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ABSTRACT

Image segmentation is a pre-requisite to medical image analysis. A variety of segmentation algorithms have been
proposed, and most are evaluated on a small dataset or based on classification of a single feature. The lack of a
gold standard (ground truth) further adds to the discrepancy in these comparisons. This work proposes a new
methodology for comparing image segmentation algorithms without ground truth by building a matrix called
region-correlation matrix. Subsequently, suitable distance measures are proposed for quantitative assessment of
similarity. The first measure takes into account the degree of region overlap or identical match. The second
considers the degree of splitting or misclassification by using an appropriate penalty term. These measures are
shown to satisfy the axioms of a quasi-metric. They are applied for a comparative analysis of synthetic seg-
mentation maps to show their direct correlation with human intuition of similar segmentation. Since ultrasound
images are difficult to segment and usually lack a ground truth, the measures are further used to compare the
recently proposed spectral clustering algorithm (encoding spatial and edge information) with standard k-means
over abdominal ultrasound images. Improving the parameterization and enlarging the feature space for k-means
steadily increased segmentation quality to that of spectral clustering.
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1. INTRODUCTION

Medical image analysis utilizes image segmentation as a preliminary step, followed by classification or delineation
of the region of interest (ROI). Owing to the lack of a universal segmentation algorithm, many have been proposed
in the recent years. These algorithms are evaluated on different and often insufficiently described parameters and
data sets based on the discretion of the researchers, making their comparison difficult. This in turn increases the
complexities associated with selection of an algorithm for a particular application. Thus, validation of algorithms
(performance) has been gaining importance over the years.1

The existing evaluation techniques can be broadly classified into intra-evaluation and inter-comparison tech-
niques.2 The later is a conventional approach and employs a reference image called ground truth for making
a region-wise comparison with the segmented result from the algorithm under consideration. This quantitative
estimation is based on figures of merit that consider the number of classified and mis-classified pixels. On the
other hand, inter-evaluation techniques require no a priori information and evaluate an algorithm by calculating
certain goodness measures3 that are based on the characteristics of good segmentation as put forward by Haralick
and Shapiro.4 The first method has been used for appraising a particular algorithm while the other method to
rank different algorithms.

Ultrasound images are particularly difficult to segment due to the presence of speckle noise, artifacts and
shadowing.5 Hence, a number of problems exist with the evaluation of segmentation algorithms for ultrasound
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images. A critical problem among these is non-availability of a ground truth, due to which simulated ultra-
sound images are often employed to obtain a quantitative evaluation.6 It is not possible to draw any definite
conclusions about an algorithm since the simulated images (phantoms) can never accurately take into account
all the conditions (imaging and anatomical) that exist during acquisition of clinical data.7 Even the standard
method of validation based on estimating disparity with a manually delineated image (ground truth) from a
single expert suffers from human bias. A number of approaches have been proposed to tackle this issue by
utilizing multi-expert ground truth data.7,8

However, this process has high cost in terms of time and human-input. The comparison of two algorithms is
often based on visual inspection9 of their segmented results. This assessment may also be unreliable owing to
its subjective nature. The most general approach for evaluation is comparison based on a single feature.10 This
partial assessment based on a local ROI may not serve as an accurate performance measure since the algorithm
may be biased towards that particular feature. These mentioned approaches are also used in combination to
shadow individual shortcomings. For instance, the quantitative comparison of two algorithms can be based on
simulated ultrasound images, while qualitative assessment is carried out through visual inspection of segmentation
results from real images.6

The visual examples presented in the scientific literature are often ambiguous, and the suggested improvements
by novel approaches may also be due to sub-optimal parameterization of the established methods used for
comparison. For instance, a clustering approach called spectral clustering that is based on graph theory is
gaining popularity as an image segmentation algorithm,11 and it was employed recently for ultrasound image
segmentation.9,10 Analytically, it has been proved to be superior to k-means due to projection of data points in
higher dimensional space, but applicability to segmentation of ultrasound is shown in the literature only for some
(carefully) selected example images. Such an evaluation is not enough to draw any generalizations regarding the
performance of algorithm, since the improved results may be attributed to the factors discussed earlier.

This paper presents a solution to tackle the discussed problems by introducing an innovative approach for
comparing ultrasound image segmentation maps arising from different algorithms in absence of ground truth.
The following section discusses the formulation of a matrix that is used to estimate two measures for computing
similarity between the segmentation results. The introduced measures have been implemented on synthetic
segmentation maps and also used to compare the segmentation results from spectral clustering and k-means
(with modifications). Finally in Section 5, we discuss the effects of parametrization and feature space selection.

2. METHOD

The proposed distance metrics are based on the so-called region correlation matrix (RCM), which is defined first.
We then define the measures, their combination, and prove the axioms of a quasi-metric. Spectral clustering of
ultrasound is described as particular field of application for our methodology. Examples are based on ultrasound
images of the bladder, after standardized preprocessing and field of view detection.

2.1 Region Correlation Matrix

RCM encodes the similarly information in the two maps. It is similar to a confusion matrix2 and is unique for
any two maps. Let P (x, y) = g, g ∈ G denote an image, where G is the set of n bit gray scales with position
coordinates x and y. S(x, y) = l, l ∈ L denotes a segmentation of P (x, y), where L is the set of labels for the
partitioning map. Each pixel in a map S has a unique label, and the labels are consecutively used. Hence,
∀l > 0, S(x, y) = l ⇒ ∃S(x, y) = l − 1. We denote the region with Sl =

⋃
S(x,y)=l(x, y) and require a unique,

non-overlapping partitioning with connected segments, i.e., Si ∩ Sj = ∅, ∀i �= j and
⋃

i Si = P .

Let S1 and S2 have been taken as segmentation results from two different algorithms to be compared. The
number of segments A and B is given by

A = max
x,y

{
S1(x, y)

}
(1)

B = max
x,y

{
S2(x, y)

}
(2)
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In case A < B, the RCM matrix M is given by

MIJ = [Mij ] =
∑

x

∑

y

{
(S1(x, y) = i) ∩ (S2(x, y) = j)

} ∀i, j ∈ L (3)

where I and J are the number of rows and columns of M , I = min{A,B} and J = max{A,B}, respectively.
When A > B, S1 and S2 are interchanged in (3). For A = B, S1 is swept row-wise for comparing the member
count and pixel position with S2 till no new clusters are encountered or a difference is observed. Equation (3) is
followed if the maximum member count corresponds to S1 and vice-versa. If no difference is observed, the maps
are identical.

The normalized version of the matrix M is denoted by M̃ = 1
NM , where the image size N =

∑
j

∑
i Mij

is a global parameter that is independent of factors like region size in the segmentation map. M̃ contains the
probabilities of overlap for different regions and is label independent.

2.2 Distance Measures

Based on M̃ , we have defined two distance measures. The first measure E is called overlap index and measures
the effective equivalence (overlap) for a region in the two maps S1 and S2

E =

I∑

i=1

max
j

{
M̃ij

}
(4)

There are two important implications:

1. E gives more weight to the overlap of dominant regions, and

2. mechanisms of the human visual system (HVS)3 (intra-region uniformity and size of a region) are incorpo-
rated into the calculation of E to give results matching our intuition.

According to (4), E provides a measure of maximum overlap, which is important for post-segmentation proce-
dures. For instance, a match between extracted features (e.g., texture, mean intensity) from two maps depends
on the degree of ROI overlap. Since it considers all such ROIs, it is much more effective than the technique
employing a particular ROI for comparison of two segmentation maps.

Since E does not take into account the non-equivalence and degree of division for a region, a second measure
(fragment index (F )) has been introduced. To consider the extraneous (non-overlapping) regions, F employs a
penalty factor pi ∈ N that is equal to the number of non-zero elements in ith row of M̃ . It is defined as

F =

∑I
i=1 (pi − 1)(1−maxj{M̃ij})

∑I
i=1(pi − 1)

(5)

In the mathematical formulation, F can be regarded as the expectation value of a random variable describing
the probabilistic event of regions splitting into different numbers of extraneous regions. The weight factor also
helps us to consider the HVS factor.

We have modified E to Ẽ = 1 − E so that both Ẽ and F yield the distance between the two segmentation
maps being compared. The measures have been combined by taking a linear combination to obtain an overall
distance

G =
Fα+ Ẽβ

β + α
(6)

The parameters α and β are used to assign weights to the two measures in order to estimate a different overall
measure G depending on the application domain and algorithm being compared. Based on the information that
the overall distance between similar maps would be zero, percentage of similarity or dissimilarity can be obtained.
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2.3 Quasi-Metric

A distance function D between features a �= b �= c becomes a metric if it satisfies the following properties12

Reflexivity D(a, a) = 0 (7)

Non-negativity D(a, b) > 0 (8)

Symmetry D(a, b) = D(b, a) (9)

Triangle inequality D(a, b) +D(b, c) ≥ D(a, c) (10)

Any measure satisfying all the properties except the triangle inequality is called a quasi-metric.13 In the following,
we will analyze the measures defined in (4) and (5).

For perfect match, a complete overlap between the two maps, M̃ yields a diagonal square matrix. In the case
of worst match, all the regions in first map split equally among regions present in other. Thus, all elements in
M̃ are equal to 1

AB . The regular match lies between the two extreme cases.

Since the matrix M̃ stores probabilities and is unique for any two segmentation maps, both the measures
satisfy the non-negativity and symmetry axioms, (8) and (9), respectively. The modification of E to Ẽ allows
both Ẽ and F to become 0 while comparing similar maps and hence satisfy the reflexivity axiom (7). Thus they
can be characterized as quasi-metrics. This also holds for G in (6).

3. EVALUATION AND EXPERIMENTS

Experiments were performed on synthetic as well as clinical ultrasound data. In sthis section, we describe
experimental setting and implementation.

3.1 Synthetic Segmentation Maps

Six synthetic segmentation maps have been employed to study the performance of the measures (Fig. 1). These
maps have a simplified structure in order to allow the reader to correlate their values with visual observation. The
images differ primarily in the number and orientation of the clusters present. Each image has been compared
with all the other images present in the set to rank them on the basis of similarity. This experiment yields
the response of the measure to either splitting (over-segmentation) or merging (under-segmentation) of different
regions owing to difference in segmentation procedures. We have also considered the case of two images with
similar count of clusters but different orientation to demonstrate the efficacy of the measures.

3.2 Application to Ultrasound Images

The introduced measures have been used to study the application of two clustering algorithms on ultrasound
images of bladder and kidney (after pre-processing). The database has been taken from the IRMA framework14

(Fig. 2a), which has been broadly applied for evaluation.15,16 Since these ultrasound images lacked a well-
defined ground truth, the measures (4) . . . (6) were used to analyze the similarity of the results from the two
segmentation algorithms under different conditions. The procedures for pre-processing, clustering algorithms
and post-processing are discussed below.

(a) (b) (c) (d) (e) (f)

Figure 1: Segmentation maps with different clusters. (a): 2 clusters; (b): 3 clusters; (c): 4 clusters; (d): 7 clusters; (e)
and (f): 8 clusters.
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3.2.1 Pre-Processing

Ultrasound images were pre-processed to extract a field of view (mask image) and remove the pixel-decoded text
information. First, the images were binarized based on an intensity threshold, followed by morphological erosion
to remove the noisy pixels. Performing a dilation prior to the erosion prevented the diffusion of boundaries with
the noisy pixels, which may be present near the edges. Finally connected components was executed to clear any
remaining discontinuous region, with size below a threshold and merge with its background. This yielded the
mask for an image containing the ROI and background. In order to reduce computation time, the background
was cropped automatically (Fig. 2b) and these pixels were not included in the segmentation procedure.

3.2.2 Clustering Algorithms

The two clustering algorithms being compared are spectral clustering and k-means. The experiments used spec-
tral clustering based on multiple eigenvector implementation17 employing intensity, spatial and edge information
(based on intervening contours11). Firstly, segmentation results from spectral clustering employing the three
features have been compared with

1. k-means employing intensity information,

2. k-means employing both intensity and spatial information (using position coordinates with appropriate
weight factor for each feature coordinate),

3. spectral clustering with different parameters (σ corresponding to each feature17),

4. mask image, and

5. single-label image (one region).

The last two comparisons are used to assess the performance of the two measures in case of under-segmentation
and hence estimate an approximate working range.

(a) (b) (c)

(d) (e) (f)

Figure 2: Segmentation of ultrasound images. (a): original; (b) field of view obtained from pre-processing; (c): k-means
clustering with intensity information; (d): k-means with intensity and spatial information; (e): spectral clustering; (f):
spectral clustering with modified parameters.
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Table 1: Results on synthetic images. Ẽ, F and similarity ranks are given on top, middle, and bottom rows.

Input Fig. 1a Fig. 1b Fig. 1c Fig. 1d Fig. 1e Fig. 1f

Fig. 1a
0 0.25 0.5 0.5 0.5 0.75
0 0.125 0.1667 0.2083 0.2143 0.3214
1 2 3 4 5 6

Fig. 1b
0.25 0 0.25 0.4375 0.4375 0.625
0.125 0 0.125 0.1625 0.1667 0.2292
2 1 2 3 4 5

Fig. 1c
0.5 0.25 0 0.1875 0.1875 0.5
0.1667 0.125 0 0.1406 0.15 0.1
6 4 1 2 3 5

Fig. 1d
0.5 0.4375 0.1875 0 0.0278 0.375
0.2083 0.1625 0.1406 0 0.0139 0.0938
6 5 3 1 2 4

Fig. 1e
0.5 0.4375 0.1875 0.0278 0 0.375
0.2143 0.1667 0.15 0.0139 0 0.0469
6 5 3 2 1 4

Fig. 1f
0.75 0.625 0.5 0.375 0.375 0
0.3124 0.2292 0.1 0.0938 0.0469 0
6 5 4 3 2 1

The first set of analysis has been complemented by providing similarity estimates of segmentation results
from spectral clustering algorithm (with different features space) and corresponding case of k-means. These
results have been employed to predict the correlation between the selection of features in different algorithms.
Owing to the absence of a definite method for cluster center estimation, they were fed manually.

3.2.3 Post-Processing

All maps were subjected to post-processing for smoothing (neighborhood based) the clustered results and sep-
arating the disconnected labels. This resulted in better visualization, reduced dependency on initial cluster
number, and uniformity of clustered results.

3.3 Implementation

The algorithms were implemented on Matlab version 7.3. Matlab employs a Fortran-based library ARPACK18

for computation of eigenvectors of large matrices.

4. RESULTS

Table. 1 shows the distance measures and similarity ranks (based on percentage of similarity) for the synthetic
maps of Fig. 1. The similarity order is in accordance with the visual observation. For three cases of Fig. 1a, the
overlap parameter has the same value. In this situation, the correct order of similarity is estimated by F . The
values of the measures are in accordance with the axioms defined earlier.

Fig. 2 shows an ultrasound image, the extracted field of view upon pre-processing, and the segmentation
results from spectral clustering with different parameters and k-means with different feature coordinates. Table. 2
shows the percentage of similarity (estimated through overall distance (G) for comparing the segmentation maps
from different algorithms, single-label image and mask image for ten test images. For the case of overall distance
measure, we have taken α = 1 and β = 3. The G between segmentation results from spectral clustering with
similar parameters is 100 %, while the same measure returns a lower value on comparison with a different
implementation (parameters) of spectral clustering. Secondly, the case of Fig. 2, the G between segmentation
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Table 2: Percentage of similarity (Set 1).

Image Single label Mask image Spectral clustering K-means
initial modified Δ intensity only spatial inform. Δ

Fig. 2a 28.07 47.47 100 92.74 7.26 93.69 95.23 1.54
2 26.68 46.49 100 94.47 5.53 88.17 94.04 5.87
3 34.23 51.20 100 95.17 4.83 89.69 94.31 4.62
4 20.15 26.17 100 90.38 9.62 87.12 92.48 5.36
5 36.79 67.36 100 93.50 6.50 85.04 89.77 4.73
6 34.29 50.71 100 93.90 6.10 89.26 92.92 3.66
7 37.39 58.53 100 93.69 6.31 95.58 96.54 0.96
8 27.06 45.78 100 95.91 4.09 90.99 94.28 3.29
9 38.23 63.11 100 97.36 2.64 85.25 90.00 4.75
Mean 5.88 3.86

Table 3: Percentage of similarity (Set 2).

Image Spectral clustering
intensity only (modified) spatial information (initial)
k-means intensity k-means spatial k-means intensity k-means spatial

Fig. 2a 93.88 91.98 86.71 89.59
2 93.94 89.77 87.68 91.15
3 94.09 90.65 89.38 92.07
4 92.18 89.91 77.39 80.88
5 92.37 92.75 85.17 96.50
6 96.12 89.89 90.47 95.14
7 91.94 91.21 96.66 94.54
8 93.58 90.18 90.13 93.57
9 94.98 90.55 85.54 97.26
Mean 93.66 90.76 87.68 92.30

maps from spectral clustering and k-means (intensity information) is 93.69 %, while between spectral clustering
and k-means combining spatial and intensity information is 95.23 %. This increase in G with inclusion of spatial
information in k-means has been experimentally observed for all cases being considered. Finally, the measure
yields the lowest estimate on comparison with a single-label image.

Table. 3 shows the similarity percentages obtained on comparing the segmentation results from spectral
clustering with modified features to the respective instance of k-means. It is evident from these observations
that the similarity between segmentation maps with similar features is more than those with different features.

5. DISCUSSION

The inference that can be drawn from the previous observations is that the segmentation results are indeed
affected by the feature space and modifications in runtime parameters. In the present case, the change in
similarity between the results from two algorithms can be attributed to the tendency of spatial information,
added later to k-means, to minimize the effect of noise present prior to clustering. This not only improves the
uniformity in the results (visually evident in Fig. 2c as compared to Fig. 2d), but also increases its similarity to
the results from spectral clustering, that already encodes spatial information. Moreover, as a result of different
parametrization, the similarity in the results from the same algorithm is less than 100%. Our contention is
further strengthened by the results in Table. 3 that highlight the correlation between the feature space and
corresponding results from different segmentation algorithms.

Proc. of SPIE Vol. 7627  76271C-7

Downloaded from SPIE Digital Library on 13 Aug 2012 to 134.130.12.208. Terms of Use:  http://spiedl.org/terms



Though spectral clustering has been known to give promising results, it has many disadvantages such as a
high computation cost, parameter dependences,19 limited size of input image due to large weight matrix, and
convergence issues for the intermediate eigenvalue estimation.20 Moreover, application of k-means in the last
step17 makes it susceptible to the disadvantages of k-means (convergence issue).

Based on the results and above discussions, we cannot conclude the superiority of spectral clustering over k-
means for the case of ultrasound images. The fact that the evaluation methods of previous researches pertaining
to this domain were inadequate (as discussed in Sec.1), further supports our contention. Although a number
of independent researches have been conducted recently to counter the shortcomings of spectral clustering,21,22

they have still not been addressed effectively in the context of ultrasound images.

As mentioned earlier, the selection of an algorithm for a particular application has become a complex issue.
Novelty of an algorithm cannot be the sole basis of decision, other factors like complexity, parameters involved and
their optimization, and relevance of features should also be considered. Thus, construction of a cost function to
rank different algorithms for an application remains a major challenge in the field of medical image segmentation.

6. CONCLUSION

We have devised a new methodology for comparing segmentation maps from different algorithms without the
application of ground truth. The segmentation algorithms have been considered for ultrasound images, since these
images usually lack ground truth and the inherent visual complexities along with limited colors for discrimination
make visual assessment of the segmentation results impractical. Two measures, satisfying the axioms of a quasi-
metric, have been introduced. They are supplemented by empirical and analytical proofs to demonstrate the
consideration of human vision properties in their formulation. Thereafter, a comparison between novel spectral
clustering and simple k-means is presented using abdominal ultrasound images. Our experiments show that
using optimized parameters and features, standard k-means tends to match the results from spectral clustering.
In conclusion, we cannot confirm superiority of spectral clustering over enhanced k-means when applied to
ultrasound image segmentation.
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