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ABSTRACT 
Bone age assessment (BAA) is a method of determining the skeletal maturity and finding the growth disorder in the 
skeleton of a person. BAA is frequently used in pediatric medicine but also a time-consuming and cumbersome task for a 
radiologist. Conventionally, the Greulich & Pyle and the Tanner & Whitehouse methods are used for bone age 
assessment, which are based on visual comparison of left hand radiographs with a standard atlas. We present a novel 
approach for automated bone age assessment, combining scale invariant feature transform (SIFT) features and support 
vector machine (SVM) classification. In this approach, (i) data is grouped into 30 classes to represent the age range of 0-
18 years, (ii) 14 epiphyseal ROIs are extracted from left hand radiographs, (iii) multi-level image thresholding, using 
Otsu method, is applied to specify keypoints on bone and osseous tissues of eROIs, (iv) SIFT features are extracted for 
specified keypoints for each eROI of hand radiograph, and (v) classification is performed using a multi-class extension 
of SVM. A total of 1101 radiographs of University of Southern California are used in training and testing phases using 5-
fold cross-validation. Evaluation is performed for two age ranges (0-18 years and 2-17 years) for comparison with 
previous work and the commercial product BoneXpert, respectively. Results were improved significantly, where the 
mean errors of 0.67 years and 0.68 years for the age ranges 0-18 years and 2-17 years, respectively, were obtained. 
Accuracy of 98.09 %, within the range of two years was achieved. 

Keywords: Bone age assessment, Epiphyseal region of interest (eROIs), Scale invariant feature transform (SIFT), 
Feature extraction, Support vector machine, Classification. 

1. INTRODUCTION 
Bone age assessment (BAA) is a process of determining the skeletal maturity of a person. For example, the bone age of a 
child (developmental age of the bones) is assessed based on a radiological examination of skeletal development of the 
left-hand & wrist and compared to the chronological age. This procedure allows anticipating the adult height, as well as 
diagnosis and management of endocrine disorder and pediatric syndromes [1]. Moreover, BAA methods can also be used 
in forensic medicine to determine the age of an unidentified corpse. 

Besides medicine, a relevant application of BAA is in social field. According to UNICEF, only half of the children under 
five years old in the developing world have their births registered. In sub-Saharan Africa and South Asia, about 65% of 
all births go unregistered. Without documented proof of children’s age, they can be recruited into fighting forces, 
exposed to hazardous forms of work, forced into early marriages, and treated as an adult rather than a child in criminal 
proceedings. Similarly, asylum seekers without documented proof of their age cannot use the advantage of childhood to 
obtain a residential permit [2] . Skeletal maturity can help in all these cases to determine the true age of a person. 

In radiology, BAA is a frequently used but time-consuming and cumbersome task. Two conventional methods for bone 
age assessment are the Greulich & Pyle method [3] and the Tanner & Whitehouse method [4]. In Greulich & Pyle 
method, a radiologist compares all bones of the left hand to the radiographs in a standard atlas and assesses the bone age 
according to his visual perception. In Tanner & Whitehouse method, only a certain subset of left hand bones is 
examined. The Greulich & Pyle method is more subjective while the Tanner & Whitehouse method is more complex and 
both are time consuming methods. Therefore, an automated BAA method is desired in order to assist the radiologists. 

Many approaches have already been adopted to automate the process of bone age assessment. Al-Taani et al. presented 
an automatic BAA approach in 1996 that was based on point distribution model (PDM) of 130 feature points [5]. The                                                              1 Corresponding Author: Muhammad Kashif, Department of Medical Informatics, RWTH Aachen University, Pauwelsstr. 30, 52057 
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distal and middle phalanxes of third finger were classified. A set of 120 images was used for evaluation and 
classification rates for two experiments were 70.5% and 73.7% respectively. Then in 2001, Pietka et al. comprehensively 
reviewed early approaches for BAA and presented a method for features extraction from left hand radiograph by 
measuring the gap between metaphyses and diaphyses [6]. In a method by Chang et al. the back propagation of neural 
networks was applied to train the features of phalanges. In total, 501 female and 416 male hand radiographs were used 
for evaluation. An error of 1.5 years was reported [7]. Then, Kim and Kim gave the idea of using epiphyseal regions of 
interest (eROIs). Discrete cosine transform and linear discriminant analysis were applied on nine relevant eROIs 
segmented from the left hand radiographs. Experiments were performed on a private data set of 93 males and 303 female 
(total 396) radiographs and an average error of 0.6 years was reported [8].  

These approaches were either based on the use of Greulich & Pyle or Tanner & Whitehouse methods or they used private 
data set that restricts the comparability of BAA approaches. To improve this drawback, A new digital hand atlas was 
established at the University of Southern California (USC) that is termed as USC hand atlas.  It reflects a standard 
reference data base for evaluation and improves the comparability of automated BAA approaches. First experiment on 
the image data set was performed by Gertych et al. where fuzzy classifier was applied on carpal bone and phalangeal 
ROIs [9]. 

In our previous work, a method based on content-based image retrieval (CBIR) was presented [10, 11], where eROI 
patches were automatically extracted from the hand radiographs of USC data and similar and labeled patches were 
retrieved from Image Retrieval and Medical Application (IRMA) framework. Classification was done using k-nearest 
neighbor (kNN) method. A mean error of 0.97 years, on the age range of 0-18 years, was reported. This method was 
extended by Harmsen et al. by introducing class prototypes and applying support vector machine (SVM) [12]. A mean 
error of 0.83 years with variance 0.50 years was achieved. Haak et al. improved this work by replacing SVM with 
support vector regression (SVR) as a classifier [13]. A mean error of 0.768 years with standard deviation 0.657 years was 
achieved.  

In contrast, the leading commercial product BoneXpert uses active shape models for BAA [14]. BoneXpert obtains a root 
mean square error of 0.61 years within the range of 2.5-17 years and 2-15 years for boys and girls respectively [15]. 
Since our previous work applies cross correlation function for obtaining features, and the features were dependent on the 
similarity measure between test and reference images [11, 12, 13], we here have specified features points using multi-
thresholding and the scale invariant feature transform (SIFT) method [16], which has been recently introduced and 
proven outstanding performance in many registration and retrieval applications [17, 18]. 

2. MATERIAL AND METHODS 
BAA comprises four steps: (i) eROIs extraction, (ii) feature points identification, (iii) SIFT features extraction, and (iv) 
SVM classification (Fig. 1). 

 

 

 

 

2.1 EROIs Extraction 

Using the previously presented eROI extraction approach [11], where the user hits the centers of relevant epiphyses for 
proper epyiphseal centers localization, 14 eROIs from each hand radiograph are extracted and rotated into an upright 
position. Hence all eROIs are in reference position, disregarding their position in original radiograph (Fig. 2). 

2.2 Features Extraction 

Features extraction can be divided into two parts, i.e., feature detection and feature description. In feature detection, key 
points are detected. In feature description, a local image descriptor is calculated for every key point. The SIFT detector is 
not used in this work. Instead, key points are identified by applying multilevel thresholding. However, the SIFT 
descriptor is then used to describe the features of the specified keypoints. 

Figure 1: Different processing steps in the proposed method.
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Figure 2: (i) Corresponding eROI numbers, (ii) eROIs are extracted and rotated into upright position [12]. 

Here, each eROI is quantized into four discrete levels using Multi Otsu method [19, 20]. The two higher levels represent 
the bone and osseous tissues. Six key point locations are specified on upper, middle and lower parts of the bone. Next, a 
SIFT descriptor is computed for each of the six key points. Each SIFT descriptor contains 128 numerical features. These 
6 descriptors are combined to form a 768 dimensional SIFT feature vector (Fig. 3). One SIFT feature vector represents 
one eROI. 

           

       Figure 3: From left: (i) Original image of an eROI, (ii) RGB segmented Image obtained using multi-thresholding, and (iii)  SIFT 
       features descriptors: Green circles and green lines in the circles represent key points and their orientations respectively. The 
       yellow box and arrows show feature descriptors. 

2.3 Classification 

A support vector machine with polynomial kernel is used for classification purpose [21]. Due to reasonably large number 
of features and the assumption of non-linear relation between features and classes, we used a three-degree polynomial 
kernel for non-linear classification. SVM is extended for multiclass classification using one-against-one approach. 

2.4 Age Classes 

Since the epiphyses of a child gradually ossify in predictable order from birth to the age of 18 years and it allows the data 
to be grouped according to growth spurts [1]. Hence the data is grouped into 30 classes that represent the whole age 
range [12] (Tab. 1). 

2.5 Validation Experiments 

The publically available USC hand atlas is used for validation experiments. It is composed of 1101 left hand radiographs 
from different ethnics and age. Fourteen eROIs are extracted from each hand radiograph (Figure 2). After extracting 
eROIs, SIFT feature vector is computed for each eROI. SIFT features are extracted from a rescaled eROI of 48x48 pixel 
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image. This feature vector is then applied for SVM. Analysis is performed using 5-fold cross validation. The parameter 
values (C = 1 and γ = 0.25) are used for SVM. The outcome of these experiments is the number of correct classes, age 
class accuracy, accuracy in 2 years age range, mean error and class error variance. 

 

Table 1: Age Class and Corresponding Age Range (years) 

Class     Age range             Class    Age range Class     Age range 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

0.00 - 0.65 
0.66 - 0.82 
0.83 - 0.99 
1.00 - 1.15 
1.16 - 1.32 
1.33 - 1.49 
1.50 - 1.65 
1.66 - 1.99 
2.00 - 2.32 
2.33 - 2.49 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2.50 - 2.99 
3.00 - 3.49 
3.50 - 3.99 
4.00 - 4.49 
4.50 - 4.99 
5.00 - 5.49 
5.50 - 5.99 
6.00 - 6.99 
7.00 - 7.99 
8.00 - 8.99 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

09.00 - 09.99 
10.00 - 10.99 
11.00 - 11.99 
12.00 - 12.99 
13.00 - 13.99 
14.00 - 14.99 
15.00 - 15.99 
16.00 - 16.99 
17.00 - 17.99 
18.00 - 99.00 

 

2.6 Implementation 

The implementation has been done in MATLAB. SIFT features are computed using VL-SIFT library version 0.9.17, 
which is developed by VL-Feat and is available open source [22]. Multiclass SVM is implemented using libSVM library 
version 3.17 that has built-in support for multiclass classification using one-against-one approach [23]. 

3. RESULTS 
Experiments are performed on single region, subset of regions and on a complete set of regions with and without gender 
specification. Here, variances to errors are given in brackets. Results for individual regions showed age class accuracy 
from 29 % to 38% and a mean age error from 0.845 (±0.052) to 1.524 (±0.413) years (Tab. 2). For the complete set of 
regions, the age class accuracy was 41.69% and the mean age error was 0.675 (±0.047) years. It gave the mean errors 
0.753 (±0.084) and 0.630 (±0.088) years for male and female radiographs, respectively (Table 3). The subset of 8 regions 
(3,6,7,9,10,11,15,18) gave the best result (age class accuracy 41%, mean age error 0.669 (±0.051) years) in terms of 
mean error. Considering best subsets of regions, it gave the mean errors 0.725 (±0.060) and 0.619 (±0.108) years for 
male and female radiographs, respectively (Tab. 3). 
 

4. DISCUSSION 
Region 11 that belongs to the middle finger gave the best results among all individual regions. This is in line to findings 
of others [4, 11, 12]. Lower error rates are achieved when individual regions are combined to form a subset of regions. 
For instance, the subset of the best four regions (3, 7, 11, 15) gives an age class accuracy 41.24% and a mean age error of 
0.707 (±0.057) years. Consistent and almost best results are obtained when experiments are performed on the complete 
set of regions. However, few subsets of regions have also achieved the similar or marginally better results than the 
complete set of regions. In addition, better results are obtained in case of female radiographs as compared to the male 
radiographs (Tab. 3). 

The best result is obtained when male and female images are classified separately on the age range of 0-18 years. 
Thereby, our approach outperforms all prior published methods on USC data excluding the commercial product 
BoneXpert (Tab. 4). 
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Table 2: Experiment outcome for individual regions 

Region Accuracy (%) Mean 
Error (y) 

Error 
Variance 

1 

2 

3 

5 

6 

7 

9 

10 

11 

13 

14 

15 

17 

18 

29.34 

30.70 

33.33 

34.70 

34.97 

36.24 

31.52 

35.06 

38.78 

31.06 

33.61 

35.79 

32.70 

33.15 

1.524 

1.270 

0.952 

1.111 

1.063 

0.888 

1.082 

0.959 

0.845 

1.282 

1.159 

0.894 

1.173 

1.022 

0.413 

0.173 

0.076 

0.113 

0.086 

0.066 

0.086 

0.113 

0.052 

0.184 

0.168 

0.157 

0.160 

0.143 

 

Table 3: Experiment outcome for combined and separate male and female radiographs 

 
The commercial product BoneXpert was evaluated over a range of 2.5-17 years and 2-15 years for boys and girls, 
respectively. BoneXpert reached a RMS error 0.61 years [15]. We considered age range 2-17 years for both boys and 
girls, and reached the mean and the RMS errors 0.68 years and 0.7166 years respectively. This is much better compared 
to prior publications but still slightly inferior to BoneXpert. However, since the evaluation set between BoneXpert and 
our approach differs, a final conclusion cannot be deducted. 

In this work, a semi-automatic approach for eROI extraction was used [11], where the user hits the centre of relevant 
epiphyses for the localization. However, Hahmann et al. recently presented a new approach for the localization of 

Age 
Range 

Gender Regions/[Best Regions] Accuracy 
(%) 

Accuracy in 
2 Yrs Range 

(%) 

Mean 
Error (y) 

Error 
Variance 

0-18 M + F 

Male 

Female 

M + F 

Male 

Female 

All 

All 

All 

[3,6,7,9,10,11,15,18] 

[3,7,10,11,15,18] 

[3,5,6,7,9,10,11,13,14,15,17,18] 

41.69 

42.75 

40.62 

40.96 

42.57 

40.98 

97.91 

97.64 

98.18 

98.09 

98.55 

97.45 

0.675 

0.753 

0.630 

0.669 

0.725 

0.619 

0.047 

0.084 

0.088 

0.051 

0.060 

0.108 

Proc. of SPIE Vol. 9414  941439-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/10/2015 Terms of Use: http://spiedl.org/terms



 

 

epiphyseal regions of interest (eROIs) [24]. In this approach, Discriminative Generalized Hough Transform (DGHT) was 
used, in conjunction with some simple geometrical constraints, to locate 12 epiphyseal ROIs in left hand radiographs. 
This approach can be adopted in future work for fully automatic bone age assessment. 

Table 4: Comparison to Published Results - Mean Error 

Age 
Range 

Used 
Gender 

All (14) 
Regions 

Best       
Regions 

Region 
Numbers 

Harmsen et 
al. 

Fischer et 
al. 

BoneXpert 

0 - 18 Yes 0.6746 0.6693 8 0.8320 - - 

0 - 18 No 0.8456 0.8348 13 0.9637 0.97 - 

2 - 17      Yes    0.7029 0.6834 
0.7166(RMS) 

9  0.8265 
0.9887(RMS) 

-   
0.61(RMS) 

2 - 17 No 0.9486 0.9486 All 0.9850 - - 

 
5. CONCLUSION 

We have presented an effective and robust method for automatic bone age assessment. Age class accuracy 41% is 
achieved and the accuracy within the range of two years is 98.09%. Most of the misclassification lies within the range of 
one or two classes. In comparison, the differences between two expert readings in the USC data reaches up to 2.5 years 
[12]. Therefore, 98.09 % accuracy within the range of 2 years is a good performance. 

The presented approach is novel and easy to implement, where SIFT features are extracted directly from the eROIs of 
left hand radiographs and classification is performed using SVM. In contrast to previous work, it does not require 
comparing given eROI with all 1101 eROIs stored in database or with 30 prototype eROIs as suggested by Fischer et al. 
[11] and Harmsen et al. [12] respectively. It does not need semantic features or atlases unlike method by Pietka et al., or 
the convential methods by Greulich & Pyle or Tanner & Whitehouse.  
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