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ABSTRACT

The classification and measuring of objects in medical images is important in radiological diagnostics and ed-
ucation, especially when using large databases as knowledge resources, for instance a picture archiving and
communication system (PACS). The main challenge is the modeling of medical knowledge and the diagnostic
context to label the sought objects. This task is referred to as closing the semantic gap between low-level pixel
information and high level application knowledge. This work describes an approach which allows labeling of
a-priori unknown objects in an intuitive way.

Our approach consists of four main components. At first an image is completely decomposed into all visually
relevant partitions on different scales. This provides a hierarchical organized set of regions. Afterwards, for each
of the obtained regions a set of descriptive features is computed. In this data structure objects are represented by
regions with characteristic attributes. The actual object identification is the formulation of a query. It consists
of attributes on which intervals are defined describing those regions that correspond to the sought objects. Since
the objects are a-priori unknown, they are described by a medical expert by means of an intuitive graphical user
interface (GUI). This GUI is the fourth component.

It enables complex object definitions by browsing the data structure and examinating the attributes to formulate
the query. The query is executed and if the sought objects have not been identified its parameterization is refined.

By using this heuristic approach, object models for hand radiographs have been developed to extract bones from
a single hand in different anatomical contexts. This demonstrates the applicability of the labeling concept. By
using a rule for metacarpal bones on a series of 105 images, this type of bone could be retrieved with a precision
of 0.53 % and a recall of 0.6%.
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1. INTRODUCTION

Retrieval from medical image databases depends on formalizing task specific knowledge.1 Not only querying
entire images but also for well defined and visually perceivable objects within an image suitable numerical features
must be determined. At a regional level, object identification is only possible with cumbersome efforts at data
entry time.2 Each object that might be eventually of interest must be identified and labeled manually in each
image, or well defined segmentation procedures must be applied to extract a specific class of objects and forming
an object catalog.3 Both approaches become inefficient in clinical radiological routine, where hundreds of images
from different modalities, body regions and pathologies are acquired every day, and the class and properties of
sought objects are not known at data entry time.2 Thus, it becomes reasonable to execute the task of object
identification at query time because at this point, the physician knows exactly what he is looking for and is able
to formulate his knowledge.
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Figure 1. A hand radiograph (a) has been decomposed in regions on different scales. Scales are displayed for 0, 157,
1019, 1104, and 1130 iterations in (b), (c), (d), (e), and (f) respectively.

However, this concept requires a method for object modeling which is applicable during routine image evaluation
without supervision of an image processing expert. Current approaches either support only one type of objects
or they are highly integrated and must be reconfigured by an expert.4, 6, 7 The main challenge is the mapping
of medical knowledge in a formal language on a sufficiently high level of abstraction.8 On behalf of this, a
concept of separating image partitioning and content description is applied that allows an user friendly knowledge
representation.9

For image partitioning, a generalized causal multiscale decomposition is used. Herein the entire visual information
of an image is provided without considering its content.10 Result of this computation is a hierarchically organized
region representation. There are approaches for region labeling based on image decomposition in image archives
but they only extract single scale information, which is not of sufficient accuracy for medical applications and,
which does not permit complex object modeling.11

The selection of relevant regions for content description is performed on the value ranges of their descriptive
attributes such as roundness, mean grey-value, or size. On these attributes, searching intervals are defined by the
user to select distinct objects. Those queries form the object model and their results are used to label the content
of an image. Query formulation is done in a data mining feedback cycle where the user composes a hypothesis
on an image gets the result for this query and decides whether it is correct or it must be reformulated.12 Thus
the heuristic aspect of learning object description is integrated in the concept. Main component of the approach
is a GUI for browsing the data structure as well as formulating and verification of the query.

This work describes the concept of object-based modeling and identification and its evaluation based on labeling
hand radiographs that are taken from radiological routine. Hand radiographs have been chosen because they
are used in a variety of medical routine examinations and hereby they are acquired following a standardized
protocol. For instance, in maturity determination of children, the size, number and distribution of the carpal
bones is verified.13 In gout diagnosis, the bone deformation is determined,14 and of course bone fractures are
detected from x-ray images.

2. HIERARCHICAL ANALYSIS OF IMAGE CONTENT

2.1. Image Decomposition

Object identification is based on a generalized hierarchical image decomposition, which is executed fully auto-
mated at image entry time. In this work, a region growing algorithm was applied which starts with a complete
watershed segmentation of the input image.10 From those segments, merge candidates are determined where
the difference between homogeneity and contrast along the neighboring contour pixels is below a predetermined
threshold. This procedure yields a multiscale representation of all visually plausible image regions (Fig. 1).
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Figure 2. The region hierarchy describes
the inter-scale inclusion relation for each
region between the scales. All edges in
coarser scales have corresponding edges in
finer scales (left). This causality leads to
a tree structure (right), where each region
is represented as a node (circles) with an
attached feature vector (boxes). The edges
represent a region’s inclusions. For a bet-
ter overview, the neighbor adjacencies are
not displayed in this figure.

2.2. Data Structure

The resulting data structure represents the topological adjacencies of regions by a region adjacency graph (RAG)5

as well as the inclusion relations induced by the multiscale approach. Therefore, it is called hierarchical attributed
RAG (HARAG). In this graph, each image partition (i.e. region) is represented by a graph node. In the concept
of the proposed image labeling method it is assumed, that the hierarchical data structure contains every possible
region that may be sought. From this point of view, object identification by a human examiner becomes the
identification of appropriate image regions. This closes the semantic gap between low-level pixel information
and high-level knowledge on image content. The formal representation of low-level information is an attribute
vector. It is linked to a region node describes region properties such as size, roundness, texture, etc. (Fig. 2).

2.3. Region Attributes

Constant features are static information that is persistently stored within the HARAG file. It encloses the size
of a region, the region pixels themselves as well as the adjacent and hierarchically included regions. Shape, grey
value, and texture features are computed from this basic information. To obtain normalized and consequently
comparable values relative attributes are computed. They put the image dimensions in relation to the absolute
values. The current set of attributes has been taken from literature and focuses on shape properties. If necessary,
the implementation is efficiently extensible by new attributes and attribute classes. The following set of features
is available.

CONSTANT FEATURES
Number of Sons
Number of Neighbors
Contour Length
Size
Absorption Iteration
Creating Iteration
Number of Holes
Minimal Depth
Maximal Depth
Relative Size
Relative Contour Length

SHAPE FEATURES
Centroid X
Centroid Y
Relative Centroid X
Relative Centroid Y
Height of Ferret Box
Width of Ferret Box
Relative Height of Ferret Box
Relative Width of Ferret Box
Extent of Ferret Box
Relative Height of Bounding Box
Relative Width of Bounding Box
Extent of Bounding Box
Eccentricity of Bounding Box
Orientation
Principal Axis Radius
Auxiliary Axis Radius
Relative Principal Axis Radius
Relative Auxiliary Axis Radius
Eccentricity
Radius of Fitting Circle
Relative Radius of Fitting Circle
Extent of Circle
Form factor
Roundness
Compactness

GREY VALUES
Mean Gray value
Relative Mean Gray value
Variance
Entropy

TEXTURE FEATURES
Contrast
Variance of Coocurrence Matrix
Differential Moment
Entropy of Coocurrence Matrix
Homogeneity of Coocurrence Matrix
Correlation of Coocurrence Matrix
Correlation1 of Coocurrence Matrix
Correlation2 of Coocurrence Matrix
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Figure 3. The GUI consist of browsing tools (left)
a display area (middle) and the attribute inspector
(right). Furthermore a logging window for system mes-
sages is provided (bottom left, bottom middle).

2.4. Graphical User Interface

To extract objects from an HARAG, relevant regions must be sought by the examiner. Since HARAGs consist
of multiple layers, the main functionality of the user interface is displaying and changing multiscale layers to
examine all image partitions. Besides the visual representation of the image regions the user interface permits
examination of their formal attributes by clicking on them. The GUI has been realized as a JAVA applet to avoid
installation of a client software, which is typically not applicable at hospital workstations. It consists of four
sections to support browsing of a HARAG (Fig. 3). In the left column there are sliders for HARAG browsing.
The middle section is the display window. On the right side, the attributes of the currently selected region are
displayed. Below the left and middle column, a console for logging information is situated. This provides an
intuitive interface for actual object modeling from hierarchically decomposed images.

3. FORMULATING AN OBJECT MODEL

The hierarchical image decomposition combined with the feature vectors establish a search space for object
extraction. Herein a search pattern becomes the actual object model. The latter is a combination of intervals
that are selected for distinct attributes. This search pattern is similar to a database query.

3.1. Designing a query

Such a query is designed in a data mining cycle by formulating and verifying a hypothesis on attributes and
intervals for a relevant image region. For this purpose, the user browses a HARAG by its layers until a region
that corresponds to the object of interest is identified. By clicking the region, the browser displays its attribute
vector (Fig. 3). Based on the displayed values and the visual impression, the user makes an educated guess on
the relevant attributes. They are entered in a dialog window which offers selection of attributes and setting of
limits that reflect the values from the attribute vector of the region (Fig. 4).

As an example metacarpal bones form ellipse-shaped regions with a high aspect ratio of the principal and
auxiliary axis. They are of similar size and yield a certain degree of roundness, which reflects the ratio of size
and length of the region contour. Thus, on might guess those three attributes as relevant. The appropriate limits
for these attributes are obtained from the values of a sample region (Fig. 5).

3.2. Executing a query

A query hypothesis represents an intuitive model of the sought objects and forms a search pattern. By trans-
forming the intervals into relational predicates, the pattern is formalized and becomes computable. Such a
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Figure 4. The interval settings dialog pro-
vides the query interface where the selec-
tion of attributes and the setting of the
intervals is performed. It is used simulta-
neously to the main HARAG dialog. Once
a query is defined, it is stored via the save
query button, where the name of the stored
file represents an object label.

(a)

Metacarpal Bones Hypothesis 1:

0.01 < Size < 0.02
30 < Round < 37
0.9 < RPA < 1.0

(b)

Metacarpal Bones:

0.01 < Size < 0.02
30 < Round < 37

0.9 < RPA < 1.0
0.5 < Y-rel < 1.0

Figure 5. The hypothesis for metacarpal bones intuitively uses relative size ( Size), roundness (Round) and ratio of
principal and auxiliary axis radius (RPA) as attributes, which yields an additional phalanx (a). This is avoided by
assuming that metacarpal bones are situated in the lower image part defined by centroid Y (Y-rel), (b). The missing
metacarpal bone was not available in the HARAG.

formula consists of an attribute name A ∈ {Size, Roundness, Variance, ...}, a relation R ∈ {<,>,=} the logic
AND-operation ∧, and the limit l ∈ R. Thus the formula

R(A1, l1) ∧ ... ∧ R(An, ln) (1)

is verified for each attribute An in each region. Because of the inclusion relation of the multiscale representation
the computation follows a top-down sequence in the HARAG which ensures great speed and a minimum of checks
for each pattern. The result of a query is a list of those regions in the current HARAG that fulfill the logical
formula. For verification of the result the regions are displayed in the browser window. The data mining cycle
of query design and execution, is iterated until the user retrieves the sought objects with respect to their actual
occurrence in the HARAG 5. According to the query the objects can now be labeled. Once a query is formalized
it can be applied to each image of a database. The resulting regions are stored for post-processing such as image
series evaluation.

4. EXPERIMENTS

The experiment aims at illustrating the principle of object queries by labeling bones in hand radiographs from
different contexts. For this purpose bones are extracted for an anatomic and a functional labeling from the same
hand radiograph.
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Figure 6. The taxonomy of hand bones represents anatomic knowledge that is used for image labeling.

4.1. Labeling of Single Anatomic Objects

The extraction rule generation follows the general anatomic nomenclature for hand bones (Fig. 6). The bone
structure is well defined, and six classes of bones have been identified. These classes are (a) the second distal
phalanx, (b) second middle phalanx, (c) second proximal phalanx, (d) metacarpal, (e) carpal, and (f) radius.
Each of the classes should be represented by a distinct query which represents the knowledge on the sought
objects. The search patterns for the anatomically represented bones are developed by browsing the HARAG.
The data-mining loop is iterated as described in Section 3 until the sought objects are extracted. The experiment
is conducted on an image, of 169x250 pixels that had been transformed into an HARAG with 5227 nodes. For
the defined six classes, the appropriate regions are extracted which correspond to the anatomically defined labels.

4.2. Formulation of A-priori Knowledge

Fingers are anatomic objects that consist of several single bones, which are typically aligned vertically in a hand
radiograph. The three medial fingers are nearly of similar size and topology of the single limps. They differ in
their relative position, which is the contextual knowledge to form a query hypothesis. Intuitively the horizontal
position should be the most discriminative attribute when selecting these three fingers. Thus an object model
that mainly varies the “centroid x” attribute is designed in this experiment. This illustrates the general validity
of this approach for modeling object descriptions.

4.3. Automated Object Identification

The automated application of a query rule for image labeling on a sample of the IRMA archive is examined.
For this purpose a set of 105 hand radiographs arbitrarily obtained from clinical routine was selected from the
IRMA database. The radiographs consisted of approx. 250 x 150 pixels resulting in approx. 2300 nodes for each
HARAG. Where HARAG sizes range from min. 958 to max. 6323 nodes with a mean value of 2356 regions.

From those HARAGs a human observers selected 372 regions that corresponded to metacarpal bones. This set
of region labels served as a ground truth to which the automated object extraction was compared. The object
model was defined by testing and refining it against five different HARAGs. It was applied to the 100 remaining
HARAGs and the resulting region lists were compared to the region sets as defined for the ground truth.

5. RESULTS

5.1. Labeling of Single Anatomic Objects

Results are presented in Figure 7. The query rules reflect the visual properties of the regions.

The rule for second distal phalanx (a) extracts small regions of relative sizes between 0.07 and 0.15 percent of the
image size. Roundness ranges from 0 to ∞, and is limited between 10 and 30 since regions are triangle shaped
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(a)

2nd Distal Phalanx:

0.0007 < Size < 0.0015
10 < Round < 30

0.1 < Y-rel < 0.3
0.0 < MGray < 0.26

(b)

2nd Middle Phalanx:

0.0018 < Size < 0.01
20 < Round < 41
0.1 < Y-rel < 0.4

0.31 < MGray < 0.39

(c)

2nd Proximal Phalanx:

1.0 < CLen < 119
0.0030 < Size < 0.01

20 < Round < 41
0.9 < RPA < 1.0
0.3 < Y-rel < 0.5

0.25 < MGray < 0.47

(d)

Metacarpal Bones:

1.0 < CLen < 119
0.0060 < Size < 0.01

30 < Round < 41
0.9 < RPA < 1.0
0.5 < Y-rel < 0.75

0.56 < MGray < 0.781

(e)

Carpal Bones:

0.0010 < Size < 0.0025
10 < Round < 15

0.5 < Y-rel < 0.75
0.66 < MGray < 0.78

(f)

Radius:

0.02 < Size < 0.025
0.8 < MGray < 0.9

Figure 7. Different anatomic parts of fingers in handradiographs can be classified in (a) distal, (b) medial, and (c)
proximal phalanxes. Further structures are the (d) metacarpal and (e) carpal bones. The radius (f) is already a bone of
the arm. The attributes are abbreviated as contour length, relative size, roundness, ratio of principal and auxiliary axis
radius, centroid-Y, and relative mean grey value by CLen, Size, Round, RPA, Y-rel, MGray respectively.

and therefore yield a good roundness value. Besides size the y-position is an intuitive measure that is restricted
to the upper third part of the image Since those bones do not absorb as much energy as the other parts of the
hand the gray-value is also in the lower quarter of the intensity range (0 < gray-value < 0.26).

The rule for second middle phalanx (b) considers a higher lower limit of sizes of 0.0018 and a larger value for
roundness than the rule for (a) to reflect the larger and more elongated regions. By considering y-positions down
to a fraction of 0.4 of the image height the lower localization of the bones is considered. The regions are brighter
since the tissue absorbs a larger part of the x-ray energy.

Bones from the second proximal phalanges (c) are nearly twice as large as the second middle phalanx thus the
lower size limit is raised to 0.003 they are even more elongated than the second distal phalanx thus the principal
axis radius lies in the upper ten percent. The y-positions is located between the upper third (0.3) and middle
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Index finger:

0.00 < Relative Size < 0.3
10 < Roundness < 41

0.545 < Centroid X < 0.65
0.009 < Centroid Y < 0.55
0.312 < MGray < 0.781

0 < Extend C < 55
40 < Variance < 6107

0.001 < DiffMoment < 0.2

Middle finger:

0.00 < Relative Size < 0.3
10 < Roundness < 41

0.42 < Centroid X < 0.5
0.009 < Centroid Y < 0.55
0.312 < MGray < 0.781

0 < Extend C < 55
40 < Variance < 6107

0.001 < DiffMoment < 0.2

Ring finger:

0.00 < Relative Size < 0.3
10 < Roundness < 41

0.32 < Centroid X < 0.41
0.009 < Centroid Y < 0.55
0.312 < MGray < 0.781

0 < Extend C < 55
40 < Variance < 6107

0.001 < DiffMoment < 0.2

Figure 8. Intuitive adoption of the normalized y-positions provide appropriate results for three fingers, where each rule
represents an adequate object model for the same image.

(0.5) of the image height. The gray-value limits are slightly elevated.

Metacarpal bones (d) are again of double size than proximal phalanges (c) thus size is considers as at least
0.006. Intervals for roundness and principal axis radius remain unchanged since both classes are of similar shape.
Metacarpal bones are typically located in the lower middle quarter of the image reflected by 0.5 < Y-rel < 0.75,
and gray-values become brighter on behalf of the thicker hand tissue.

Carpal bones (e) are a little bigger than the distal phalanges (a) and somewhat smaller than the middle phalanges
(b), which is reflected by the restriction of size to 0.001 and 0.0025. They are basically round thus roundness is
considered between 10 and 15. This specification allows the same interval for the y-location as the metacarpal
bones (d). The latter are differentiated by their disjoint roundness interval. However the lower gray-value
boundary is risen to 66 percent, to avoid extraction of similar shaped but darker regions.

Radius has been extracted by considering size and gray-value. Since it is the largest and brightest bone in the
entire image only size and gray-value is considered. The size is reflected by the interval between 2 and 2.5 percent
of the image size and the gray-value lies within 80 and 90 percent to avoid selection of the white shutter fields
at the image borders.

5.2. Formulation of A-priori Knowledge

The functional labeling for the ring finger, middle finger, and index finger yielded the three types of fingers and
the attributes are the same. The interval ranges are designed to extract the bones of the hand by the same
heuristic approach as in the last experiment. To formulate the a-priori knowledge where the attribute ranges
had to be adopted for the x-positions as predicted.

Once the middle finger was extracted the ring- and middle finger have been labeled via the translation of the
x-Coordinate limits.

5.3. Automated Object Identification

The query was generated by selecting metacarpal bones from five different images, where PAR denotes the
principal axis radius.
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0.005 < Relative Size < 0.025
0.4 < Centroid Y < 0.75

-2.2 < Orientation < -0.8
30 < Roundness < 55

13.0 < PAR < 39.0
0.48 < Excentricity BB < 1.0

0.2 < Formfactor < 2.0
4.0 < Compactness < 7.0
0.3 < MGray < 0.85

This manually generated query obtained 225 of the available 372 regions, which makes a recall of 0.6 % and a
precision 0.34 %.

6. DISCUSSION

The experiments for single object extraction (Sec. 4.1) and knowledge based modeling (Sec. 4.2) yielded com-
prehensible object-models. It is possible to extract single bones as well as complex combinations from an image,
which represents domain specific knowledge. Since the attributes and interval boundaries have been determined
heuristically they do reflect the visual comprehension of the objects. The obtained selection is not sound and
unique since there may exist other attribute combinations and intervals that extract the same regions. Thus
several models are obtainable for a single query context. However this does not restrict the applicability of the
approach since different observers always formulate differing content descriptions.

Generalization of an object-model was examined in the automated identification of metacarpal bones (Sec. 4.3).
Precision and recall have been computed as a measure of quality with respect to the manually generated ground
truth. A total number of 249640 regions had to be searched for 372 relevant objects. The applied interval-
based classification is known for over-fitting on behalf of the parallelity to the search axis. Considering this and
since the rule for region extraction was obtained heuristically on five training samples and consists of only nine
attributes the recall of 60 % and the precision of 34 % can be considered as good results. Further improvement
is achievable by selecting a more general classifier such a nearest neighbor computation. However this requires
a new GUI for query design.

Current general medical image retrieval systems do not make use of region-based queries for object identification.2

In this work, such an approach has been introduced and verified on typical medical images and questions. Now it
is possible to make use of local visual information which allows a more specific and comprehensible presentation
of relevance facts as well as quantitative content analysis.

A major drawback of existing approaches for general object-based retrieval is the strict formulation of content
extraction.6, 7, 11 They are restricted to a fixed number of objects and do not consider visual information on
different scales. Consequently the classes of objects that can be retrieved must be known a-priori at data entry
time, which is not possible in medical image retrieval.

An alternative and even more intuitive approach to query design that is possible with our approach is a manual
outlining of a region of interest. Based on a user drawn region, the attribute values can be computed and
transformed into a query.

7. CONCLUSION

Object modeling can be done by an interval-based search in a hierarchical image partitioning. Therefore, a user-
friendly GUI is most important to close the semantic gap between context knowledge and raw data representation.
It also depends on the available set of attributes. Additionally, the image decomposition must yield the visually
plausible regions. The actual query is efficiently computable and therefore applicable for large image archives.

By this heuristic approach different anatomic and functional context can be considered with a single application
implementation, and the knowledge is stored in a reproducible fashion. However automated application does not
yet yield sufficiently accurate results for reliable quantitative analysis.

By using the intuitive data-mining cycle for object modeling at query time, the object identification is performed
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by the medical expert. Furthermore, it can be integrated into a classical image retrieval interface without
extension of underlying concepts. The use of simple relational predicates combined with a top down evaluation
strategy ensures a runtime of a query within milliseconds. Since this is work in progress, the quality of the
identified queries has to be verified on a larger set of images, as well as the set of test images has to be extended
systematically. However, the results obtained on the hand radiograph illustrate the usefulness of object modeling
for content-based image retrieval in medical applications.
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