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ABSTRACT
Shape analysis of light—micrographs of cell populations is important for cytotoxicity evaluation. This paper presents
a morphological method for quantitative analysis of shape deformations of cells in contact to a biomaterial. After
illumination normalization, a morphological multiscale segmentation yields separated cells. Shape deformation, and
hence, toxicity of the substance under scrutiny, is quantified by means of compactness distribution and pattern
spectrum of the population.. Since the logarithmic image model is applicable to transmitted light, illumination
normalization is achieved by removing the illumination component from the log—image by a tophat transform utilizing
a large reconstruction filter. Subsequent thresholding and noise filtering yields connected binary cells, which are
segmented by a marker—based, multiscale approach. For this, size—specific marker scales are generated removing
noise and false markers. Each cell is now represented by an isolated marker. Converse integration of marker scales
is performed by successive reconstruction of the original cell shapes, preventing merging of markers. Our method
yields reasonable cell segmentations that go along with cell morphology even for differently sized and very distinct
shapes. The obtained quantitative data is significantly correlated to the toxicity of the substance to be evaluated.
Currently, the method is used for extensive biocompatibility tests.

Keywords: Shape analysis, mathematical morphology, scale—space, light micrograph, logarithmic image model,
quantitative cytology, biomaterials, cytotoxicity, pattern spectrum

1. INTRODUCTION
Quantitative analysis of image content is an important application in medical image processing. Particularly reliable
automatic analysis of cytological or histological micrographs is demanded for clinical routine purposes."2 Many of
such tasks require shape analysis of cell populations to assess their condition. Especially in biomaterial research, the
cytotoxicity of medical devices (i.e. implants or catheters) is evaluated by means of morphological changes of standard
cells (mouse fibroblasts) that were in contact with the biomaterial. Toxic effects on vital cells commonly result in a
rounding and shrinking of cells that usually are more extended and have differentiated contours.3 Currently, this
process is done qualitatively by microscopic observation of cell deformation. The observed effects can be recorded only
descriptively as deviations from normal cell morphology. This leads to the well known ambiguities in interpretation
and comparison of biological studies. To overcome the limitations of such qualitative or semi—quantitative studies,
we developed a robust computer—assisted method for shape analysis of single—layered confluent cell populations. The
method consists of three stages: illumination normalization, morphological segmentation of cells, and quantification
of shape deformation.

Common effects in light microscopy are low—frequency intensity gradients across the sample. These might result
from inhomogeneous illumination caused by light sources or inhomogeneous dye concentration in the tissue. In the
case of diascopic imaging variations of slice thickness of the sample additionally might cause inhomogeneities of
captured objects. Such effects can be neglected for visual inspection, but for automatic quantitative analysis of the
samples inhomogeneous illumination components may cause mayor difficulties and require advanced segmentation
techniques. Usually, additive illumination components are assumed, which can be normalized by local filtering. Since
in diascopic imaging object information and illumination are related multiplicatively, we use the logarithmic image
model4 for removing the illumination component by linear signal decomposition.5 This technique has been applied
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successfully to illumination invariant scene analysis6 and removement of signal—dependent noise.7 However, linear
low—pass filtering always removes important object information and parts of cytological images contain no object
information at all. Therefore we perform illumination normalization by a tophat transform utilizing morphological
reconstruction8 (Sec. 2).

The spatial frequencies of micrographs are used to examine information on distances between cells and their posi-
tion in the image. Such information is less useful in quantitative cytology. The structural analysis of cytological im-
ages often is performed by means of morphological filters9'2 because of their shape—, rather than frequency—oriented
operations.'3 Morphological, or more generally, nonlinear approaches are well suited for shape description'4 and de-
composition'5'16 leading to multiscale shape representations.'7"8 Because vital mouse fibroblasts vary significantly
in shape and size we use a morphological approach to segment connected cells. The two—stage multiscale algorithm
is based on morphological information of the illumination—normalized binary image. First the image is decomposed
into size—specific scales, each of which carrying markers representing separate cells. Thereafter, the original shapes
are reconstructed successively from the markers without merging them again (Sec. 3).

Shape is (besides color) the most important feature to assess the condition of cytological structures. In the case
of biomaterial evaluation, toxicity is quantified as a measure of shape deformation relative to the shape of vital cells.
However, among common similarity measures for graylevel images19 only few are applicable for binary images. E.g.
the compactness of an object represents its similarity to an ideal circle.20 Increasing toxicity leads to rounding of
fibroblasts. Therefore the compactness distribution of a population was chosen as shape descriptor. Moreover, the
morphological concept of pattern spectrum is used for quantifying shape deformations.15 The obtained parameters
of cytotoxicity were verified with fibroblasts treated with defined concentrations of toxical reference substances and
turned out to be significant for the different toxicity stages (Sec. 4).

2. ILLUMINATION NORMALIZATION
Inhomogeneous illumination is a common problem in quantitative microscopy. Additive illumination influences can be
normalized by removing local means or utilizing derivatives for object detection.2' However, in the case of diascopic
micrographs we deal with a multiplicative relationship between the mainly high—frequency object information and
the (unwanted) rather low—frequency variations of illumination. This leads to the use of the logarithmic image model,
which is applicable to transmitted light4 and is appropriate for removing multiplicative illumination components.
Here, the image function F(x, y) is regarded as the intensity of light passing through a light absorbing sample. This
relation can be written as

F(x,y) =(g—A(x,y)).I(x,y) (1)

where A(x, y) and I(x, y) denote the wanted absorption and microscope illumination, respectively. The constant g
represents the maximum digital intensity value, which is 255 for 8—bit images. According to the log—image model,
illumination influences can be normalized by a signal decomposition into a high—frequency object component and
a low—frequency illumination component in the log—domain.5 Hence, the absorption component A(x, y) can be
extracted by apply a linear low—pass filter in the log—domain and subtracting it from the log—image. Final exponen-
tiation and subtraction from g yields the absorption:

A(x,y) = g —exp(log(F(x,y)) — log(I(x,y))) (2)

Linear low—pass filtering for identification of log(I(x, y)) also removes object information. In our case, better ab-
sorption images were obtained by using a morphological filter with a large structuring element. Due to their nonlinear
properties, such filters remove less low—frequency object information from the absorption component. Consequently,
g — A(x,y) is identified in the log—domain by a tophat transform utilizing a large closing—by—reconstruction filter.
The scheme in Fig. 1 depicts the technique to obtain the absorption component A(x, y) from F(x, y), which is said
to be illumination normalized, since it is g —A(x, y) = F(x,y)/I(x, y).

Morphological illumination correction of dark objects on light background usually is done by a tophat of closing
(black—tophat) ,8 especially for real—life scenes where illumination normalization yields the reflectance component
containing rather high—frequent object information.22 For pixels in cytological images belonging to the background,
absorption equals zero, i.e. F(x, y) = I(x, y). Therefore closing will lead to F(x, y) < I(x,y) resulting in a false
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absorption A(x, y) > 0. Since background pixels carry no absorption information, a filter is needed to identify back-
ground as pure illumination. A closing—by—reconstruction results in an optimal background illumination component.
Pixels in the resulting absorption component belonging to an object have values A(x, y) > 0 whereas background
pixels carry A(x, y) = 0. Hence, with a constant global threshold t = 1 the object shapes in each cytograph can
easily be determined.

The effect of our illumination normalization is illustrated by Fig. 2. Binarization of absorption (e) yields much
clearer shapes then direct thresholding (b).

3. MORPHOLOGICAL SEGMENTATION
Because the minimum size of cells is known a priori, binary noise is removed initially from the micrographs. Thereafter
the cell population is segmented by the multiscale approach.

3.1. Binary noise filtering
Binarized samples as the one shown in Fig. 2 (e) have to be cleaned from noise prior to segmentation of the population.
Besides technical sources, noise also result from detection errors, cell particles, or other artifacts in the sample.

Classification of binary segments into cells and noise is done with respect to the known minimum size of cells.
The digital images (in 100 times microscopical magnification) display an area of 422.4tm x 607.3pm which covers in
total 0.256mm2 (512 x 736 = 376, 832 pixels). Filtering of A(x, y) is performed by the double reconstruction filter:

A) := C° (O(A)) (3)

consisting of successive application of opening— and closing—by—reconstruction:

O°(A) := D (E(A), A) (4)
C°(A) := E(D(A),A) (5)

where D and E denote rn--fold dilation and n—fold erosion, respectively. The exponent oo indicates operating until
idempotency.23 D(A, M) and E(A, M) denote conditional dilation and erosion with masking image M respectively.
The size of the circular structuring element is determined by its perimeter a.

For a = 3, circular objects of area 24.5m2 or ellipsoidal objects with at least one axis smaller than 3.5tm
are removed (Fig. 2, f). These values are well below the expected minimum area of totally damaged and rounded
fibroblasts.
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Figure 1. Illumination normalization of a diascopic micrograph F = (g — A) . I. The initial logarithm transforms
the multiplicative relation between A and I into an additive one. Reconstruction filtering identifies I and the tophat
yields g — A, where g is the maximum illumination.
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Figure 2. A micrograph F(x, y) (a) is split into its object component g —A(x,y) (c) and the illumination compo-
nent I(x, y) (c) by a log—tophat transform utilizing a closing—by—reconstruction. Compared to direct thresholding
of F(x, y)(b), much better shapes are obtained by global thresholding of the absorption component A(x, y) (e).
Subsequent morphological noise removement perfectly yields cell shapes (f).

3.2. The multiscale segmentation algorithm
Progressive segmentation by reconstruction of object information from previously obtained markers is a common
concept in mathematical morphology.24 Since two cells touching each other can be separated best within their size—
specific scale, a two—stage approach was developed. An image is initially decomposed into marker scales indicating
the presence of particularly sized cells. After this analysis stage the original shapes are reconstructed, while the
markers are prevented to merge again during the synthesis stage (Fig. 3).
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Figure 3. Scheme of the two—stage mul-
tiscale separation procedure. The analy-
sis stage extracts separated markers for the
cells by enhanced erosion. In the converse
synthesis stage the enhanced dilation op-
erator reconstructs original shapes of cells
without merging separate markers.

Analysis by enhanced erosion. The binary image A8 represents the markers at scale 0 < s < 8max E N. The
complete scale—space is generated by a cascade of Smax 1 successive enhanced erosions

A31 =D(E(A8) , E (A8)). (6)-- --
A'S' M=A',

At scale s, the n—fold eroded image A (= A") is rn—fold dilated and masked by the 1—fold eroded A8 (= A'),
resulting in the next scale image A8+1 (Fig. 4). Each of these scale images introduces separations of those cells
belonging to one specific scale.

The parameters n and m are derived from the estimation of cell size (Sec. 3.1). Likewise n—double reconstruction,
the n—fold erosion filters false markers, and hence n = 3 is appropriate for all scales. Eqn. 6 actually represents an
opening, so m n is an initial constraint for the rn—fold dilation. For m =n too many false markers remain from
the n—fold erosion. The (rn = n + 1)—fold dilation turned out to be a reasonable compromise between generation
of false markers and correct segmentation of cells. The total number of scales 8max a rather uncritical parameter
as long as it is above a certain threshold depending on the maximum size of cells. For fibroblasts at magnification
x 100, a scale—space of Smax 12 proved sufficient.

Synthesis by enhanced dilation. The synthesis of marker scales A reconstructs the original cell shapes of A0.
At each scale s a reconstructed image A is calculated, which incorporates the marker information of all scales t � s
and hence preserves their segmentations. These markers are reconstructed to the object size of scale s by combining
A1 and A such that A D A1. Therefore, the combined image A? consists of all markers of A1 and those
occurring in A but not in A1:

A? = A1 u {A\A1}. (7)
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Figure 4. Enhanced erosion basi-
cally is an opening that consists of n—
fold erosion and masked rn—fold dila-
tion. Since the constraint m = n + 1
proved useful, the operator is controlled
by ii, which exclusively depends on the
minimum cell size.

This procedure ensures that no separation is lost during synthesis. The various inclusion relations between
intermediate steps during segmentation are illustrated in Fig. 5. Finally, shapes of A? are extended to those of A
by a white skeleton—by—influence—zone8 (skiz) yielding AeC,i.e. the reconstructed markers of scale s:

A D(A?, As). (8)

The white—skiz Dz(A, M) differs from the reconstruction operator D°(A, M) by prohibiting separate objects
to merge.24 This results in a one--pixel gap between those objects in A covered by the same object in M, therefore
the number of objects in D1z(A,M) equals those in A. Basically, the white—skiz is the skeleton of the background
and can be regarded as the binary analogon of the watershed transform for graylevel images.25

Figure 5. The inclusion relations of different intermediate
marker images generated during multiscale segmentation
are exemplified. From a set—theoretic point of view, the
inclusion relation defines a partial ordering of the images.

Qualitative evaluation of the segmentation algorithm. Our algorithm was compared with other marker—
based techniques for segmentation of connected binary objects (Fig. 6) by means of a synthetic image (a) and a part
of a cytological microscopy (f). The corresponding distance transforms of the images are given in (b) and (g).

The segmentations shown in (c) and (h) were obtained from the ultimate eroded points of the binary sets.
Additionally, the number of markers was reduced by opening to prevent extreme oversegmentation. Ideally, each cell
is represented by one ultimate point indicating its center. The separation lines between the objects are determined
to have maximum distance from all adjacent ultimate eroded points and are calculated by a white—skiz operation.26
Two disadvantages of this approach can be noticed: (i) all objects have to be of similar size and (ii) all objects must
exhibit regular shapes. Compact objects of different size are not segmented correctly because the marker generation
is size— and scale—dependent (c). The number of markers, however, is correct in most cases. Objects with irregular
shapes produce too many markers because the geometric interpretation is drawn from one scale only. This results
in oversegmented images (h).
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Pattern spectrum. Granulometric analysis of a binary pattern can be performed by means of its pattern spectrum.
This morphological decomposition yields a distribution of increasing morphological primitives the given pattern con-
sists of.'5 These pattern coefficients are obtained by successive opening with increasing convex structuring elements.
This process can be regarded as sieving the pattern with different sieves resulting in a shape decomposition.23 The
size distribution

#(O(A))A(i) := 1 —

#(Oo(A))
z = (10)
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The second approach considers the (reduced) local maxima of the distance transform as initial markers.27 The
reconstruction of the actual shapes is done according to the descending values of the distance image by successive
extension of the markers preventing merging. Although the distance transform is able to handle differently sized
objects, irregular cells shapes still cause oversegmentation (i).

The demonstrated drawbacks of common algorithms result from their single—scale nature and are avoided by our
multiscale approach. Morphological decomposition and converse stepwise reconstruction of markers is independent
of the object's sizes and hence leads to improved segmentations of cell populations (k).

Figure 6. Synthetic image (a) and binarized micrograph (f) with their corresponding distance transforms (b, g).
Reconstruction of filtered ultimate eroded points (c, h) yields rather poor results. By reconstruction of reduced local
distance maxima (d, i) an acceptable result is achieved only for the synthetic image. The multiscale segmentation
algorithm yields good results for the synthetic image (e) and improves results for the micrograph (k).

4. QUANTIFYING SHAPE DEFORMATION
Shape deformation, and hence, the toxicity of the substance under scrutiny is quantified by means of compactness
distribution and pattern spectrum of the population. The measures were evaluated for different concentrations of
two toxical reference substances.

4.1. Quantitative parameters
Compactness. Measurement of complex shape characteristics is done with respect to the application. Our goal
is to quantify the extent, the presence of dendrides, and the degree of shape irregularity of fibroblast cells. A major
requirement for a comprehensive shape parameter is rotation and translation invariance. Moreover, it is not sufficient
to measure only the elongation of an object (as done by the aspect ratio). Because shape irregularities are most
valuable characteristics to quantify cytotoxicity, a compactness value of binary objects measuring the cell's deviation
from the ideal circle form, appears to be an appropriate parameter20:

with 0<C<1. (9)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/05/2013 Terms of Use: http://spiedl.org/terms



yields the normalized number of pixels remaining in the image after an opening 02, with #(A) denoting the total
number of object pixels in A. The discrete derivative of 1(i) represents the pattern spectrum dIZA(i) =A(i + 1) —

1A(i) of image A. Its coefficients represent weights of the morphological primitives the binary image A is composed
of.

4.2. Cytotoxicity of SRMA and SRMB
The proposed method for micrograph segmentation and shape analysis was evaluated for fibroblast cells. The
populations were treated with two toxical reference substances of different concentrations. All experiments were
performed with n = 3, m = 4, and Smax 12.

SRMA and SRMB (standard reference materials) are toxic polymers with different toxicity. Both reference
substances are made of polyurethane films containing various amounts of cytotoxic compounds.28 All polymers,
including the nontoxic control polymers (negative reference) were extracted under standard conditions (2cm2 poly-
mer/ml cell culture, time 72h, temperature 37°C). Extracts were then diluted to show dose dependent morphological
changes to fibroblasts indicated by shrinking and rounding of cells. For both substances a negative reference popu-
lation showing completely vital cells and a positive reference population showing completely damaged and deformed
cells exemplify the cytotoxical range.

Since SRMA is more toxic than SRMB, the SRMA toxicity was tested for 10% and 20% concentration while
SRMB was tested for concentrations of 50% and 100%. For both substances the compactness distributions were
found to differ significantly by a Wilcoxon two—sample test. The four SRMA distributions "negative" (p =0.502,
a = 0.178), 10% ( = 0.632, a = 0.161), 20% (p = 0.768, a = 0.186), and "positive" (p = 0.824, = 0.152)
significantly differ (p < 0.0001). SRMB distributions "negative" (j.t = 0.524 a = 0.173), 50% ( = 0.619, a = 0.159),
100% (p = 0.634, cr = 0.157), and "positive" ( = 0.799, o = 0.143) also differ significantly (p < 0.0001).

Compactness depends on area and perimeter of cells. For this, scatter plots also depict significant response to
the different toxicity classes (Fig. 7). For visualization purpose 200 cells were arbitrarily chosen. Compactness,
perimeter, and area behave monotonously for increasing toxicities, and hence correlate with the cytotoxicity of the
used substance (Tab. 1). In addition, the normalized compactness states the relative compactness values in the range
[0; 1] between negative and positive control. By this, toxicity of different substances and results of different studies
become comparable.

Because cytotoxical substances also influence sizes of vital fibroblasts, the pattern spectra of the various SRM
populations were computed (Fig. 8). The results coincide with those of the compactness study (Tab. 1). As expected,
the means of the pattern spectra (i.e. the dominating cell size) decrease for increasing toxicity. Furthermore, toxic
populations become more homogeneous, which can be concluded from the monotonic decrease of standard deviation.
These findings hold for both, SRMA and SRMB. Likewise normalized mean compactness, the normalized mean of
pattern spectra yield figures enabling comparison of toxicity of different substances. For both normalized figures,
SRMB toxicity is found to be much lower than SRMA toxicity, despite a concentration of five times compared to
SRMA concentration.

SRMA concentration SRMB concentration
neg. 10% 20% pos. L neg. 50% 100% pos.

normalized mean compactness
compactness mean
perimeter mean
area mean

0 0.404 0.826 1

0.502 0.632 0.768 0.824
87.9 72.8 61.0 45.1
296.5 253.1 215.7 132.0

0 0.345 0.400 1
0.524 0.619 0.634 0.799
90.0 80.4 76.7 54.9

325.4 307.1 286.1 193.8
normalized mean pattern spectrum
pattern spectrum mean
pattern spectrum std. deviation

0 0.495 0.708 1

8.65 7.21 6.59 5.74
3.91 2.67 2.56 1.80

0 0.044 0.293 1

8.01 7.93 7.47 6.17
2.97 2.82 2.54 2.01

Table 1. Shape descriptors for SRMA and SRMB. Compactness distribution (upper rows) and pattern spectrum
(lower rows) yield significant discrimination between toxicities. The normalized measures of both quantification
methods indicate substantially higher toxicity for SRMA than for SRMB.
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5. CONCLUSION
Discrimination between different phases of morphological change, and subsequent evaluation of toxicity of a bioma-
terial leads to a complex classification task. Since shape representation by only a few parameters is an enormous
data compression, there exists no optimal single parameter carrying all aspects of shape.

For quantitative evaluation of biotoxicity we utilized a few characteristic shape descriptors yielding sufficient
discrimination between basic phases of cytotoxicity. Our results allow for unique quantitative discrimination of cells
under toxical influence. The experiments demonstrate the robustness of our method and statistical significance of
the chosen parameters derived from compactness distribution and pattern spectrum of a population. Since our
quantitative results correlate well with usual subjective visual inspection, we conclude that distributions of shape
parameters acquired from automatically segmented micrographs are as robust and useful for biotoxicity assessment as
are qualitative evaluations by experts. Hence, our method accounts for common verbal and qualitative descriptions
of morphological cell changes.

Generally, the number of cells also indicates toxicity. However, due to adhesion effects cell concentrations usually
vary heavily within the sample. This effect is even stronger for high toxicities. It therefore is an additional difficulty
for expert segmentation to catch statistically meaningful groups of cells. This favors our computerized method,
because all quantitative shape descriptors are independent of the number of cells. Furthermore, as demonstrated
by reference results,'2 manually determined separations are also found automatically by our algorithm. Manually
segmented cells generally are larger and have smoother appearance, but do not necessarily improve cell representation.

Commonly used separation algorithms require circular or similarly size objects, which are clearly inappropriate
for analysis of cell populations. Our multiscale segmentation properly operates even for differently sized objects
of very distinct shapes such as fibroblasts. Since all external control parameters can be estimated from cell sizes,
the method may be adapted systematically to other monolayered cell populations. Our automatic method has
several advantages over subjective examinations. E.g., quantitative cytotoxicity studies become comparable and
laboratory staff is releaved from time consuming routine work. The obtained quantitative parameters were found to
be statistically significant and are in excellent agreement with expert descriptions.29 The method is currently in use
for extensive clinical biotoxicity testing, in order to determine robust thresholds for toxicity of biomaterials.
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