number of features, is associated to the class
set of 29 classes with four different ranges. A'B@lass for that is set by the majority of most similar feature vectors,
bone ages- 18 years was added (Table I). Notice that genderccording to a distance function.
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Fig. 3. Prototypes for region 15. The development of the egsijshis clearly visualized.

In this paper, we use the Euclidean distance, which iisturn the suggested classThe estimated bone agefor the

defined for given vectorsy = (pi,...,p,)T and ¢ = classcis calculated as the arithmetic mean of upper and lower
(q1,-..,q,)T, wherep, g € R", by: boundB of the age range, the prototype ©fs corresponding
to:
1 Z 1
o~ — g — _ 2 u
d(pa (T) - d(qvﬁ) - n (pn Qn) (4) a = 5(8 (C) + Bl (C)) (5)

n

The kNN algorithm is easy to implement and by its nature @, Validation experiments
multi-class classifier. Especially for a large set of tnaindata, Using 1,097 images from the USC hand atlas [27], the

however, 't. IS recommgndeq to integrate erxmg strugttmg class prototypes were selected randomly but kept fixed for al
prevent a time consuming distance calculation for eachitrgi experiments. They represent the class samples. Afterpfards
vector. Furthermore, the only parametehas to be chosen each hand, the feature vector is generated by measuring the

wisely, since it may F’ePe”,d on .the “Se‘? Qataset and hassi‘i?lilarity to corresponding region class-prototypes,hvand
balance a good discrimination with over-fitting. without considering the gender.

) We then apply the same feature vectors for kNN and SVM,

F. Support Vector Machine using k-fold cross-validation for SVM withk = 5 and the

In contrast to kNN, the SVM is a binary classifier andeaving-one-out cross-validation scheme for kNN. For SVM
uses a given set of training examples to create a mode use a fixed seed for the random function to ensure an equal
that can be used to classify new examples [24]. Basically,ctass distribution. For each experiment, 5-fold crossedion
hyperplane is calculated, which separates the samplesdswas applied. The optimal SVM parameters are computed by grid
a maximum margin. Using appropriate kernels, SVM cope&garch.
with the classification of non-linear data by mapping theuinp To determine the optimal set of eROls includedﬁmh),
space into a higher dimensional feature space. we apply a brute force method of simply building all possible

In our method, the radial basis function is used as kerr@lbsets of all 14 relevant regions (no. 1 — 3,5 -7, 9 — 11,
[25] as we assume a non-linear relation between classes agd- 15, 17, and 18 in Fig. 1) and run experiments on the
features, as well as a small number of features. Since @& = 16,384 sets.
have 30 classes, SVM is extended according to the "one-Based on the nature of experimental data, some fuzziness of
against-one” approach instead of the traditional "ondresta adjacent classes is expected, which has already beeneadport
all” approach, due to its good performance and short trginily other researchers. Pietka et al. [5], for example, have

time [26]. used diameter-based features to show this effect, related t
intrinsic class prototypes. For quantification purposéss t
G. Age computation paper compares SVM with ordinal ranking (ordered classes)

For a hand radiograph with unknown bone agéhe eROIs 0 SVM for regression (rSVM) providing real-valued output.
and features are extracted and the data instance vettor
is built. Both, kNN and SVM with the trained classificatory [1l. I MPLEMENTATION
model are used to determine the bone age of the new radio©Our implementation is completely written in C++, using
graph. Based on the complex feature vectors, both classifitre Qt framework version 4.7.3 [28] and a SQLite database

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMERZINE, 2012 5

version 2.8.17 as data-backend [29]. The Qt framework allow L5 -
easy image file reading and database access. SQLite has -
been chosen since it entirely runs from memory providing i M
radiographs and features by standard SQL queries. The S/
is implemented by using the libSVM library version 3.11 [30] § 1M - .
which offers a rich set of features like build-in cross-dalion
and multi-class handling. The implementation consists
mainly four parts:

1) Databaselibrary connects the database and abstract§
from SQL to a hand-related layer. This library is useds'J
as a data provider to retrieve radiographic features.
Furthermore, a simple feature storage is implemented.

2) Imagelibrary implements a fast image representation
using arrays and pointer access including basic bitmap 0t j j j j j ‘
manipulation and CCF. 0 5 10 15 20 25 30

3) PrototypeFeatures executes the ImageLibrary to load all Age Class
30 prototype images into the memory and to calculate
the CCF for all remaining hand radiographs and eROWFg. 5. kNN: Mean error itemized by class for regiobss, 7,11, 15 and
to each of the prototypes. The double values obtain8g€ N[0, 18] years, distribution seems to be likewise SVM.
are stored using DatabaseLibrary.

4) BoneAge is a console executable to perform the exper- L5
iments. A set of parameters is used to configure the
options: "Classificator (kNN/SVM); Regions; Include-
Subsets; Use-Gender” and some output specific optiong
If "Include-Subsets” is used, each possible subset 03‘7 1k
"Regions” is used for classification and results arex M M M M
printed as comma separated values (CSV) lines. The - ol 5 083
output for an experiment contains "Regions; Hands; Cori M -
rect classes; Accuracy; Error in [-2, 2]; Mean age errorg
Error variance £2)". The application also implements % 0.5
kNN and performs scaling on attributes before using
libSVM. Furthermore, any experiment can be exported
in a libSVM specific data-format, allowing grid search

Errér [y

with the libSVM tool for parameter selection. oLL : : : : : |
The framework is currently being merged with the 0 5 10 15 20 25 30
IRMA BAA tool, that can be accessed at http://irma- Age Class

project.org/onlinedemogn.php (Fig. 4).
Fig. 6. SVM: Mean error itemized by class for regiohs, 11,13, 15, 18
and age in0, 18] years.

IV. RESULTS

In terms of classification error rate (age class accurabg), t
results for a single region for kNN range fro% — 25% 0 — 8 years and getting worse especially in the raBge 16
and11% — 28% for k = 1 and k = 5, respectively. In terms years. The mean class-specific errors are shown in Figs. 5
of mean age error (age assessment accuracy), they rangeafa 6 for KNN and SVM, respectively. Mean and variance are
individual regions from1.24 — 2.26 years andl.01 — 2.47 decreased clearly when using the SVM classifier, indicatig
years, respectively. The SVM achieves an age class accurbetter performance. Also, one can note an imbalance acaprdi
of 19% — 34% and an age assessment accuracy.@f —2.15 to the age classes. According to that larger differences in
years (Table ). development of bones, the infant age classes (0 — 7 years)

Both perform best only on a subset of regions, whereas thee easier to recognize.
kNN uses a lower number of regions for the ten best sets — 3.5The best experimental result for KNN (age class accuracy
regions on average. Region 11 is used always and if it is us#i71%, age assessment errdr00 years) is obtained by a
exclusively, it yields the 3rd lowest age assessment eror subset of 5 regions anfl = 5. For SVM, the best result
1.01 years (Table 1l1). In contrast to KNN classification, SVM(accuracy36.93%, mean error0.83 years) is obtained using
performs best on a larger number of 7.5 regions on average &osubset of six regions. It outperforms both, kNN as well as
the ten best results. Like the KNN classifier, the SVM tendke method by Fischer et al., who has reported a mean error
to use region 11 (Table 1V). The 2nd best SVM result usesad 0.97 years on the same data. However, correctness rates
subset of 10 regions, reaching a mean age err0r83¥ years. of 36% might be considered as inapplicable for routine use.
kNN and SVM classification perform best on an age range Gfur age classes span 4 — 12 months. Allowing two classes of
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i & | .t.tc\ne_age_as&essment_demo_-‘i.I. - éoogte Chrome

O ganymed.imib.nwth-aachen.de/irma3_production/bone_sge_assessment_demo.current/index.php

predicted Age: 2.66
actual Age: 1.96

ID: 919063 ID: 919065 ID: 919066 ID: 919069

‘IEROIS to be processed: Possible values: 6, 7 (best six/seven) Show corresponding Hands
& | . L

Restart Lj 1t
star ARl e 5 (oeall)

corresponding EROIs used for the calculation:
E3 E7 El0 E11 E15 El8

ID: 930663 ID: 921110 1D: 925016 ID: 932679 1D: 921152 ID: 924918

vas b »
Score: 0.559 Score: 0.958 Score: 0.962 Score: 0.558 Score: 0.967 Score: 0.982
Age: 0.51 Age: 2.1 Age: 2.14 Age: 2.56 Age: 2.96 Age: 1.71
ID: 928780 ID: 925016 ID: 924918 ID: 919108 1D: 925016 ID: 923112

R

P ——— n

Fig. 4. Screenshot of the current IRMA Bone Age Assessmeatfate [22].

difference yields a range of up to two years, which corredponadvantages of this method are full automation, robustness,
to the human observer agreement that is manifested in #red generality, since all a-priori knowledge is hosted ia th
USC reference reading and that has been reported by othreference database but not modeled into the image progessin
[5], [16]. Within this interval, kNN, SVM, and rSVM reach algorithms. In contrast to other approaches, our methatierei
a performance of 89.79%, 91.57%, and 96.16%, respectivelgeds semantic atlases such as the GP and TW methods nor
(Table V). Furthermore, rSVM increases correctness ofsclasemantic features as suggested by, for instance, Pietkia et a
labeling to 58.86% as compared to 36.93% and 26.71% foris purely data-based using an image repository enriched
SVM and kNN, respectively. with annotated readings. If such readings are considered as
In comparison, BoneXpert reaches a mean error of 0.gPound truth, the approach is applicable directly to otheks
years on an age range frdin-17 years. Projected on the sameof CAD, such as screening mammography, skin lesions, or
age range, this is still superior to our method with a meaorertumor staging in general.

of 0.82 years (Table VI). However, the result with BoneXpert Region 11 was found most reliable. This finding corre-
is obtained with 14 rejections due to several reasons suchs@gnds to the medical TW and GP methods, where region 11 is
bad image quality or abnormal bone morphology [17]. Wheglso used. The middle finger is the largest and best developed
disregarding the 14 worst radiographs from our experimenisyne and, hence, best contrasted in x-ray imaging. The lbvera
the mean error yields 0.796 years. A direct comparison to thgyssification accuracy seems to be low, but most mislabeled

used private data. Using correlation prototypes, the number of comparisons

needed for a single hand in the application phase is reduced
V. DiscussioN from 1,097 [13] down to 30 (i.e., the number of prototypes),
We have presented a novel method using CBIR from &gnificantly improving the classification performance.
atlas for computer-aided diagnosis (CAD) such as BAA. Further speedup is obtained from SQLite-based implemen-
Improving previous concepts, we applied nominal- and redhtion. For instance, a complete 5-fold cross validatiodley
valued and SVM using correlation-based features on classcomputed in 1.775 seconds (s) and 3.577 s for 6 and all
prototypes characterizing semantically defined age grotlps 14 relevant regions, respectively. In comparison, a sikijiN
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TABLE I
EXPERIMENT OUTCOME FOR KNN/SVM AND SINGLE REGIONS
kNN £ =1 kNN £ =5 SVM
Region | Accuracy Mean error  Error variane®) Accuracy Mean error  Error variane&) Accuracy Mean error  Error varianceg()
1 15.56 2.90 7.81 11.06 2.47 4.40 19.59 2.15 4.08
2 18.28 2.26 4.59 12.46 1.96 2.52 23.15 1.81 2.83
3 20.71 1.64 2.26 19.40 1.37 1.22 29.05 1.15 1.06
5 16.03 2.47 5.19 15.37 1.99 3.08 24.84 1.68 2.90
6 18.09 1.89 3.05 17.24 1.59 1.66 27.18 1.47 1.96
7 24.09 1.44 1.73 23.15 1.16 1.04 33.18 1.01 0.75
9 17.15 2.20 4.07 13.68 1.87 2.60 24.27 1.66 2.86
10 19.31 1.78 2.56 17.62 1.49 1.44 30.08 1.22 1.31
11 25.02 1.24 1.15 27.55 1.01 0.67 34.40 0.95 0.65
13 14.62 2.37 4.53 14.25 1.94 2.70 23.43 1.67 2.48
14 16.87 2.00 3.45 17.71 1.60 1.86 25.87 1.47 1.82
15 21.93 1.36 1.38 24.18 1.11 0.84 32.52 1.00 0.83
17 18.84 2.24 5.06 15.18 2.04 3.40 27.18 154 2.56
18 16.68 1.92 2.97 18.93 1.62 1.72 27.74 1.24 1.31

All experiments use the gender, SVM parametérs- 8,192 and~ = 0.0078125 have been copied from our best set experiment and thereforenotay
be optimal. Max and min values are bold.

TABLE Il
EXPERIMENT OUTCOME FOR NN BEST REGIONS

Regions Correct Classes Accuracy[%] Error [r-2, 2]y[%] Mean Errorly] Error variancef?)
3,6,7, 11,15 285 26.710 90.91 0.997 0.63
7,11, 15 282 26.429 91.00 0.997 0.65
3, 10, 11, 15 292 27.366 90.35 1.00 0.68
11, 15 292 27.366 90.35 1.00 0.72
11 294 27.553 90.63 1.01 0.69
3, 6,11, 15 290 27.179 90.07 1.01 0.69
7, 10, 11, 15 294 27.553 90.25 1.01 0.71
3,7,10, 11, 15 284 26.616 89.69 1.01 0.65
3,7,11, 15 287 26.897 90.16 1.01 0.65
6, 11, 15 289 27.085 90.25 1.02 0.72

Best set of regions for KNN classification. Notice the muchdowmount of regions used than in SVM. The best value is bold.

TABLE IV
EXPERIMENT OUTCOME FORSVM BEST REGIONS

Regions Correct Classes Accuracy[%)] Error [r-2, 2]y[%] Mean Error[y] Error variance{)
2, 6,11, 13, 15, 18 394 36.93 93.81 0.83 0.50
2,3,6,9, 10, 11, 13, 14, 15, 18 397 37.21 93.63 0.83 0.51
2,6,9, 10, 11, 13, 15, 18 381 35.71 93.72 0.85 0.51
2,3,6,9, 10, 11, 13, 15, 18 390 36.55 93.06 0.85 0.51
2,6, 10, 11, 13, 15, 18 381 35.71 93.63 0.85 0.51
2,3,6,9,11, 13, 14, 15, 18 392 36.74 93.16 0.85 0.53
2,9, 11, 13, 15, 18 379 35.52 94.19 0.85 0.51
2,10, 11, 14, 15, 18 383 35.90 94.10 0.85 0.49
2,3,6,9, 10, 14, 15, 18 391 36.64 93.06 0.85 0.56
5,9, 10, 11, 15, 18 377 35.33 93.81 0.85 0.51

Best set of regions for SVM classification. SVM parametérs- 8,192 and~ = 0.0078125 have been computed via grid search. Our overall best value
is bold.

TABLE V
CLASSIFICATION RESULTS FOR MULTIPLE REGIONS
Distance 0 1 2 3 4 5 6 7 8 9 10 11 e 29
kNN hits(%) 26.71 43.21 19.87 6.19 2.06 1.22 0.28 0.37 0.09 0 00 0
< 89.79 — \ +— 10.21 —
SVM hits(%) 36.93 39.55 15.09 4.31 2.53 0.66 0.47 0.37 0 0.09 00 0
+— 91.57 — | +—— 8.43 — |
rSVM hits(%) 58.86 27.65 9.65 2.06 0.94 0.28 0.19 0.19 0 0.09 .090 0 .. 0
+— 96.16 — | —— 3.84 — |

A distance of0 denotes a correctly labeled class, whereas a distantenaficates the classifier has labeled a wrong class direciéytefore or after the
actual age class.
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TABLE VI
COMPARISON TO PUBLISHED RESULTS MEAN ERROR
Age Use SVM SVM Region BoneXpert Fischer et al.
range gender [26 11 13 15 18] best numbers
[0, 18] Yes 0.8320 0.8320 6 = -
[0,18] No 0.9917 0.9637 8 - 0.97
[2,17] Yes 0.8426 0.8265 7 - -
0.7958 0.72 -
[2,17] No 1.0588 0.9850 9 - —
1 Removal of worst 14 hands.
leaving-one-out cycle needs 1.112 s and 2.273 s, resplgctive REFERENCES

These figures indicate real time performance in the appicat
phase, where the SVM model is built already. Here, SVM igll
even faster than kNN.

It is noticeable that our SVM only uses gender and CCR]
as features and may easily be enriched by further features.
In other words, gender is used only as an attribute fo 3]
classification and not for prototype building, since thessifier
should implicit model the fact of different growth spurts fo [4]
male and female subjects. An experiment using the gender to
build twice as many prototypes — and therefore increasieg ths;
feature space — verifies this hypothesis. The mean error was
even slightly higher (about.06 years). Here, no grid search
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As a limitation of this study, we investigated classificatio
quality based on extracted eROls. For routine applicationy,
errors in epiphysis detection must be analyzed, too. Hokeve
if inaccurate regions are extracted, the prototype-basea-c
lation will yield poor similarity, and the related measuweti g,
not contribute in the weighted summation of age computation
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reach up to 2.5 years. [16]
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