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ABSTRACT
....................................................................................................................................................

Objective Morbidity and mortality due to preeclampsia in settings with limited resources often results from delayed
diagnosis. The Congo Red Dot (CRD) test, a simple modality to assess the presence of misfolded proteins in urine,
shows promise as a diagnostic and prognostic tool for preeclampsia. We propose an innovative mobile health (mHealth)
solution that enables the quantification of the CRD test as a batch laboratory test, with minimal cost and equipment.
Methods A smartphone application that guides the user through seven easy steps, and that can be used successfully by
non-specialized personnel, was developed. After image acquisition, a robust analysis runs on a smartphone, quantifying
the CRD test response without the need for an internet connection or additional hardware. In the first stage, the basic
image processing algorithms and supporting test standardizations were developed using urine samples from 218 pa-
tients. In the second stage, the standardized procedure was evaluated on 328 urine specimens from 273 women. In the
third stage, the application was tested for robustness using four different operators and 94 altered samples.
Results In the first stage, the image processing chain was set up with high correlation to manual analysis (z-test
P< 0.001). In the second stage, a high agreement between manual and automated processing was calculated (Lin’s
concordance coefficient qc¼ 0.968). In the last stage, sources of error were identified and remedies were developed
accordingly. Altered samples resulted in an acceptable concordance with the manual gold-standard (Lin’s qc¼ 0.914).
Conclusion Combining smartphone-based image analysis with molecular-specific disease features represents a cost-
effective application of mHealth that has the potential to fill gaps in access to health care solutions that are critical to re-
ducing adverse events in resource-poor settings.
....................................................................................................................................................
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INTRODUCTION
Ubiquitous smartphone ownership has the potential to trans-
form medical care by placing computing power, internet con-
nectivity, and sophisticated sensors (eg, cameras, near-field
communication) in the hands of both patients and practitioners.
Just as cellphones have gained quick and extensive adoption in
countries with rudimentary landline infrastructure, their ability
to have a positive impact on medical practice could be greatest
in countries and communities in which there are currently few
personal computers or widespread or reliable internet access.1

In the past decade, the notion of mobile health (mHealth) has
branched out from electronic health (eHealth) to broadly encom-
pass the “use of mobile computing and communication technol-
ogies in health care and public health.”2 Because smartphones
are tools used by individuals, most mHealth applications

developed thus far address health promotion, self-management,
and communication.3 Smartphones, however, come with a
growing number of powerful embedded sensors that, despite
their potential, have largely been neglected.4 To that end, smart-
phones offer the possibility of analytical sensing when typical in-
strumentation or devices needed for the diagnosis of important
diseases are precarious or not easily accessible.

So far, most mHealth studies use smartphones only as dis-
plays,5 as readout tools for Lab-on-a-Chip microfluidics technol-
ogy,6 or as real-time feedback tools – for example, for
electrocardiogram (ECG) signal processing,7 as a sensor for pose
estimation,8 or to capture and transmit images.9 Only a few
approaches have made use of smartphones as autonomous
diagnostic tools. One study used the cell phone’s camera for
photoplethysmography,10 and others used the accelerometer to
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collect data on tremor or gait characteristics.11–13 Because of
their untapped potential, it is important to develop novel
approaches to medical diagnostics based around the native
functionality of smartphones. When developing smartphone-
based diagnostics, however, it is critical to not simply duplicate
existing tests but, rather, to create new tests, using molecular
characteristics of disease, that have the potential to exploit the
constantly growing technological capabilities of smartphones.

Applications that can use the smartphone as a diagnostic
tool without needing additional hardware for image acquisition
and processing have been proposed for melanoma detection,
so far without noticeable success.14 In this paper, we propose
a new approach to mobile diagnostics utilizing smartphones,
without the need for additional sensory hardware, for the analy-
sis of a molecular test for preeclampsia. Our smartphone appli-
cation does not require an internet connection during use.

Preeclampsia is a pregnancy-related disease that continues
to cause significant maternal and fetal morbidity and mortality
in settings with limited medical resources. Traditionally, pre-
eclampsia is defined as a clinical syndrome and diagnosed
based on the symptoms of hypertension and proteinuria occur-
ring in pregnancy after 20 weeks’ gestational age. Both of
these symptoms are often non-specific and might occur in
conditions other than preeclampsia. In developed countries,
preeclampsia is well-screened-for; however, developing and
third-world countries do not have the health care capability and
facilities for sophisticated testing for preeclampsia. Therefore,
there is a clear need for a new diagnostic testing paradigm
specifically developed for resource-poor environments, which
require simplicity both in diagnostic modality as well as use.

A molecular test for preeclampsia, the Congo Red Dot (CRD)
test, has been recently developed based on the ability of con-
stituents in preeclamptic urine to bind the amyloidophilc dye
Congo Red.15 At the core of the test is the discovery that pre-
eclamptic women eliminate misfolded proteins in their urine, a
molecular feature that is proportional with disease severity.15

The aim of this report was the development and testing of a
standardized and easy-to-use testing routine that requires little
specialized equipment and enables minimally trained personnel
to diagnose preeclampsia in health care settings with limited
resources. Our report includes a smartphone-based imaging
and automated analytical tool for the CRD test that significantly
shortens the processing time and provides an unbiased quanti-
tative result. Although our work was motivated by improving
preeclampsia care in resource-poor settings, our high-benefit,
low-cost technology platform also has implications for molecu-
lar-specific disease testing in resource-rich settings.

METHODS AND RESULTS
Study Design and Specimens
As previously outlined, the CRD test has two parts.15 The “wet
part” of the test consists of the preparation of the urine-Congo
Red mixture, spotting the mixture as dots on a nitrocellulose
sheet (CRD sheet array), followed by acquisition and storing of
the two pictures (Pix1, captured before washing the sheet, and
Pix2, captured after the hydrophobic wash).15 The “dry part” of

the test consists of processing the two images, followed by cal-
culating the CRD test result (percent Congo Red Retention
[CRR]) for each dot individually and for each subject as the av-
erage of the duplicate dots on the array after subtraction of the
CRR result from the Blank sample (BLK, which uses phosphate
buffer saline [PBS] instead of human urine).15 This study was
conducted in three stages, each of which seeks to synergisti-
cally simplify, expedite, and improve both the “wet” and “dry”
parts of the CRD test.

In Stage 1, we evaluated a preliminary version of our image
processing software tool using stored images that had previ-
ously been processed using Adobe Photoshop (Adobe, San
Jose, CA), in preparation for manual analysis using ImageJ
software (http://imagej.nih.gov/ij/).15 The results of Stage 1 led
us to develop a standardized template for consistent position-
ing of the sample dots during the “wet part” of the test as well
as a mobile-phone-enabled image processing tool to aid in the
optimization of the “dry part” of the test.

In Stage 2, we tested these improvements in real-time on
newly prepared standardized CRD arrays and analyzed the re-
sults for agreement, by comparing them with the manual proto-
col, and for test accuracy, by comparing them with a disease-
relevant prognostic standard (medically indicated delivery for
preeclampsia, or MIDPE), because preeclampsia is a progressing
disease for which no acceptable gold standard is yet available.
Similar to our prior studies,15,16 we choose MIDPE (a preeclamp-
sia-related near-miss event) as a reference rather than the clini-
cal classification at enrollment, reasoning that: 1) an indication
for mandated delivery belongs to a team, 2) it is the last man-
agement resort when all other strategies have failed, 3) its re-
sulting outcome cannot be revoked, and, thus, 4) it is less
subject to bias. The indications for MIDPE concurred with the
recommendations of the American Congress of Obstetricians
and Gynecologists (ACOG) and the World Health Organization
(WHO) for management of preeclampsia/eclampsia.17,18

In Stage 3, we analyzed the test results across four opera-
tors, including untrained personnel who did not receive any
instruction or prior knowledge of our system, to check for ro-
bustness and to improve error-handling and system feedback.
In addition, we further simplified the “wet part” of the protocol
to systematically modify and/or eliminate several steps, in or-
der to achieve the maximum possible simplification without a
loss of technical performance.

The urine specimens included in this study were all part of
the samples analyzed as part the study that reported the CRD
principle.15 During evaluation, the CRR that was calculated
manually by a single expert (IAB) acted as the technical
gold standard. Statistical methods are summarized in
Supplementary Methods.

Evaluation of Algorithms for Dot Quantification
The Stage 1 dataset originated from previously acquired im-
ages (before and after wash, captured using a Nikon Coolpix
4500) that had been manually quantified as part of the initial
study. This data set consisted of 18 arrays from a total of 218
subjects. Each array held duplicate spots from 12-15 subjects
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(Figure 1A). Because we were interested in the prominence of
the red dots relative to that of the background sheet, we
started by testing two possible algorithms that would theoreti-
cally enhance the dye color: red channel pixel value divided by
green channel (ratio R/G, with R and G ranging from 0-255), to
enhance redness information by reducing background color. A
second calculation used the red channel information subtracted
by the green channel information (difference R-G), with the
same reasoning. The green channel was selected over the blue
channel because of the Bayer pattern, which makes digital

camera sensors more sensitive to green than to blue, in order
to match the heightened sensitivity of the human visual system
towards the color green. Lastly, we used the luminance con-
version equation (see the Supplementary Methods) to retain the
intensity of the colors while eliminating the color information it-
self (Figure 1B). The luminance (L) algorithm is a weighted av-
erage of the red, green, and blue color channels and is equal to
the intensity of a pixel in a grayscale image. It resembles the
method employed by the manual processing routine. Simulated
calculations performed with a command-line interface of our

Figure 1: Comparison of automated CRR calculation algorithms during Stage 1 of the study. Layout of a representative
Stage 1 test sheet photographed before (Pix1) and after wash (Pix2) and shown as (A) color and (B) grayscale/luminance
image. The blank sample is phosphate buffer saline (PBS) and completely disappears during the wash. U01-U12 represent
duplicate dots of urine-Congo Red (CR) samples from different pregnant women, of which five ultimately required a medi-
cally indicated delivery for preeclampsia (MIDPE: boxed samples). Relationships of manually and automatically calculated
Congo Red Retention (CRR) results for different color to grayscale conversion methods as follows: (C) red channel divided
by green channel: R/G; (D) luminance: L; and (E) green channel subtracted from red channel (R-G). The coefficient of corre-
lation (r) and level of significance are shown for each graph. (F) Receiver operating curves (ROC) for CRR of Stage 1 sam-
ples derived with the manual versus automatic image analysis and different color-to-grayscale conversion algorithms. The
curves were plotted for their ability to discriminate between patients who required MIDPE (n¼ 59) and those who did not
(n¼ 159).
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application (the command-line version of our processing library
was run on a ThinkPad T500 with a Linux Ubuntu operating
system) determined that the R/G (Figure 1C) and L (Figure 1D)
calculations returned CRR values that correlated significantly
better with the manually derived CRR (z-test P< 0.001 for both
comparisons) compared to R-G (Figure 1E). In a comparative
accuracy analysis (Figure 1F), there was no difference between
the area under the receiver operating curve (ROC) (the AUC) of
the manually derived CRR (AUC¼ 0.966; 95%CI: 0.932-0.985)
and the CRR that was automatically calculated using the L con-
version (0.962; 0.927-0.983; P¼ 0.579). There was a small,
yet statistically significant, decrease in AUC when the CRR
value was calculated as R/G (0.956; 0.920-0.979; P¼ 0.042)
compared to manual integration. We attributed this difference
to the subtle bathochromic shift (from red to purple) exhibited
by select urine specimens, which impacted the R/G ratio signif-
icantly more than the L conversion. This, in addition to the gen-
erally shorter processing time needed for greyscale images, led
us to choose the L-based algorithm for subsequent process
development.

Standardization of the CRD Array Size and Layout
For a fully automated routine, the automatic detection of the
sheet as well as the position of the dots on the acquired
images emerged as a need during Stage 1. In addition, the di-
mension and orientation of the sheet needed to be known. To
achieve this, we standardized and revisited the layout of the
CRD array as well as the modality in which Pix1 and Pix2 were
acquired as follows: 1) nitrocellulose sheets were cut to a stan-
dard size of 4.5-in wide by 6-in long, which is proportional to
an iPhone’s screen size, 2) three of the four corner squares of
the sheet were punched using a handheld craft paper punch,
and 3) a sample positioning template (Figure 2) was printed on
a sheet of plain paper, which was then placed inside a plastic
sheet protector and under the nitrocellulose sheet. The true-to-
size template is included for printout as part of the
Supplementary Materials (as Figure S1). The template marks
the sample positions for batch processing of up to 41 subjects
(each specimen is spotted in duplicate in adjacent cells of two
columns). The black center points in each cell are visible
through the transparency and serve as a guide for sample
placement to assure the predictable dot positioning on the
sheet. The sample dots corresponding to the blank (BLK or
PBS) are placed in the first left corner. Acquisition of both Pix1
and Pix2 is performed with the array sheet placed on a black
surface, which results in the punched holes acting as position
markers, without the need for using ink (which might spread
during the wash) or another mark that would increase the cost
of the sheet. This standardized format of the CRD test array
borrows elements from Quick Response (QR) Codes: the sheet
has a known aspect ratio and three of the four corners are
highlighted. The detection of the three markers at the left and
upper corners allows for rotation, deskewing, and perfect su-
perposition of each individual dot in Pix1 with its corresponding
fellow (or the position where the dye has been washed off) in
Pix2. This last feature is achieved through an image processing

sequence customized to run as an application on the same
smartphone used to acquire Pix1 and Pix 2 (an iPhone 4 de-
vice, in our case).

CRD Array Image Processing Sequence
The sequence chains seven imaging processing steps together,
as follows: 1) acquisition of images as part of the wet part of
the CRD test, 2) sheet detection, 3) sheet extraction, 4) cell
extraction, 5) dot detection, 6) dot extraction, and 7) CRR calcu-
lation. The process workflow is schematically represented in
Figure 2.

Image Acquisition
The images are acquired using the smartphone’s built-in cam-
era. The resolution of the iPhone 4 camera is sufficient to cap-
ture a sample dot, with a maximum number of about 40 pixels
in diameter. This results in approximately 1,200 pixels per
sample dot. For speed of processing and robustness, each im-
age is converted into luminance grayscale for all of the follow-
ing steps.

Sheet Detection
Because the exact location and deformation of the sheet is un-
known, due to variations in photographic angle, deskewing of
the perspective projection is first required. To achieve this, we
detect the four corners, then apply a simple interpolation be-
tween the four corners, to deskew the sheet into a rectangular
image. To find the corners, the sheet itself, and then its edges,
have to be located. We knew that 1) the two opposite sides of
the sheet have the same length, 2) the corners have a 90-de-
gree angle, and 3) the ratio of the neighboring sides is equal
to the ratio of the standardized template (0.75). For automatic
detection, the grayscale input image is binarized using the
Otsu method.19 Because the background of the image is black
(due to the black photographic background visible through the
punch holes), and the sheet is white, the Otsu threshold of the
sheet is calculated to separate the foreground (sheet) from
the background. To further smooth the resulting binary image,
all the holes in the foreground are filled by applying mathemati-
cal morphology. Next, a gradient filter is applied, to expose the
sheet borders on the image. On this gradient image with over-
expressed borders, the corners are detected using the Hough
line transform (a method of finding lines in an image).20 We
first calculate a rough Hough line transform to loosely find the
four most prominent edges (the borders of the sheet). Next, the
four intersections of these lines are extracted. Because these
positions do not match the corners perfectly, a second, finer
Hough line transform is performed separately on regions of in-
terest around the previously found corners. In this second run,
only the two main lines near the corners are extracted and in-
tersected, which improves localization of the corner points
while keeping memory usage to a minimum.

Sheet Extraction
From the four corner points, the positions of the longer and
shorter edges are estimated and the sheet is perspectively
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transformed into a rectangular geometry using bilinear interpo-
lation.21 The geometric correction also reduces the number of
pixels per dot to about 700 (downscaling). To account for pos-
sible rotated acquisition, the three position markers in the cor-
ners of the sheet are detected by calculating the average
intensity in each corner and selecting the corner with the high-
est intensity as a reference point, without a corner marker. The
sheet is transposed accordingly, such that markers are located
on the upper and left corners. The normalized image now con-
tains the sheet spanning between the image’s four corners.
This process is performed individually on Pix1 and Pix2.

Cell Extraction
The positions of the cells for each patient are extracted from
the normalized image without further image processing, be-
cause the geometry of the array is well defined, based on the
standardized sample application template. However, each cell
contains two dots at a yet unknown position. This process is
performed individually on Pix1 and Pix2.

Dot Detection
All possible sample dots are present in Pix1, but some might
disappear during washing (negative testing samples). Thus, the
complete dot detection can only be performed on Pix1. To
determine the dot positions, a gradient filter is applied to each
extracted cell on Pix1 to detect the dot edges. The radius of
each dot is estimated. A Hough circle transform is then per-
formed, and the two most prominent circular shapes in each
cell are selected.22 Because the relative position of each dot
does not change during washing, the same position information
from Pix1 is used for processing Pix2.

Dot Extraction
Once the positions of the dots are known, the intensity of the
corresponding pixels can be extracted and summed up. To ac-
count for white balance and mild illumination changes, a back-
ground subtraction is performed by subtracting the average
luminance of the cell outside the dot from the average lumi-
nance within the dot (see Supplementary Materials Table 1).

Figure 2: Workflow of the CRD test and image processing routine. Schematic representation of the parts of the CRD test,
which starts with the wet part (hydrophobic sheet wash and acquisition of the two images: Pix1 and Pix2), followed by the
dry part, which has been programmed as an image processing chain (sheet detection and extraction, cell extraction, and
dot detection and extraction) up to the calculation of the Congo Red Retention (CRR) result.
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CRR Calculation
Analogous with the manual formula, the test result (CRR) is cal-
culated as the ratio of the average intensity of the dots on Pix1
to the average intensity of the dots on Pix2. The value of the
blank sample (dots in the left and upper cell positions) is sub-
tracted from all other calculated CRR values on the sheet.

Validation and Equivalence/Non-Inferiority Testing
In Stage 2, images were acquired and processed with an
iPhone 4 and an application running the above sequence. For
repeatability, the iPhone camera was used for the acquisition
of images, but the images were then transferred to a computer,
on which processing was performed with an iPhone simulator.
Eight CRD arrays containing 328 different urine specimens
were analyzed as part of Stage 2. These arrays were prepared
specifically for this study from aliquots maintained frozen at
–80�C. The specimens originated from 273 different women
(55 specimens were subsequent collections at a time later in
pregnancy). All the specimens were consecutive with respect
to specimen collection and storage. There was no overlap be-
tween these specimens and those analyzed as part of Stage 1.
The prevalence of the outcome of interest (MIDPE) in the Stage
2 data set was 36% among specimens (118/328) and 40%
among subjects (108/273).

Similar to Stage 1, there was a significant level of agree-
ment between the manual and automated CRR measurements.
Lin’s concordance coefficient (qc) of 0.968, 95% CI: 0.961-
0.974 was qualified as “substantial” based on a Pearson’s pre-
cision coefficient of q¼ 0.973 and a bias correction factor of
Cb¼ 0.995 (Figure 3A).23,24 The two one-sided test (TOST)
procedure determined that the smartphone-enabled CRR

calculation was equivalent to the manual integration
(Figure 3B).25 This can be easily visualized through the overlap-
ping 90% CIs of the CRRs calculated with the manual versus
the automated procedure, irrespective of whether the groups
were analyzed as a whole or separated by outcome. The mar-
gin of equivalence was 10% for the MIDPE group and 5% for
the group without MIDPE and the overall data set. An ROC anal-
ysis using the first specimen from each subject determined
that there was no statistically significant difference in the AUC
between the manual quantification of the CRR (0.911; 0.882-
0.935) and the smartphone-enabled calculation (0.923; 0.986-
0.945; P¼ 0.329) (Figure 3C).

Processing Time
A screen-by-screen workflow of the iPhone application, illus-
trating the processing time, is shown in Figure 4 (pictures Pix1
and Pix2 have been previously acquired in the example shown).
Utilizing our image processing tool, the time from the conclu-
sion of the “wet part” of the CRD test array to the result was
reduced to approximately 2 minutes of processing time on the
smartphone.

Performance and Engineering Tolerance Analysis
To verify our algorithm and further improve the robustness of
our imaging protocol in Stage 3 of our study, we acquired an
additional data set of six standardized CRD arrays. The experi-
ments were performed by an untrained person who was also
not given any instruction on how to position the smartphone in
order to acquire the images or to avoid uneven illumination and
shading (ie, the appropriate camera angle). This data set
helped us evaluate possible sources of operator error. These

Figure 3: Evaluation and equivalence testing of the smartphone-assisted CRR calculation in Stage 2 of the study. (A)
Correlation analysis of manually and automatically calculated CRR using luminance conversion, L for samples on standard-
ized format arrays (Stage 2 analysis). (B) Forest plot comparing manually and automatically calculated CRR in the entire
group of samples and separated by clinical outcome (medically indicated delivery for preeclampsia: MIDPE); bars show
90% confidence intervals (90% CIs). (C) Receiver operating curves (ROC) curves of manually and automatically calculated
CRR of all samples in Stage 2 experiments plotted for the ability to discriminate between patients who required MIDPE
(n¼ 118) and those who did not (n¼ 210).
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handling issues are summarized in the Supplementary Material
(Table 1) along with their impacts on the image processing
chain and remedies implemented in an updated version of the
protocol. The most often observed handling error was the ex-
cess perspective with which Pix1 and Pix2 were acquired. The
majority of the issues were remedied by providing the user
with instructions on how to reacquire the image in order to
avoid each issue. The robustness of our imaging chain was fur-
ther improved by setting a limit on the level of uneven illumina-
tion tolerated on Pix1 and Pix2. The user was prompted
through the interface to retake the picture and move away from

the light source when the shading exceeded the tolerance level
in variance (coefficient of variation >15%).

Additional Optimizations of the Wet Part of the CRD Test
As part of Stage 3, we performed additional arrays on a con-
secutive set of 94 urine samples, comparing the previously val-
idated “wet part” of the CRD test with two abbreviated
versions: one omitting urine protein normalization and the other
omitting both protein normalization and the 1-hour agitation
with Congo Red. Omitting both urine normalization and agita-
tion (samples mixed with Congo Red were placed immediately

Figure 4: Screen-by-screen workflow of the CRD test array smartphone application. Pix1 and Pix2 can be acquired either
using the gallery (saved images) or in real time, using the smartphone camera (Panels 1 and 3). Results of the sheet detec-
tion and extraction are shown on screen for operator verification purposes (Panels 2 and 4, original images as overlays).
Extracted cells (blue rectangles) and urine dots (green circles) on Pix1 and Pix2 are displayed on the smartphone’s screen
for operator verification purposes (Panels 5 and 6). The automatically calculated CRR for each subject is displayed on the
screen (Panel 7), with the option of sending the results via email, for sharing or archiving purposes (Panel 8).
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on the sheet) resulted in acceptable concordance (Lin’s
q¼ 0.914; 0.873-0.942) with the original protocol. In multivar-
iate linear regression, the degree of bias was solely determined
by the CRR level and not by position on the sheet, operator pro-
ficiency, or urine protein concentration. Accuracy (Cb¼ 0.997)
exceeded precision (Pearson’s q¼ 0.916), suggesting that al-
though the numbers may vary slightly, omitting normalization
will not significantly affect the disease classification. Other ex-
periments were carried out to replace methanol washing with
alternatives that are easier to procure and dispose of. Through
trial and error, we determined that pharmacy-grade isopropa-
nol (90%) proved more effective than methanol and shortened
the washing time (measured from the start of washing until
complete blank decolorization) to 7 minutes. Pharmacy-grade
ethanol (70%) was not suitable as a methanol substitute.
Denaturing agents (acetone, added in the United States to
make it undrinkable) affected pore size in the nitrocellulose
sheet, which resulted in an unacceptable loss of signal on posi-
tive samples.

DISCUSSION
In a recent study, Coskun et al. 26 described a smartphone-aided
test for albuminuria in which a fluorescence reading device is at-
tached to a smartphone. The smartphone camera then records
the fluorescent image, which is used to calculate the albumin
concentration.26 Although this work highlights the importance of
rapid testing for urine markers that are more specific than total
proteinuria, this particular modality depends on the availability of
additional electronic hardware. Our approach provides an inex-
pensive molecular test and automated smartphone-based read-
out that can be performed as a batched laboratory test by
modestly trained personnel in almost any environment, from an
urban medical center to a lightly staffed field clinic. To accom-
pany the new molecular test, we have created a data processing
chain suitable for a smartphone’s processor and memory and
have reduced the mHealth imaging system to the smartphone as
a standalone device, without requiring internet connectivity.
Thus, we have not only eliminated the need for a separate hand-
held imaging device or other hardware, but have created a
smartphone-based diagnostic tool that is also independent of
communication data rate, quality of service, and data transfer
security. Recently, these issues have been emphasized as some
of the main limitations of mHealth applications.27 As applied to
preeclampsia, our mHealth solution brings an objective element
into the clinical work-up for preeclampsia which especially in
low resource settings relies heavily on subjective interpretation
of signs and symptoms by healthcare providers. Ease of use is
enhanced, because the test readout is a percentage that is pro-
portional to disease severity. Hence, the proposed method is in
line with cutting edge technologies in mHealth.

Although our proposed mobile application was developed
for the iPhone, almost all smartphones with a camera comply
with our processing application’s requirements. The iPhone 4
was chosen as demonstration device because it is no longer
the top-of-the-line device. Hence, our application could be
used with outdated devices that have been donated, another

factor of importance for third-world countries and other set-
tings with limited resources, which may not have access to the
latest or top-of-the-line smartphones.

Our work has been evaluated on over 300 specimens and
displayed a high level of agreement with the gold standard of
manual quantification of CRR, which indicates technical equiva-
lence. The fraction of time required for manual quantification of
the same array is in keeping with the potentially disruptive na-
ture of innovations using mHealth technologies.28 Although our
work focused on enabling rapid and reliable quantification for a
new diagnostic modality for preeclampsia, the test will require
additional targeted validation and, perhaps, additional design
refinement before it can be deployed in a specific clinical set-
ting. This future work will need to focus on improving specific
maternal and/or fetal outcomes while optimizing the utilization
of certain resources that are particular to the respective clinical
setting (that are different from the one used in this study).

According to the United Nations Children’s Fund (UNICEF), in
the developing world, 80% of women receive antenatal care
(ANC) from a skilled health provider at least once in the course
of their pregnancy.29 However, the quality and number of ANC
visits remains suboptimal for effective detection of preeclamp-
sia. As ANC alone has proven ineffective at preventing pre-
eclampsia, failure to measure blood pressure and proteinuria at
each ANC visit represents a missed opportunity.29 In fact, dur-
ing ANC visits, more women seem to have their blood pressure
measured than have their urine screened for proteins.
Evidently, without assessing for proteinuria, proper screening,
triage or differential diagnosis of preeclampsia from the more
benign pregnancy-related hypertensive conditions, such as
chronic hypertension and gestational hypertension, cannot be
attained. Due to its simplicity and the low cost of required ma-
terials, the CRD test has the potential to fill this gap for diag-
nosing preeclampsia in resource-poor settings. We do not
suggest that the CRD test should replace the 24-hour urine
protein collection as the “gold standard” for the assessment of
proteinuria, when such a test is practical. However, both cur-
rently used laboratory methods for the estimation of proteinuria
are unable to provide information on the amount of misfolded
proteins, which is the principle of the CRD test and may be a
process more closely related to the pathophysiology of pre-
eclampsia than total proteinuria. All of the above may explain
why, in the previously published study, the CRD test was supe-
rior to the dipstick at predicting MIDPE and why some women
with a 24-hour proteinuria level below the cut-off of 300 mg
displayed a high CRR.16

Tailoring the specific use of the smartphone-based CRD test
is important, given that the diagnostic criteria for preeclampsia,
the threshold for indicated delivery, and the incidence of adverse
outcomes differ considerably between high- and low-resource
clinical settings, because they are impacted by access to tertiary
level health care facilities and to neonatal intensive care.17,30,31

CONCLUSIONS
Our work represents the convergence of two important trends
in medicine: mHealth and molecular medicine. Moreover, we
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demonstrate that molecular-based definitions of disease, when
paired with targeted technology development, have the poten-
tial to streamline diagnosis and simplify clinical workflow.
While improving prenatal care in resource-poor settings moti-
vated the present work, we believe that our approach has im-
plications for clinical diagnostics and health care delivery in
resource-rich settings as well. Specifically, our approach has
the potential to be a high-benefit, low-cost technology platform,
suggesting that intensive research and technology development
does not necessarily result in expensive implementations of
health care solutions, an important consideration given ever-
increasing concerns about technology as a driver of health care
costs.32,33
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