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ABSTRACT 

Chronic wounds affect millions of people around the world. In particular, elderly persons in home care may develop 
decubitus. Here, mobile image acquisition and analysis can provide a good assistance. We develop a system for mobile 
wound capture using mobile devices such as smartphones. The photographs are acquired with the integrated camera of 
the device and then calibrated and processed to determine the size of various tissues that are present in a wound, i.e., 
necrotic, sloughy, and granular tissue. The random forest classifier based on various color and texture features is used for 
that. These features are Sobel, Hessian, membrane projections, variance, mean, median, anisotropic diffusion, and 
bilateral as well as Kuwahara filters. The resultant probability output is thresholded using the Otsu technique. The 
similarity between manual ground truth labeling and the classification is measured. The acquired results are compared to 
those achieved with a basic technique of color thresholding, as well as those produced by the SVM classifier. The fast 
random forest was found to produce better results. It is also seen to have a superior performance when the method is 
applied only to the wound regions having the background subtracted. Mean similarity is 0.89, 0.39, and 0.44 for necrotic, 
sloughy, and granular tissue, respectively. Although the training phase is time consuming, the trained classifier performs 
fast enough to be implemented on the mobile device. This will allow comprehensive monitoring of skin lesions and 
wounds.  
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1. INTRODUCTION 
A chronic wound is a wound that does not heal in an orderly set of stages and in a predictable amount of time the way 
most wounds do. Care for such conditions has been reported to cost 2% to 3% of the healthcare budgets in developed 
countries1. The burden of treating chronic wounds is growing rapidly due to increasing health care costs, an aging 
population, and a sharp rise in the incidence of diabetes and obesity worldwide2. However, quantitative assessment of 
wounds still depends on the analysis by physicians or other medical experts and usually requires direct contact with the 
wound. Such kind of invasive measurement is painful and uncomfortable for the patient. It may also cause infection of 
the wound. Hence, a non-invasive, economical and accurate technique for assessment and analysis of wounds which can 
be used at the patient’s bedside is required. 

A skin lesion is composed of different types of tissue: necrotic, sloughy, and granular. Usually the tissue type is 
identified visually by the physician. Healthy granulation tissue is pink in color and it is an indicator of healing. 
Unhealthy granulation is dark red in color, often bleeds on contact and may indicate presence of wound infection1,2. Such 
wounds should be treated in the light of microbiological results3. Excess granulation or over-granulation may also be 
associated with infection or non-healing wounds. Necrotic tissue is the dead tissue which is black in color. In contrast, 
slough is a yellow fibrinous tissue that consists of fibrin, pus, and proteinaceous material. It can be found on the surface 
of a previously clean wound bed and it is thought to be associated with bacterial activity4. Hence, identifying the type of 
the tissue and the amount of tissue present, one can assess the types of treatment required. The appearance of a wound 
has important information that can assist with the diagnosis of severity and the prognosis for healing. The analysis of the 
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wound involves the detecting of the stage of healing by measuring the different tissue types, size, shape, depth and other 
characteristics of the wound.   

In this paper, we propose a system that can automatically segment the wound into its various tissue types: necrotic, 
granular and sloughy, pursuing the goal of objective quantitative analysis of the healing process. Such a system shall be 
easily accessible and economical. Hence, we suggest a machine learning based classification scheme which is suitable to 
be performed on mobile devices such as smartphones and can be used without any technical or medical skills. 

2. STATE OF THE ART 
Precise evaluation constitutes a crucial task in diagnosing, monitoring the evolution and decisions on care interventions 
and pharmacological treatments to be arranged for each particular case11. Visual analysis and measurement of the wound 
vary from person to person and may not be reliable. Hence, systems are being developed to accurately and reliably 
analyze such wounds. Some of the recent progress in developing a system for such clinical assessment involved 
developing hardware equipment making use of structured light techniques. Derma System16 has developed a laser 
triangulation 3D scanner to help dermatologists analyse it. The images are captured using this laser technique to provide 
a 3D view of the image and then tissue segmentation is performed by region growing algorithm after interactive input of 
the color seed by a user. This system was developed to assess the evolution of wounds over time. MAVIS17 makes use of 
a reflex camera for better measurements based on structured light and focused primarily on measuring the area and 
volume of ulcers. MEDPHOS18 system was developed based on photogrammetry to capture 3D wound images by 
matching the corresponding points of calibrated images. These techniques require advanced and expensive equipment, 
which may not be available to everybody or everywhere.  

Recently, advances in mobile imaging, image processing, and communication have been presented in the context of 
chronic wound care5,6,7. Currently there are a wide range of techniques being used to determine the tissues present in the 
wound4,8,9,10,11. Some techniques rely on color segmentation. Klosenik et al.8 analyze color thresholding by multi-
dimensional histograms to generate a set of features for support vector machine (SVM) to separate the wound from the 
non-wound region. The JSEG algorithm9 is used for color pre-segmentation, and extracted color and texture features are 
classified by the SVM classifier. Lee et al. 10 make use of the Euclidean distance from an average value computed in the 
wound region as the feature vector and use gradient vector flow to detect the contour around the wound regions. Contour 
modeling and color segmentation are generally limited by the effect of poor or varying lighting in images. 

Recently, neural networks have been used widely for wound segmentation as well. Veredas et al.11 have designed an 
adaptive region growing algorithm to segment wounds into different regions, where features extracted from each region 
were given as an input to k-neural networks; Bayesian classifier combines the features to give the classification output. 
Mukherjee et al.4 have developed a computer-aided tissue classification technique using fuzzy divergence technique. The 
images are converted to hue-saturation-intensity (HSI) space and only the saturation component is used for wound 
detection. The authors conclude that the SVM classifier performs best.  

However, most of these approaches do not differ the tissue type within the lesion. Furthermore, mobile image recording 
and analysis require faster computations. Since image segmentation using fast random forest14 is known to be 
computationally expensive in training but rather fast in application, we have adopted this concept here.  

3. MATERIAL AND METHODS 
3.1 Overview  

Image acquisition and pre-processing using a reference card for calibration has been described previously15. The image 
analysis pipeline is composed of feature extraction, training the classifier and application to test and evaluate the 
classifier (Fig. 1). It is implemented as a custom Java application relying on the trainable Waikato Environment for 
Knowledge Analysis (WEKA) toolkit14. 

 
Figure 1. Image processing pipeline 

Feature extraction Training the 
classifier

Testing and 
evaluation

Proc. of SPIE Vol. 10579  1057917-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/19/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

3.2 Feature Extraction 

The images are first reduced from the original size of 4608×2592 to 512×288 pixels to reduce the computing time. In the 
task of wound segmentation, the major characteristics for distinguishing the tissues are their colour and texture. The 
various features used to train the classifier are Sobel, Hessian, membrane projections, variance, mean, median, 
anisotropic diffusion, bilateral filter and Kuwahara filter (Fig. 2). The result of applying the Sobel operator produces a 
two-dimensional map of gradient at each point and is most commonly used for edge detection. The Hessian features 
detect the signal changes in two directions around each pixel and is used for describing the local structures present in the 
neighborhood of each pixel. Membrane projections enhance the membrane-like structures in the image through 
directional filtering. Mean and median filters are used to remove the noise present in the image. Variance filters highlight 
the edges present in the image by replacing each pixel value with the neighborhood variance. Anisotropic diffusion, 
bilateral filter and Kuwahara filter help in noise cancellation while preserving the sharp edges in the image. These 
features were found to be suitable for the task of segmenting wound into its corresponding tissue types.  

    
 

    
Figure 2. Original photographs (left) and example feature images (right): for Sobel filter (top) and Kuwahara filter (bottom). 

3.3 Training 

Our classification relies on supervised learning approach. Two types of classifiers were applied: the fast random forest 
classifier14 and the support vector machine (SVM)14. The SVM constructs a set of hyperplanes in high-dimensional space 
to separate classes of different labels. In case the data is not linearly separable, a non-linear kernel function can be used. 
The kernel function maps the data into a higher dimensional space in a computationally inexpensive manner. This kernel 
trick makes the data separable by a hyperplane in higher dimensions. Additionally, SVM has a regularization parameter 
to prevent over-fitting of data. For the segmentation of wound images, the SVM classifier was implemented with radial 
basis function (RBF) kernel. The advantage of using the RBF kernel is in its localization and finite response for the 
entire range of data values. 

The random forest classifier is an ensemble learning method that operates by constructing a multitude of decision trees at 
training time and giving the mean prediction of the individual trees as the output. In random forests, there is no need for 
cross-validation or a separate test set to get an unbiased estimate of the test set error. It is estimated internally, during the 
run. When the training set for the current tree is drawn by sampling with replacement, about one-third of the cases are 
left out of the sample. This out-of-bag data is used to get a running unbiased estimate of the classification error as trees 
are added to the forest. The fast random forest in WEKA is an improvement of the random forest algorithm that brings 
speed and memory use improvements.  

Both classifiers were trained using the WEKA plugin in FIJI13, which enables both, interactive training the classifier as 
well as using labeled data as predefined region of interest (ROI) to train the classifier. Reference labeling was drawn 
manually in 10 out of 120 wound images taken from the German Calciphylaxis Registry12. The classifier was built using 
five classes: necrotic, sloughy, granular, skin, and background (Fig. 3). 

Proc. of SPIE Vol. 10579  1057917-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/19/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Jib'

g

f L' ,:i .] r .

t! f,.:Ñ- `.äs

 

 

 
Figure 3. Interactive wound tissue labeling using trainable WEKA Segmentation plugin in FIJI. 

3.4 Testing and Evaluation 

The trained classifier was applied to the remaining images in the test set. To evaluate the classification results, a ground 
truth must be established. Therefore, all images have been marked manually according to the tissue types (Fig. 4). 

   

   
Figure 4. Generation of ground truth: necrotic, sloughy and granular tissues are marked on the image (top, from left to right) 

and corresponding binary masks are extracted (bottom row). 

The output of the classifier is a probability map for each class. This map is thresholded and converted to a binary image 
using the Otsu technique. This technique finds the threshold which maximizes inter-class variance and minimizes intra-
class variance. 

 
Figure 5. Probability mask of the predicted necrotic region(left); its corresponding thresholded binary map(right) 

The evaluation coefficient to compare the result of this classifier with respect to the ground truth is the similarity 
coefficient which is defined as a ratio of number of true positives (correctly classified pixels) to the total number of 
masked pixels in the ground truth image. 
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3.5 Color Thresholding 

A basic color thresholding was additionally implemented. The color thresholding involves classifying each pixel by 
determining the color thresholds for each class. The red-green-blue (RGB) image is converted to the hue-saturation-
brightness (HSB) color space and thresholded. HSB is a cylindrical representation which tries to capture a more intuitive 
representation of colors in the image. In each cylinder, the angle around the central vertical axis corresponds to ‘hue’, the 
distance from the axis corresponds to ‘saturation’, and the distance along the axis corresponds to ‘lightness’, also known 
as ‘value’ or ‘brightness’. While RGB gives an easy perception to the machine as it is an additive color model, the 
cylindrical representations try to provide a more perceptive representation for the user.   

3.6 Background subtraction 

The images in the dataset contained a diverse background along with the wound image. To compare the effect of varying 
background on the segmentations of tissues in the wound, the corresponding to the wound region of interest (ROI) was 
extracted from the background. This was done by combining the marked tissue regions: necrotic, granular and sloughy 
for each image into a binary mask and applying this binary mask to extract this combined region from the background. 
The classifier was then applied to these images with the background subtracted. This was done only with the random 
forest classifier  

4. RESULTS 
The similarity is calculated for each tissue of each image individually and the mean of the similarity in each tissue type is 
shown below. Our machine learning pipeline is compared with the basic color thresholding by implementing the random 
forest classifier and the support vector machine (SVM) classifier. Considering the corresponding to the wound ROI only, 
necrotic, sloughy, and granular tissues are classified with 89%, 39%, and 44%, respectively using the random forest 
classifier technique (Table 1). The worst results were obtained with the color thresholding technique.  

Table 1. The mean and variance of similarity coefficient of necrotic, sloughy and granular tissue for each of the methods. 
Each signifies the percentage of the tissue that is correctly classified. 

Methodology Necrotic Sloughy Granular 

 Mean Variance Mean Variance Mean Variance 

Color thresholding (whole 
image) 

33% 1.33% 12% 0.95% 40% 1.27% 

SVM classifier (whole 
image) 

57% 7.85% 26% 14.33% 30% 13.16% 

Random forest classifier 
(whole image) 

74% 6.20% 37% 15.56% 41% 13.41% 

Random forest classifier 
(background removed) 

89% 3.89% 39% 15.60% 44% 13.59% 

 

 

The random forest classifier is seen to perform better, especially with prior ROI separation. This methodology was also 
able to detect the wound lesion distinguishing it from the skin and background with 84.36% accuracy. 

5. DISCUSSION 
From our experiments, we observed that machine learning segmentation techniques are more accurate as compared to 
simple color thresholding. This is because they take into account edges and local structures present in the image along 
with color. These techniques do not rely on a fixed color threshold but learn the threshold from the available data, hence, 
illumination and changes in lighting can be accounted for. It is also seen that both color and texture features play a vital 
role in segmentation. The features that capture edges and structures present in the image are observed to contain the 
information required for segmenting the tissue types. These structures can be captured and learnt best by machine 
learning algorithms. Still, the diverse set of images and the large differences in background might increase the false 
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positives detected by the classifier. For example, if there is a red cloth present in the background, it might get wrongly 
classified as the granular tissue present in the wound. Hence, a better result in tissue segmentation is achieved by 
reducing the region of interest to the wound area only. 

The results show that on an average 74% of necrotic tissues are labeled accurately using the random forest model on the 
whole image. The necrotic tissue is easier to classify compared to the sloughy and granular tissues. It can be explained 
considering the fact that in the given dataset, more training samples were available for necrotic tissue as compared to the 
other two classes. Furthermore, necrotic tissue differs more significantly in color and texture than the other types of 
wound tissue. 

Comparing random forest with the SVM classifier using RBF kernel and the same features, SVM classifier performs 
slightly less accurate than the proposed random forest classifier. This can be explained by the fact that the random forest 
classifier accepts the data as it is without any transformation and, hence, might not lead to any loss in information. Also, 
the random forest classifier is faster to train as compared to the SVM and requires no external cross-validation. The 
random forest classifier output is also more interpretable as it gives the probability of belonging to a particular task. 
Therefore, the random forest classifier is preferred. We were also able to observe that detection of the complete wound 
region itself is possible with accuracy 84.36% when using fast random forest classification. It is worth mentioning that 
once trained, the random forest is quite fast and suitable for mobile implementation. Furthermore, the fast random forest 
implementation optimizes memory use as well as speed. Hence, such a system can be developed for direct usage on 
mobile devices.   

Our system can be further extended into a two-step process: by first separating the wound from its background and then 
segmenting the tissues inside the detected wound region. Applying additional color calibration based on the reference 
cards within the images, can lead to further improvement. When a large dataset is available, the use of deep learning 
techniques devices may be considered. 

6. CONCLUSION 
In this paper, a system has been developed to segment the various tissues present in the wound using image processing 
techniques and machine learning algorithms. This system involves the extraction of color and texture features: Sobel, 
Hessian, membrane projections, variance, mean, median, anisotropic diffusion, and bilateral as well as Kuwahara filters; 
and segmenting the wound by using the fast random forest classifier. Otsu thresholding technique was used to convert 
the probability map to binary image and compared with the ground truth. This method was compared to two other 
techniques such as SVM-based segmentation and basic color thresholding. The fast random forest classifier was found to 
produce superior results. An added advantage of using the fast random forest technique is that it can be computed on the 
mobile device such as a smartphone directly. The Java implementation of this system implies that the acquisition and 
analysis of images can be performed directly on mobile devices. Thus, our method provides an economical and 
accessible option to analysis and documentation of chronic wounds and can be particularly useful in personalized 
healthcare.  
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