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Abstract—Image interpolation techniques often are required
in medical imaging for image generation (e.g., discrete back
projection for inverse Radon transform) and processing such as
compression or resampling. Since the ideal interpolation function
spatially is unlimited, several interpolation kernels of finite size
have been introduced. This paper compares 1) truncated and win-
dowed sinc; 2) nearest neighbor; 3) linear; 4) quadratic; 5) cubic
B-spline; 6) cubic; g) Lagrange; and 7) Gaussian interpolation
and approximation techniques with kernel sizes from 1x 1 up to
8 x 8. The comparison is done by: 1) spatial and Fourier analyses;
2) computational complexity as well as runtime evaluations; and
3) qualitative and quantitative interpolation error determinations
for particular interpolation tasks which were taken from common
situations in medical image processing.

For local and Fourier analyses, a standardized notation is intro-
duced and fundamental properties of interpolators are derived.
Successful methods should be direct current (DC)-constant and
interpolators rather than DC-inconstant or approximators. Each
method’s parameters are tuned with respect to those properties.
This results in three novel kernels, which are introduced in this
paper and proven to be within the best choices for medical
image interpolation: the 6 x 6 Blackman—Harris windowed sinc
interpolator, and the C2-continuous cubic kernels withN = 6
and N = 8 supporting points.

For quantitative error evaluations, a set of 50 direct digital
X rays was used. They have been selected arbitrarily from
clinical routine. In general, large kernel sizes were found to be
superior to small interpolation masks. Except for truncated sinc
interpolators, all kernels with N = 6 or larger sizes perform
significantly better than N = 2 or N = 3 point methods
(p < 0.005). However, the differences within the group of large-
sized kernels were not significant. Summarizing the results, the
cubic 6 x 6 interpolator with continuous second derivatives,

as defined in (24), can be recommended for most common

interpolation tasks. It appears to be the fastest six-point kernel
to implement computationally. It provides eminent local and
Fourier properties, is easy to implement, and has only small
errors. The same characteristics apply to B-spline interpolation,
but the 6 x 6 cubic avoids the intrinsic border effects produced
by the B-spline technique.

However, the goal of this study was not to determine an

Index Terms—Approximation, B-splines, cubic polynomials,
image resampling, interpolation.

I. INTRODUCTION

MAGE interpolation has many applications in computer
vision. It is the first of the two basic resampling steps
and transforms a discrete matrix into a continuous image.
Subsequent sampling of this intermediate result produces
the resampled discrete image. Resampling is required for
discrete image manipulations, such as geometric alignment and
registration, to improve image quality on display devices or
in the field of lossy image compression wherein some pixels
or some frames are discarded during the encoding process
and must be regenerated from the remaining information
for decoding. Therefore, image interpolation methods have
occupied a peculiar position in medical image processing [1].
They are required for image generation as well as in image
post-processing. In computed tomography (CT) or magnetic
resonance imaging (MRI), image reconstruction requires in-
terpolation to approximate the discrete functions to be back
projected for inverse Radon transform. In modern X-ray imag-
ing systems such as digital subtraction angiography (DSA),
interpolation is used to enable the computer-assisted alignment
of the current radiograph and the mask image. Moreover,
zooming or rotating medical images after their acquisition
often is used in diagnosis and treatment, and interpolation
methods are incorporated into systems for computer aided di-
agnosis (CAD), computer assisted surgery (CAS), and picture

archieving and communication systems (PACS).

Image interpolation methods are as old as computer graphics
and image processing. In the early years, simple algorithms,
such as nearest neighbor or linear interpolation, were used for
resampling. As a result of information theory introduced by

overall best method, but to present a comprehensive catalogue of Shannon in the late 1940’s, the sinc function was accepted

methods in a uniform terminology, to define general properties
and requirements of local techniques, and to enable the reader
to select that method which is optimal for his specific application
in medical imaging.

as the interpolation function of choice. However, this ideal
interpolator has an infinite impulse response (lIR) and is not
suitable for local interpolation with finite impulse response
(FIR). From the mathematical point of view, Taylor or La-
grange polynomials have been suggested to approximate the
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TABLE |
Previous PAPERS COMPARING MORE THAN THREE INTERPOLATION METHODS

Interpolation sheme [4] [5] 6] (7] 8 [10] [11]  [12]  [13] [14]
Truncated sinc Ac AC AB
Windowed sinc ABC ABc

Nearest neighbor Ac AB AB Ac ABc ABC ABc acD
Linear Ac ABc AB ABc acC ABc ABc ABC ABc aBceCD
Quadratic (approx.) ABc

Quadratic (interpo.) ABc

B-spline (approx.) ABc A AB ABc  ABc A ad
B-spline (interpol.) abc AB ABcd ac aBcCD
Cubic, 2 x 2 A acC A

Cubic, 4 x 4 ABcd AB ABc acC ABc AC ABc aBcCD
Cubic, 6 x 6 ad

Cubic, 8 x 8 acC

Lagrange ABC

Gaussian

Abbreviations: (a) kernels’ derivation, (A) including plots; (b) Fourier analysis, (B) including plots; (c} image based qualitative comparison
by subjects and (C) quantitative interpolation error determination; (d) complexity evaluation and (D) runtime measurements. Note that this

paper covers the cubic 2-point and 8-point methods with *abcCdD’ and all other rows with 'ABcCdD’.

interpolation is also known as cubic convolution [5], [6]the computation time of cubic kernels to 60% by the use of
high-resolution spline interpolation [7], and bi-cubic splinguadratic functions yielding similar quality [11].
interpolation [8], [9]. In 1983, Parker, Kenyon, and Troxel Table | summarizes previous work comparing interpolation
published the first paper entitled “Comparison of Interpanethods. In addition to Appledorn’s and Dodgson’s recent pro-
lation Methods” [7], followed by a similar study presentegosals, most comparative studies include neither the windowed
by Mealand in 1988 [6]. However, previous work of Howinc technique nor the Lagrange method and also exclude
and Andrews, as well as that of Keys, also compare glodatge kernels for cubic interpolation with & 6 or 8 x
and local interpolation methods ([4] and [5], respectivel\ supporting points. We will see below that those methods
(Table I). The Fourier transform was used in these studiesgerform superiorly in most applications.
evaluate different 2x 2 and 4 x 4 interpolation methods. In medical diagnostic applications, not only the kernel's
Parkeret al. pointed out that, at the expense of some increafequency properties must be taken into account but also
in computing time, the quality of resampled images can ke appearance of images after resampling. Keep in mind
improved using cubic interpolation when compared to neardbit many imaging systems violate the sampling theorem and
neighbor, linear, or B-spline interpolation. However, to avoithtroduce aliasing. Unser, Aldroubi, and Eden asked subjects
further perpetuation of misconceptions, which have appear@edank as lifelike the magnified Lena test image in descending
repeatedly in the literature, it might be better to refer torder [10]. Although this type of evaluation particularly de-
their B-spline technique as B-spline approximation instegeknds on the images and their geometric transforms, visually
of interpolation. Maeland named the correct (natural) spliressessed interpolation quality was found to be important for
interpolation as B-spline interpolation and found this techniquernel selection [4], [5], [7], [11], [13], [14], [16], [20]. Others
to be superior to cubic interpolation [6]. use the Fourier power spectrum of their test images before and
In more recent reports, not only hardware implementatioafter interpolation to determine the quality of their technique
for linear interpolation [15] and fast algorithms for B-spling8], [17]. Alternatively, Schaum suggests an error spectrum for
interpolation [10] or special geometric transforms [8], [9], [L4]comparing the performance of various interpolation methods
but also nonlinear and adaptive algorithms for image zoorfi-2]. Table | also summarizes characteristics used by previous
ing with perceptual edge enhancement [16], [17] have beauathors to compare interpolation methods.
published. However, smoothing effects are most bothersomeéHowever, other bases for evaluating the appropriateness of a
if large magnifications are required. In addition, shape-basgiven interpolation scheme may be indicated, depending on the
and object-based methods have been established in meditask. For example, the visual performance can be quantified
for slice interpolation of three-dimensional (3-D) data seia terms of similarity or sharpness [17], [21]. Furthermore,
[18]. In 1996, Appledorn presented a new approach to tieagnifications by factors of eight [10] or even two seldom
interpolation of sampled data [19]. His interpolation functionare required in many clinical applications and, thus, comparing
are generated from a linear sum of a Gaussian function athis capability may be irrelevant if not inappropriate for cer-
their even derivatives. Kernel sizes ox88 were suggested. tain tasks. Accordingly, determining the optimal interpolation
Again, Fourier analysis was used to optimize the parametengthod for a variety of specific clinical applications is still a
of the interpolation kernels. Contrary to large kernel sizggoblem.
and complex interpolation families causing a high amount This paper presents a comprehensive survey of existing
of computation, the use of quadratic polynomials on smathage-interpolation methods. They are expressed using a stan-
regions was recommended by Dodgson in 1997. He reducksdized terminology and are compared by means of lo-
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cal and Fourier analyses, qualitative and quantitative error
determinations, computational complexity evaluations, and
run time measurements. Three representative interpolation
tasks have been selected from clinical routine for comparing
performance. These are described in detail in the next section
Relative performance and task-specific dependencies likewise
are examined with regard to variations between image types
and transform parameters. The interpolation methods as well
as their parameters and variations are presented and discusse
in Section lll. The results of analyzing Fourier properties,
interpolation errors, and run time are presented in Section IV
and discussed in the last section of this paper.

Il. INTERPOLATION TASKS IN MEDICAL IMAGING

Image resampling is required for every geometric transform
of discrete images except shifts over integer distances or
rotations about multiples of 90 Geometric transforms differ
with respect to their complexity. Usually, affine transforms
such as magnifications [4], [7], [10], [11], [16], [17], [20], [22]
or rotations [1], [8], [9], [14] are used to evaluate interpolation
methods. High enlargements up to 4; 5.25; and 8 times ([11],
[16], [22]; [5]; and [4], [10], [22], respectively) as well as 10
or 16 repetitions of the transform ([20] and [14] respectively)
are used to enhance the blurring effects incorporated with in-
terpolation. In this paper, simple expansions in one dimension,
different rotations, and complex perspective transforms within
the range of clinical applications are used to compare the inter-
polation methods. Representative clinical images produced by
a variety of diagnostic modalities provide a reasonable basis
for evaluation. These include medical photographs, magnetic |
resonance displays, and digital radiographs. (b)

. L Fig. 1. CCbD-arrays or frame grabber often require the correction of their
A. Correction of Aspect Ratios in CCD-Photographs aspect ratio. (a) In this example, the image of a human eye was acquired for

Magnifications in only one dimension are required to correﬁﬁﬁfﬁi%oﬁi]&f.b) Thet/3 expansion in direction was performed by

aspect ratios of digital photographs acquired with CCD-sensors

and frame grabber cards. To preserve the original information,

one dimension of the image is expanded, rather than shrinkialger resampling. In performing rotations on a discrete grid,

the other. neither image rows nor columns can be reproduced unless the
Fig. 1 shows a digital photograph of a human eye. THetation angle is a multiple of 90 Therefore, this task results

positions of the Purkinje reflections within the pupil are usei@ larger interpolation errors than those produced by a simple

for strabometry [23]. The picture was selected because of @@rrection of aspect ratio.

uniform histogram and its excellent sharpness. The defraction

patterns of the reflections in the pupil and the eyelashes &e Perspective Projection of X-Ray Images

particularly _sharp gnd thus provide. an intgrpolation challenge.In intraoral radiology, the geometric transform of one ra-
The correction of itsi/3-aspect ratio requires the expansiojjograph into another from the same dental region acquired at
of thex axis by 13. Note that in this task the pixels in every, giferent time is described by a perspective projection [25].
third column of the expanded image can be taken from tge,c, pixel (x,4) within the reference image is transformed
original data without any maodification. into the position(s’, ') in the subsequent image

B. Rotation of MRI Sections L= ar + a2y +as and o = M + asy + ag )

Fig. 2 shows an MRI of the human head. In multimodal a7z +agy +1 arx +agy+1

image registration, CT or MRI slices must be transformed Suppose Fig. 3(a) was acquired with an imaging plate
as an affine projection to fit data from functional imagingerpendicular to the beam cone and the viewpoint is behind the
modalities, such as positron emission tomography (PET) ionage plate looking toward the X-ray tube. Fig. 3(b) illustrates
single photon emission computed tomography (SPECT) [24he rotation of the image plate with its upper right corner
By restricting affine transformations to rotations, the number afoving toward the X-ray tube. Although distortions in clinical
image points remains approximately constant both before ammditine are less drastic, the parametersof the perspective
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(b)

Fig. 3. Intraoral X rays are acquired with respect to perspective projection.
Therefore, perspective transforms must be performed for automatical adjust-
ment. The parameters in (1) are chosen as follows; = 1.25, az = 0.35,
(b) as = 1.10,a4 = 0.20,a5 = 0.80, a6 = 5.00, a7 = 0.002, as = —0.0006.
is equals a movement of the upper right corner of the image plate toward

Fig. 2. Interpolatlc_)n |s_reqU|r_ed to rotate discrete images. The MR image Qﬁz X-ray tube. The 34& 256 original pixels (a) are reduced to only 39 770
was 45 rotated using linear interpolation (b). pixels (45.7%) which still contain image information after interpolation (b).

projection have been chosen such that the number of pixels
containing information is roughly halved after the projection.
Therefore, the interpolation errors will be greatest within the
examples presented here.

I1l. | NTERPOLATION METHODS

For image resampling, the interpolation step must recon-
struct a two-dimensional (2-D) continuous sigrét, ¥) from
its discrete samples(k,l) with s,z,y € R and k,l €
IN®. Thus, the amplitude at the positiofr,7) must be
estimated from its discrete neighbors. This can be described
formally as the convolution of the discrete image samples

with the continuous 2-D impulse respongg(z,y) of a 2-D  Fig. 4. One-dimensional decomposition of the 2ADx I interpolation of
reconstruction filter the point(z, y). (Reprinted with permission from [1].)

s(z,y) =Y s(k, 1) anh(z — k,y —1). )

first. The small grey intermediate points in Fig. 4 are generated

Usually, symmetrical and separable interpolation kernels 6}% four one-dimensional (1-D) interpolations. They are used

used to reduce the computational complexity of the final 1-D interpolation in the direction.

2ph(z, y) = h(z) - h(y). (3) A. Ideal Interpolation

Fig. 4 illustrates the interpolation of the poifit, %) in a 4 x Following the sampling theory, the scanning of a continuous
4 neighborhood. Interpolation is performed in thelirection image s(z,y) yields infinite repetitions of its continuous
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Fig. 5. Ideal interpolation. (a) Kernel plotted fpr| < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 6. Truncated sinc interpolatiody = 5. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

spectrumS(u, v) in the Fourier domain, which do not overlap Some fundamental properties of any interpolator can be
since the Nyquist criterion is satisfied. If this is so, anderived from this ideal interpolation functioddc!a(z) is
only then, the original image(z,y) can be reconstructed positive from zero to one, negative from one to two, positive
perfectly from its sampless(k,l) by multiplication of an from two to three, and so on. Fa(0) = 1 these zero crossings
appropriate rectangular prism in the Fourier domain. The f@uarantee that the image is not modified if it is resampled on
D ideal interpolation equals the multiplication with a recthe same grid. Therefore, kernels satisfying

function in the Fourier domain and can be realized in the

spatial domain by a convolution with the sinc function {ZEO)) =1 " 5)
z)=0, |z|=1,2,
Ideal sin(rz) :
= = . 4 H 1 1 1
h(z) o sinc(z) (4)  avoid smoothing and preserve high frequencies. They are

called interpolators. We will see below that better suited

Fig. 5(a) shows the ideal lIR-interpolatdfaa(z). The plot kernel functions tend to have this general shape. In contrast
was truncated within the interval3 < z < 3. The magnitude to interpolators, kernels that do not fulfill (5) are named
|[eal i ()| of the Fourier transforn*a! H(w) of the infinite approximators. Note that this strict distinction is not always

kernel Mealp(r) is plotted within the interval-4r < w = reflected in literature.
27 f < 4n is shown in Fig. 5(b). The intervaltw < w < 7 Sampling the interpolated (continuous) image is equivalent
is called passband and = 1/2 or w = = the cutoff to interpolating the (discrete) image with a sampled interpo-

point or Nyquist frequency. The transfer function of the idedation function [7]. The sampling of the interpolation function
interpolator is constant and one in the passband. In additiorgleases the higher frequencies of the interpolation function into
logarithmical plot of the filter's Fourier response is presentdtie lower ones. In the case of ideal interpolation only, higher
in Fig. 5(c) to emphasize ripples in the stopbgnd > =. frequencies do not exist and therefore, within the interval
The ideal kernel's transfer function is zero valued withir-0.5 < f < 0.5, the sampled interpolation function has the
the stopband. Note that Figs. 5—24 are constructed in simitame Fourier spectrum as the unsampled function. However, it
fashion using the same scaling and plotting conventions. is necessary to examine not only the continuous interpolation
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Fig. 7. Truncated sinc interpolatiody = 6. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 8. Blackman—Harris windowed sinc interpolatidh = 6. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

function i(x) but also typically sampled interpolation func-where
tions h(k). Particularly, the sum of all samples should be one

for any displacement < d < 1 II(z) = Z 8(z+ k)
=) k=—o0
> Md+k) =1 (6) and, by definition, the weight of a single delta impulse
k=—oo corresponds to the amplitude of the kerrheht the position

of 6. Recognizing the Russian letter “scha,” the train of delta
nctions is named the scha-functifid(x). If the integrand in
Dds extended by &27/*, which equals 1 foff = 0, one can

This means that for any displacemelthe direct current (DC)-
amplification will be unity and the energy of the resample

image remains unchanged. In other words, the mean brightn 7 ) .
of the image is not affected if the image is interpolate Iscover the definition of the Fourier transform in (7). Then,

or resampled. Therefore, kernel functions that satisfy or fég € function to be Fourier Fransformedhsr) 1ll{z +d) and
condition (6) are named DC-constant or DC-inconstant, r om (6) and (7) we obtain
spectively. The next sections will show that superior kernels 4 =
are DC-constant. H(f)=II(f)-e? ;o0 =1 = {58)) ;B Ifl=1,2,...

Equation (6) also is called the partition of unity condition ’ o (8)
[20], which easily can be evaluated in the Fourier domaitwhere H(f) denotes the Fourier transform afz). Because
Referring to information theory, the sum (6) of discrete santhe conditions in (8) are not sufficient but necessary in the
ples of the kerneh(z) equals the area under the continuousontext of interpolation, they are used to distinguish DC-
function obtained by multiplying (or sampling)(z) with a constant from DC-inconstant kernels in the Fourier domain.
train of delta functionss(z)

B. Sinc Interpolation

> h(d+k) = / h(zx) - l(z + d)dx (7)  Although the sinc function provides an exact reconstruction
o= of s(z,y), it spatially is unlimited. There are two common
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Fig. 9. Nearest neighbor interpolation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 10. Linear interpolation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

approaches for overcoming this drawback, truncation amdthin the passband. With respect to the passband properties
windowing with a window functiomu(z) = const(z) = 1 of a truncated kernel, odd numbers of supporting points are
and w(zx) # const(z), respectively preferable.
Another idea to make the sinc function usable for spatial
Sincp, < (z) = {Idealh(w) ~w(z), 0< o] <N/2 (9) convolution might be to use it with a less severe window
0, elsewhere w(z) than the rect function. Osturét al. discuss the use
of a cosine functionw(z) = cos(wrz/N) for reslicing fMRI
where NV denotes the number of the finite kernel’s supportingata [26]; Schaum uses a Hanning window, which is just a
points. By definition>"h («) fulfills the requirement (5). In raised cosine, to taper the interpolation kernel's edges and
other words, all windowed or truncated sinc kernels necessagimove Gibbs’s overshoot in the transform [12]; and Wolberg
are real interpolators. compares several window functions for interpolation with
Truncation is equivalent to the multiplication &°'2(z) \indowed sinc kernels by Fourier analysis [13]. A systematic
with a rectangular function in the spatial domain, which iﬁpproach on the use of windows for harmonic analysis with
tantamount to a convolution with a sinc function in the frege giscrete Fourier transform is given by Harris who declared
quency domain. Therefore, truncations of the ideal interpolaigfe Kaiser—Bessel and Blackman—Harris windows to be the top

produce ringing effects in the frequency domain becausep@rformers [27]. When using the three-term Blackman—Harris
considerable amount of energy is discarded. Figs. 6 andihdow

demonstrate this effect, which also is referred to as the Gibbs'’s
phenomenon [4], produced by a truncated sinc function with w(z) = wo + w; Cos<
N =5andN = 6 supporting points, respectively. In addition,

the partition of unity condition (8) is violated by any choicewith N = 6 and
of N < oo. In other words, all truncated sinc kernels are DC-

inconstant. The area of the function differs more from one for

even kernel sizes than for odd. Therefore, raising the kernel w1 = 0.49755
from N = 5 to N = 6 significantly enlarges the overshoots we = 0.07922

2x 4x
27rﬁ> + ws cos <27rﬁ> (20)

wy = 0.423 23
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Fig. 11. Quadratic approximatiom, = 1/2. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 12. Quadratic interpolatiory; = 1. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

a DC-constant interpolator is obtained. Note that most othgidelobes in those regions of the frequency domain where the

window functions, including those used in [12] and [13] resutepetitions ofS caused by scanning should be suppressed

in kernels that do not have this superior property. [Fig. 9(c)]. The gain in the passband rapidly falls off to
Fig. 8 shows the Blackman—Harris windowed sinc kerne/n =~ 64% at the cutoff point, and the amplitude of the

The kernel's half wave betweeh < || < 3 is suppressed side maxima is more than 20%. Therefore, strong aliasing

significantly in comparison with the ideal or truncated kerneland blurring effects are associated with the nearest neighbor

Therefore, the ripples in the stopband are below 0.01%, buethod for image interpolation.

higher frequencies within the passband are attenuated also.

The largest gain within the stopband is 0.5 at the cutoff poiq_t)_ Linear Interpolation

For separated bi-linear interpolation, the values of both
direct neighbors are weighted by their distance to the opposite
The easiest way to approximate the sinc function by @bint of interpolation. Therefore, the linear approximation of
spatially limited kernel is given by the nearest neighbghe sinc function follows the triangular function

method. The value(z) at the location(z) is chosen as the

C. Nearest Neighbor Interpolation

next known values(k). Therefore, onlyN = 1 supporting 1— ||, 0<|z|<1
point is required for the nearest neighbor interpolation. This ha(x) = {0 " elsewhere (12)
is tantamount to convolution with a rect function [Fig. 9(a)] ’ '
_J1, 0<z| <05 The triangular functionkz(x) corresponds to a modest
hi(x) = {07 elsewhere. (11) low-pass filter Ho(f) in the frequency domain (Fig. 10).
Again, h2(0) = 1, ho(£1,2,...) = 0, H»(0) = 1, and
Clearly, i1 (z) is a DC-constant interpolator. Hy(£1,2,...) = 0. Therefore, the linear kernel is a DC-

Fig. 9(b) shows that the Fourier spectrum of the nearesinstant interpolator. The sidelobes in the stopband are below
neighbor kernel equals the sinc function (expressed in tth&%, which still is considerable. Therefore, the main disad-
frequency domain). The logarithmical scale shows prominevéintages of linear interpolation are both the attenuation of
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Fig. 13. Cubic B-spline approximation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

high-frequency components and the aliasing of the data beyan®C-constant kernel. Hence, the following four equations are

the cutoff point into the low frequencies [7]. required to establish appropriate values for the five remaining
parameters:
E. Quadratic Approximation 1- 1+ A B
_ . Quadp (=} —Quadp (=} o 2L ZL

One of the most frequently applied concepts to create sinc 2 2 4 2

like interpolation kernels is the use of algebraic polynomials. Ay B
. . . . . . } = — 4+ — + 02
Their advantage is easy determination and uniform approxima 4 2
tion of continuous functions at finite intervals. In the previous Quad; (3 94, 3B»
sections, constant and linear polynomials have been discussed. hs{5) =0 4 - 9 +C2=0
Quadratic functions have been disregarded largely because 94
) R Quad _ 2+A41=0
they have been thought to introduce phase distortions. I *hs(d+k) =1= oA
. . . 2+2B2+202+01=1

fact, if the polynomials span-1 to 2, asymmetric kernels &

with nonlinear phases are produced [28]. However, Dodgson

showed this not to be the general case and recently derivédich reduce the general quadratic form to one degree of
a family of quadratic functions that is better behaved [11freedom,a € IR [see (13) at the bottom of this page].

In contrast with other polynomial interpolation methods, this Note that all members of this one parameter family of
quadratic family is based on a symmetric<33 neighborhood guadratics are real and even in the spatial domain and therefore
from —3/2 to 3/2, and the contacting points are fractionshave a linear phase in the frequency domain. To remove the
In terms of separated kernels, the three nearest points Bpal degree of freedom we can force the first derivatives
used for interpolation. Both direct neighbors and a third poiff the polynomials to fit at their contact poinfs| = 1/2.
sometimes are located on the left-hand side and other timid¥s setsa = 1/2. The resulting kernel (Fig. 11) does not

on the right. satisfy condition (5). For that, the = 1/2 quadratic kernel is
A symmetric quadratic kernel is given by called a quadratic approximator. By definition, the quadratic
approximator is DC-constant. It has a prominent sidelobe in
A z? +Bi|z| +Ci, 0<|z[<1/2 the Fourier domain with an amplitude of about 1%. The main
Quadp. () = + Ap|w|? +Ba|z| +Ca 1/2< |z| < 3/2 lobe still considerably deviates from the ideal rectangular
0, elsewhere shape. Higher frequencies within the passband are attenuated.

Therefore, interpolation with the quadratic approximator will
with A;, B;, C; € IR andB; = 0 due to C1-continuity (we call C@use strong blurring effects.
a function C: continuous if itszth derivation is holomorph). ) )
To form a kernel useful for interpolation, additional restriction§- Quadratic Interpolation
must be imposed. The polynomials should fit exactly at One also can use the single degree of freedom in (13) to
the kernel's starting and ending points as well as at thdorce the quadratic kernel to satisfy the zero-crossing condition
contacting points. In addition, (6) must be satisfied to obta{s). In this casegz = 1 is obtained and the finite kernel is

—2alz|? +1/2(a+1), 0<|z|<1/2
Quadp(g) = { +alz?  —(2a+1/2)|z| +3/4(a+1), 1/2 <|z| < 3/2 (13)
0, elsewhere
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Fig. 14. Cubic B-spline interpolation. (a) Kernel plotted fet < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 15. Cubic interpolationN = 4, a« = —1.3. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 16. Cubic interpolationN. = 4, a = —1/2. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

a DC-constant interpolator. The kernel has a little nook &. B-Spline Approximation

|#| = 1/2. However, the nook is covert in Fig. 12(a) because

of the scaling of the plot. Note, that condition (5) can not Basis splines (B-splines) are one of the most commonly used
be enforced at the same time as the C1-continuity. This damily of spline functions [4]. They can be derived by several
discontinuity raises the kernel’s stopband attenuation for higelf-convolutions of a so called basis function. Actually, the
frequencies above 2% [Fig. 12(c)]. However, the quadrafigear interpolation kernets(x) from (12) can be considered
interpolator shows acceptable passband properties [Fig. 12(hY.the result of convolving the rectangular nearest neighbor
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Fig. 18. Mitchell and Netravali's subjective best interpolation= 1/3, ¢ = 1/3. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic

plot of magnitude.

-3 -2 -1 0 1 2 3

(@

-10

(b)

10

(b)

5 10

0.001

0.0001

(©

0.001

0.0001

Fig. 19. Notch filter,b = 3/2, ¢ = —1/4. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 20. Lagrange third-order interpolatio®y, = 4. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 21. Lagrange fourth-order interpolatialN, = 5. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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Fig. 22. Gaussian second-order interpolation. (a) Kernel plottedifor. 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

Subsequently, for8V — oo this process converges to a
Gaussian functiofk, (z). For N = 3 we obtain the quadratic
B-splinehs(x) which, in fact, equals the previously mentioned
quadratic approximatoRt*ds;(x) for a = 1/2. For N = 4

Therefore, the rect functioh;(z) can be used for the con-we obtain the cubic B-spline [4] [see (14)].

kernel hy () from (11) with itself

hg(x) = hl(.’lj) * hl(a:)

struction of uniform B-splinesx () of order N /2 —|z? 2/3, 0< || <1
ha(z) = =(1/6)|=z> +|z[* —20z] +4/3, 1< |2[ <2

hy(z) = lzl(x) *hy(z)*...hi(z). 0, elsewhere.

X (14)

N—1times
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Fig. 23. Gaussian sixth-order interpolation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

1.

0.1 \

\

|

0.01 \

0.001 \

|

|

0.0001 |

75 eSS TS 10

(@) (b) (©

Fig. 24. Gaussian tenth-order interpolation. (a) Kernel plotted#pr 3, (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

Note that the B-spline kernél,(x) fails to occupy the null reconstruction (2) yields
positions of the sinc functionks(—1) = hs(1) = 1/6 and,
therefore, the B-spline kernel is actually not an interpolation s(a) = > t(k) - bz — k) (15)
but rather an approximation kernel. Consequently, B-spline k
approximation displays strong blurring effects but also allowgith » = hy, as defined in (14). Note that the general case
for the attenuation of unwanted high-frequency noise in thes) reduces to (2) if the samples are taken directly from the
output image [29]. image datat(k) = s(k).

However, the B-spline approximator enjoys the valuable ca-Here, thet(k) must be derived from the image’s sample
pacity to retain the properties of DC-amplification [Fig. 13(c)lpointss(k) in such a way that the resulting curve interpolates

Furthermore, Fig. 13 demonstrates that the cubic B-splifige discrete image. From (15) and (14) we obtain
function has a favorable stopband response. The amplitude

of the sidelobes is lower than 1%. Nevertheless, the Fourier ) — s . bl

transform of the cubic B-spline kernel is equivalent t@iac)* sty =3 tm)-hs(k—m)

function that results in over smoothing in the passband. The Tzk_Q

gain at the cutoff frequency is only about 16.4%. Increasing = E(t(k — 1) +4t(k) +t(k+ 1)) (16)

the order of the spline not only improves the quality of

interpolation but also increases the smoothing effects. Thevehich, ignoring edge effects, results in a set of equations to
fore, hy was selected for this study to represent the B-splirs®lve

approximation method. This choice corresponds to those of - () 4 1 0 £(0)
other authors [4], [5], [7], [11]. s(1) 1 4 1 #(1)
s(2) 1| 1 4 1 t(2)
H. B-Spline Interpolation ; ~ 6 : ;
To create an interpolating B-spline kernel, the B-spline |s(K —2) 1 41 t(K —2)
approximator is applied to a different set of sampié€k). s(K —1) 0 1 4 tK —1)

Since the B-spline kernel is symmetrical and separable, the a7
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Labeling the three matrices above®9”, andZ’, respectively, 1) Two-Point Interpolation:In the case of cubic interpola-
the coefficients inZ” may be evaluated by multiplying thetion with two points, a symmetric kernel can be defined with
known data pointg with the inverse of the tridiagonal matrix A, B,C, D € IR
C Cubic () = {A|x|3 +B|z|* 4+Clz| +D, 0<|z|<1
T-c1.5 (18) . 0 elsewhere.
The parametersi to D can be determined by applying the
In all other methods included in this paper, the coefficienfsllowing boundary conditions:
used for convolution with the interpolation kernel are taken to « s (k=) = h(kT), CO-continuity;
be the data samples themselves. Because the coefficients fer »/(k—) = A’(k*), Cl-continuity;
B-spline interpolation are determined by solving a tridiagonal « h(k) = 1 for k = 0, see (5);
matrix system, the resulting kerngtinea(z) is infinite. « h(k) = 0 for k # 0, see (5).
To simplify its analytical derivation, the interpolated imagg-q, v — 9, those boundary conditions yield four equations

s(z) and the data samplegk) now are calledu and v, ¢4 the four parameters resulting in :
respectively. From (16) we obtaim = txc¢ and in the

. 3 _ 2
frequenCy domain CublchQ(x) — {2|-T| 3|-T| (‘)"17 glsse\%ﬂ];el (22)

7

v(z) = t(x) * 1(5(3; — 1) +48(x) + 8(z + 1)) It should be pointed out that, by definitioh"h,(z) is a
61 DC-constant interpolator. The resulting curves are similar to
V(f)=T(f)- 6(4+ 2cos(27nf)). those obtained by linear interpolation, but the pieces fit C1-

continuously in the spatial domain. Two sidelobes occur in
(29) o ) . : :
the positive Fourier plane. The first lobe raises up to 2%. It is

Inversion of (19) yields located withinl < | f| < 1.5 while the second’s amplitude is
about 1% between.5 < |f| < 2.
T(f) = V(f)- 3 2) Four-Point Interpolation: When using cubic interpola-
24 cos(2n f) tion with N = 4 points, seven of the eight coefficients are
o0 determined from the above constraints and one extra free
=V({f)- \/3<1 + > 2AV3-2)m COS(QWmf)> parametera is retained [see (23) at the bottom of the next
rn:loo page].
m Different concepts have been used to determine this param-
Hw) = v(z) + <\/§6($) + g;l \/3(\/3 -2 eter. With the constant negative, the kernel is positive in the

interval from zero to one and negative from one to two and,
(8(z —m) + 8(z + m))) (20) hence, an interpolat_or is obtained. _
According to Danielsson and Hammerin, wher= —1.3,
. the result is a kernefb<h,(x) whose Fourier transform

Hence, (15) can be written as= ¢+ hy = v+ °Ph and  deviates minimally from the ideal rectangular function [8], [9].
with (20) we finally obtain Fig. 15 shows the corresponding interpolation function in the
00 spatial and Fourier domains. Frequencies directly below the

Splineh(x) = hy(x) * Z \/3(\/3 — 2)|m|5(x +m). (21) cutoff point are amplified slightly, and the transition between

m=—o0 the passband and the stopband is quite sharp. The amplitude of

) i o ) the first sidelobe is above 10%, but the ripples reduce below
Fig. 14(a) plots®Pih(x) within the interval|z| < 3. 104 for f > 1.3.

Although the kernel is infinite, the amplitudes of the half waves |t , is determined in order to match the slope of the sinc
are reduced significantly when compared with that of the ideglnction at z — 1, thena = —1 is obtained [29], [30].

lIR-interpolator [Fig. 5(a)]. The cubic B-spline interpolationrhe intensification of frequencies just below the cutoff point
shows excellent passband characteristics [Fig. 14(b)] and {8€cquced when compared to the situation that —1.3

amplitude of the sidelobes in the stopband is below 1f chosen, but the transition between the passband and the

[Fig. 14(c)]. Note that>!i*h(z) satisfies the zero crossingginhand is not as sharp as before. This trend continues if

condition (5) as well as the partition of unity_condition (6), is increased further. If the second derivativeicn (z) of

and, therefore?Plinep () is a true DC-constant interpolator. both polynomials in (23), shown at the bottom of the page, are

_ _ made equal for their contact point ef= 1, thena = —3/4

|. Cubic Interpolation is obtained. Park and Schowengerdt foumd= —2/3 to
Cubic polynomials are used frequently because of their abitinimize the sampling and reconstruction error for images

ity to fit C2-continuous. Also, the B-spline approximatay, dominated by edges [30].

as defined in (14), as well as the Lagrange interpolet&h., Keys determined the constamby forcing the Taylor series

in (28), are constructed piecewise from cubic polynomials. @kpansion of the sampled sinc function to agree in as many

course, cubic polynomials also can be used to approxima¢gems as possible with the original signal resultingan=

the sinc function. —1/2 [5]. When using this choice df, the first three terms of



LEHMANN et al. SURVEY: INTERPOLATION METHODS 1063

the Taylor series expansion of the input signal agree with themials are forced to match for all contacting points. Using
interpolated function. Thus, cubic interpolation witk= —1/2  those boundary conditions, we obtain (24) and (25), shown at
can reconstruct any second-degree polynomial. Furthermdiee bottom of this page, falv = 6 and N = 8, respectively.
the approximation error is proportional to the third power dfig. 17 shows the cubic interpolation kernel corresponding to
the sampling increment [5]. Only in the casenof —1/2 does (24). Compared with the other examples of cubic kernels, the
the N = 4 cubic kernel not have any overshoots within thplateau of the passband is enlarged and sharp edged while
passband. Fig. 16 shows the flat spectrum at low frequencittes amplitudes of the sidelobes are further reduced. Higher
which fall off to the cutoff frequency. Only two sidelobesfrequencies within the passband are amplified somewhat.
appear in the positive Fourier half plane, and the amplitudeThe reader should notice that only DC-constant interpolators
of both distinct lobes is below 1%. Because for most digitélave been derived in this subsection. Equation (5) is fulfilled
images a preponderance of energy exists at low frequencieg,the definition of the boundary conditions and the partition
Park and Schowengerdt also derivee- —1/2 to be optimal of unity condition (8) is satisfied for all kernel sizes and
for the image-independent case [30]. Reichenbach and Parkpagameters (Figs. 15-17).
well as Dodgson, showed that this choice for the parameter
corresponds to both the Catmull-Rom blended spline and t‘51e
piecewise cubic Hermite interpolation [31], [32]. In addition,
Dodgson pointed out that the Bezier form of the cubic spline Mitchell and Netravali developed a family of = 4 point
interpolation is related ta = —3/8 [32]. cubic filters that can be either approximators or interpolators
3) Six-Point and Eight-Point Interpolationincreasing the [33]. The constraints they use are the following:
interpolation kernel sizéV improves the quality of resampling. * h(k™) = h(k™), CO-continuity;
From the boundary conditions defined above, diN/2 + 1 e W'(k™) = W' (kT), Cl-continuity;
equations are obtained to determine 23 parameters. Hence, < >, h(d+ k) = 1, see partition of unity condition (6).
there are two degrees of freedom fdr = 6 and three free That leaves us with a two-parameter family of solutions [13],
parameters forV = 8. Again, many ideas have been used t{83] [see (26) at the bottom of this page].
determine these parameters. Danielsson and Hammerin forceg8everal well known cubic filters are derivable from (26)
the kernel to have its first minimum value at the same positiehrough an appropriate choice of the parameter typle).
as the sinc function [8], [9]. With the kernel suggested bior instance(1,0) is the cubic B-spline approximator (14),
Keys, the sidelobes are further subdued, and the transitind (0, —a) corresponds to the four-point cubic interpolator
between the passband and the stopband is sharpened whatily (23).
compared to the 4 4 kernels [5]. Mitchell and Netravali partitioned the parameter space into
Nevertheless, not all of those concepts are generic for eveggions characterizing artefacts, such as blurring, anisotropy,
choice of N. In addition, it is doubtful whether ang priori and ringing. Measured by subjective inspection, the tuple
attempt to fit the kernel to the sinc function results in &1/3,1/3) was found to offer superior image quality [33].
valuable interpolation scheme. This is true because the impligiy. 18 shows Mitchell and Netravali’s subjective best kernel,
supposition, i.e., the applicability of the sampling theoremvhich is not an interpolator. However, it is a DC-constant ker-
is violated often in medical imaging systems. However, theel. Higher frequencies within the passband are absorbed and
missing smoothness of the kernel is responsible for unwantieé image is smoothed during resampling. The two sidelobes
ripples in the Fourier domain. Exactliy/2 — 1 independent in the stopband are similar to those of the cubic interpolator
equations are obtained if the second derivatives of the poshown in Fig. 16.

Mitchell and Netravali’'s Method

(a+2)|z|> —(a+3)|z|? +1, 0< |zl <1
Cublen  (x alz]? —5alx|? +8alz| —4a, 1< |z <2 (23)
0, elsewhere
6/5)z>  —(11/5)]=/? +1, 0< |z <1
Cubic { B/5)z +(16/5)z|* —(27/5)x| +14/5, 1< 2| <2 (24)
(1/5)a® —(8/3)=F  +(21/5)]z] —18/5, 2<|z| <3
0, elsewhere
(67/56)|x|>  —(123/56)|z|? +1, 0< |z <1
—(33/56)|z|>  +(177/56)|x|? —(75/14)|x| +39/14, 1< x| <2
Cublep (x (9/56)|z|> —(75/56)|z?>  +(51/14)|x| —45/14, 2<|z| <3 (25)
—(3/56)|z|>  +(33/56)|z|> —(15/7)|x| +18/7, 3<|v| <4
0, elsewhere
—(9b+ 6c — 12)|z|>  +(12b+ 6¢c — 18)|x|? —(2b—6), 0<]|z|<1
Mitchp (z) = E - —(b+6¢)|z|? +(6b + 30¢)|z|? —(12b + 48¢)|z| +(8b+24c), 1< |z| <2 (26)

0, elsewhere
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Another parameter tuple suggested by Mitchell anwrs do not fit C1l-continuously at the connecting points n
Netravali is (3/2,—1/4) yielding the so-called notch filter causing significant sidelobes within their Fourier transforms.
(Fig. 19). The frequency response of this DC-constafigs. 20 and 21 visualize the Lagrange kernels for= 4
approximator is zero at all integer and half-integer multipleend N = 5, respectively.*s*2p,(x) shows a sharp edge at
of the sampling rate except zero. On the one hand, the notble center of the mask in the spatial domain. The amplitude
kernel cuts signal energy very near to the Nyquist frequenoy the sidelobe in the Fourier domain is about 4%. The odd
f = 1/2 or w = &, which contributes primarily to aliasing Lagrange kernet?&*2h () is not CO-continuous. Therefore,
effects and Moig patterns [33]. On the other, the gain withirthe amplitude of the sidelobe is raised up to 10%. However,
the passband drops off quickly resulting in strongly blurrethe plateau in the passband is wider causing the major lobe to

images. approximate more closely the ideal rectangular shape. In other
words, the passband characteristic is improved by raising the
K. Lagrange Interpolation order of the Lagrange kernel. Furthermore, odd kernels should

In numerical analysis, the Taylor polynomials are used er—e used for scenes where high contrasts dominate.

guently. As a major drawback for image resampling, the Taylor . .

polynomials are expanded from a single point, which migrlrf Gaussian Interpolation

cause problems when they are applied to image interpolationAppledorn has recently introduced a new approach to the
Using Lagrange polynomials instead, several points througkneration of interpolation kernels [19]. The objective was
which the polynomial must pass can be specified. Particulartp, exploit the characteristics of the Gaussian function in
the Lagrange polynomial of degre€ — 1 passes throughv  both the spatial and the frequency domain. In particular,
points [3]. For an infinite number of points these polynomialhe Gaussian function is recurrent with respect to operations

approach the sinc function [2] such as derivation and Fourier transform. Hence, Appledorn
oo oo ) published a scheme to develop simple interpolation kernels

sinc(z) = H (1 + f) - H <1 _ “7_2> that are both locally compact in the signal space and almost
im0, 10 t e t band limited in the frequency domain and, in addition, are

. . _ easy to manipulate analytically.
Therefore, the Lagrange interpolation formula often is con- Consequently, we will denote thifth partial derivative of
founded with a terminated product representation of the si{hce unit area Gaussian function

function giving bad interpolation results [1]. 1 )
The Lagrange interpolation kernel presented here refers Gz, B) = ?e—*‘ /28
to various textbooks on numerical analysis. The Lagrange _ i
kernel of degreeN — 1 for an N x N region withn ¢ With zero mean and variance as
{-N/2+1,—-N/2+2,...,N/2} is defined by oM
N—-1 n_L_x G]W(x’/j): ax]wGO(x7/3)'
Legrap, | () — H —h—; 0 " 1<z <n  Hence we obtain
‘ §=0,j— 5 +1#n ) 1., o
0, elsewhere G(z,p) = /3—2(95 - BG&(x, B)
(27) .
with & = j — N/2 + 1. Gz, ) = o (2° — 15p2* + 45727 — 158%)G(z, B)
Because the neutral element of multiplications is one, the g
Lagrange kernel forN = 1 equals the nearest neighbor 10(, gy — iw(xlo — 4582° + 6308225 — 3150332
interpolation. One can easily show that in the casévof 2 B )
(27) equals the linear interpolation method. As mentioned +47258%% — 9458%)G0(x, 3).

above_, the Lagrapge kernel f0f = 4 supporting p0|_nts results Then, theMth-order Gaussian interpolation kernel is given
in cubic polynomials [see (28) at the bottom of this page]. F%r
N =5, (27) yields fourth-order polynomials [see (29) at the”

bottom of this page]. Gaussp M,y {E%:o m - G2, Bm), 0< 2] < %
A little algebra shows that all Lagrange kernels are DC- N ) elsewhere.
constant interpolators. However, the even Lagrange interpola- (30)
1/2)|2P  —|=> —(1/2)]z]  +1, 0L x| <1
Py (z) = § —(1/6)[«]® +lz[* —(11/6)|z] +1, 1< |a[ <2 (28)
0, elsewhere
(1/4)]a]* —(5/4)|=[? +1, 0< |z <1/2
_ 4 4 3 _(x 2 (=
Lagrap () = § ~(1/Olel" +(5/6)[z] (5/6)]] (3/6)|x| 41, 1/2 <z <3/2 (29)

(1/28)|x]*  —(5/12)|z|> +(35/24)|z|> —(25/12)|x| +1, 3/2<|z| <5/2
0, elsewhere
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Fig. 25. Sum of sampled interpolation kernels as a function of the displaceinéa} Gaussian second-orde¥, = 6. (b) Gaussian tenth-ordel = 8.
(c) Result of scaling a constant image using Gaussian second-order interpolation (effects have been enhanced).

The weighting factors,,, and the variances,, are determined with
from the following constraints [19].

« The Gaussian kernels should equal the ideal interpolator,

2
1 1
_ =—|—==41) ~=0.4638115
at least forz = 0 V2= oo <\/§ + ) 2
2
Gauss p, M — 1 1 15
hy (0) = 1. =—(—=+14+=) ~0.8655995
=g\ e T R
+ The Fourier transform$uwsH¥(w) of the Gaussian 1/ 1 15 945 \? _
kernels should equal those of the ideal interpolator, at 710 = 5— E +1+ 24 + 1920 ~ 1269521 3.

least forw = 0

Although all kernels are one at = 0, the zero cross-
ings do not match exactly. Therefore, the Gaussian kernels
are actually approximators. However, the deviation from the
« Furthermore “= H () should be as flat as possibleinterpolator’s general shape is quite small. Fig. 22 shows the

without any slope or curvature far = 0 infinite second-order Gaussian kerré“ssh2(z) within the
interval -3 < z < 3. The zero points arec = 1.0186
and r = 2.1869. Increasing the ordei™ of the kernel
improves the approximation of the ideal rectangular low-pass
filter (Fig. 23). In other words, the passband is widened and
Note that the first and the second constraints cover only otie transition to the stopband is narrowed. Even for order
part of the interpolation condition (5) and the DC-constad/ = 2, neither sidelobes nor ripples occur. The main lobe
condition (8), respectively. The latter constraint is imposed flat for low frequencies but falls off with a broad slope.
to approximate the passband characteristics of the ideal Idwg. 24 displays the infinite tenth-order Gaussian kernel with
pass filter and therefore to minimize the corruption of theearly perfect frequency properties. Nevertheless, the first zero
image’s Fourier spectrum by the interpolation. Hence, dipint of “@"sal%(s) is approximately atz = 1.0026 and
weights a,, must be 0 ifm is odd. In addition,a, = 0 “***h%(1) = 0.0021 or “*=A19%(2) = —0.0049.
for m = 4,8,12,.... Because the Gaussian function always Note that the sum of all sampled interpolation values is not
approximates zero for large, for the sake of simplicity, the equal to one for truncated Gaussian kernels and, hence, the
explicit behavior of these values relative to the kernel’'s defin€ggussian FIR-kernels actually are not DC-constant. Fig. 25(a)

range in neglected. Accordingly, the first existing orders &nd (b) plots the sum Oésamgle pointzfromlgﬁ) as a function
Gaussian kernels are given by [19] of the displacement for “®"*hg () and“*"*h3°(x), respec-

tively. The distortion effect resulting from interpolation with

Gawssp2 (2) = GOz, 279) — 12 G2(, o) (31) DC-inconst_ant kernels is visqalized in Fig. 25(c). Thereforg,
3 the Gaussian kernels have impressive frequency properties

GausspC (1) = GOz, 2v6) — v G2 (2, v6) — g—ZGG(az, ¥6) only when the approximation is created from enough points to

(32) reflect accurately the bulk of energy distribution (Figs. 22—24).

Ciauss 1 10 0 ) Fig. 26 shows the logarithmic plots of the Fourier magnitude
hy(z) =G (3772710) — oG (?77710) for truncated Gaussian kernels. Because the ripples in the

Y10 6 Yo 10 stopband are below 0.1%, effects resulting from truncation

- 223 -2 33 . -
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Fig. 26. Logarithmic plots of the Fourier magnitude for truncated Gaussian kernels. (a) Gaussian second-ordef. (b) Gaussian sixth-order,
N = 6. (c) Gaussian tenth-ordety = 8.

IV. RESULTS sinc and cubic B-spline interpolations, as well as cubic,

These kernels have been compared on various ima%@ Lagrange interpolations with large kernel sizes and all
including situations typically encountered in medical applicaz24SSian kern_els.(Flgs. 8,14, 17,21, 22, and 24, respectively).
tions. In each case, the efficiency and accuracy of a particula?) CUtoff Point: The notch filter produces the best cutoff

interpolation technique was evaluated by analyzing its Fourigf'formance (Fig. 19). Truncated sinc and cubic B-spline in-

properties, visual quality, interpolation error, complexity, antgrPolations, as well as cubic, Lagrange, and Gaussian kernels
runtime. with N > 4 are suitable also (Figs. 6, 7, 14, 17, 21, and

24, respectively). The worst cutoff performance is shown by
the nearest neighbor interpolator (Fig. 9). The use of linear
interpolation and the Mitchell and Netravali's subjective best
The Fourier properties of each method have been descrikaéthod should be avoided also regarding the cutoff criterion
in the previous sections. Figs. 5-24 allow the comparison (Higs. 10 and 18, respectively).
the interpolation kernels in both spatial and Fourier domains.3) Stopband:Similar to the kernels’ gain at the cutoff
For quality assessment in the Fourier domain, we have focuggfint, the stopband characteristics are responsible for aliasing
on three characteristics: 1) deviation from the ideal constaiid Moie effects. Truncated sinc, nearest neighbor, linear,
gain within the passband; 2) the amplitude and slope of tagd quadratic interpolation, the % 4 cubic interpolation
kernel's Fourier transform at the cutoff frequency; and 3} = —1.3), the notch filter, and the Lagrange interpolators
the occurance and the amplitudes of ripples and sidelogg®duce ripples or sidelobes with amplitudes larger than 1%
in the stopband. Deviation within the passband is importa(Rigs. 6, 7, 9, 10, 12, 15, 19-21, respectively). The ripples of
because attenuation within the passband causes blurring, wktile truncated Gaussian kernels are below 0.1% (Fig. 26) and
amplification improves the interpolated image’s sharpnegsose of the Blackman—Harris windowed sinc interpolator are
along with image noise. The importance of amplitude at cuta#/en below 0.01% (Fig. 8).
frequency stems from the fact that high cutoff amplitudes in Summarizing the Fourier analysis of passband, stopband,
small slopes cause aliasing effects. Sidelobe anomalies carahé cutoff frequency, the nearest neighbor and linear interpo-
significant because they alias the repetitions of the discreéi@ions should be avoided, while the preferred method is the
image spectrum into the passband. Note that the importarggussian kernel with large sizes.
of each criterion depends on the Fourier spectrum of the image
to be interpolated. The ideal mask yields a rectangular Fourier i )
shape with constant amplification in the passband, infinie Ntérpolation Quality
slope at cutoff frequency, and zero values in the stopbandThe sharply focused photograph of a human eye (Fig. 1)
(Fig. 5). However, truncations in the spatial domain result is interpolated when correcting the aspect ratio. After initial
notable overshoots in the passband and extensive rippleshistogram stretching, the aspect ratio correction was per-
the stopband (Figs. 6 and 7). formed by each of the interpolation methods. To visualize
1) Passband:Nearest neighbor and linear interpolationthe interpolation error, the aspect-ratio-corrected image was
as well as quadratic and cubic B-spline approximation amaterpolated again for downsizing to its initial size. The same
the notch filter, show the largest deviation from the idedhterpolation method was used for both forward and backward
rectangular shape in the passband (Figs. 9, 10, 11, 13, arahsformation. This approach was favored over that suggested
19, respectively). Therefore, images will be strongly smoothéy Unseret al,, which advocates the use of loops rather than
during interpolation, and these methods only should be usetiprocal transforms because the loop approach works only
for scenes without sharp edges and high local contradis: certain applications, e.g., 16 successive rotations 0f°22.5
The best passband characteristics are provided by windowgd].

A. Fourier Analysis
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Fig. 27. Results of aspect ratio correction of the photograph. Pixels with eirdr are displayed in black. The frame indicates the inner area for quantitative
error comparisons ignoring border effects. (a) truncated swes 7. (b) Blackman—Harris windowed sinéy = 6. (c) Linear interpolation. (d) Quadratic
approximation. (e) Quadratic interpolation. (f) Cubic B-spline approximation.

The interpolation quality is assessed by the pixelwise abdeig. 27(t), (u), and (v) from Gaussidd!, N) = (2,4), (2, 6),
lute difference before and after the successive interpolatioasd (6,6), respectively.
The subtractions in Fig. 27 appreciably demonstrate the qual-2) DC-Constancy Versus DC-Inconstandgy inspecting
itative difference in interpolation quality performed with eaclthe subtraction images in Fig. 27, DC-constant versus DC-
method. All pixels that differ by more than one grey scallconstant kernels are also differentiable. The eight-bit values
unit after forward and successive backward transformation arethe eye image (Fig. 1) range from O (black) to 255 (white).
shown in black, while all others are displayed in white. Since DC-inconstancy usually affects high grey values more

1) Interpolation Versus Approximationin Fig. 27, inter- than lower ones, the interpolation error by DC-inconstant
polators versus approximators can be recognized. Becalsenels is concentrated in bright image regions. From that
every third column is reproduced exactly by real interpolatioppint of view, Fig. 27(a) and (t)—(x) corresponds to DC-
the error images must show every third vertical imageconstant kernels, the truncated sinc as well as the Gaussian
line in white. Contrarily, approximators modify all pixels.family, respectively.
Fig. 27(d), (f), (0), and (p) obviously identifies approximation For most common applications, approximators as well as
methods: the quadratic and cubic B-spline approximators, tB€-inconstant kernels produce poor results. Quality differ-
Mitchell and Netravali's subjective best, and the notch filteences in DC-constant interpolators are indicated by the number
respectively. In the previous section, the Gaussian kernels afdlack pixels. Fig. 27(c), (h), and (I) shows many error pixels
shown not to be real interpolators. Especially those kerneafslinear, two-point cubic, and four-point cubic interpolations
with small ordersM fail to fit exactly the zero points of with a = —1.3, respectively. Note the latter kernel's overshoot
the ideal sinc function. This effect is verified by inspectinin the passband [Fig. 15(b)]. Nearest neighbor interpolation
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Fig. 27. (Continued.)Results of aspect ratio correction of the photograph. Pixels with efiloé are displayed in black. The frame indicates the inner area
for quantitative error comparisons ignoring border effects. (g) Cubic B-spline interpolation. (h) Cubic interpalatier®. (i) Cubic interpolation,N = 4,
a = —1/2. (j) Cubic interpolation,N = 4, « = —3/4. (k) Cubic interpolationN' = 4, « = —1. () Cubic interpolation,NV =4, a = —1.3.

would even be worse. However, in this particular task, trend the one obtained after computing a forward and backward
nearest neighbor method exactly reproduces the image becayesmmetric transforms(k,l) and r(k,l), respectively, were
the interpolation error introduced with the first transfornused for evaluation. According to our previous work, the
is compensated exactly by the second. Therefore, neamstmalized cross-correlation coefficiefitwas used to assess

neighbor is not displayed in Fig. 27. image similarity [21]

The N = four-point cubic interpolators often are used in
image processing. Fig. 27(i))—() compares the interpola‘uo Eu sk, Or(k,1) — KLsr
error for the parameter descending from-1/2, —3/4, —1, to — B _ —
—1.3, respectively. For = —3/4, the lowest number of error \/ 2ie 82k, ) = KL8) (3 (ks 1) = KLT?)
pixels is shown. Note that this parameter is obtained if the (34)

cubic kernel is forced to be C2-continuous. The same effec
is observed forV = six point cubics. In this experiment, the"

C2-continuous kernel [Fig. 27(n)] is superior to that propose To avoid border effects, the centered subimages within a 25-

by Keys [Fig. 27(m)]. The overall smallest error values are.
indicated by nearly white error images with only a few labele jxel frame have been extracted before (34) was computed.
n Fig. 27, this border is indicated by the rectangle. The

ixels: the cubic B-spline interpolation, as well as the C2- . ) .
P P P rder width was chosen with respect to the B-spline kernel.

continuous cubics and the Lagrange interpolators, each Win contrast to all other methods discussed in this paper, the
large kemel sizes [Figs. 27(g), (n), and (—(s), respectively esulting B-spline interpolation kernéPi"ch(z) is infinite.

o ) However,5Pinep () < 10~7 for » > x4 = 12. Because the
C. Quantitative Error Analysis number of pixels is halved by the perspective transform of our
The interpolation quality was quantitatively compared usintlpird experiment, the frame width was selected to2ber,.
a mathematical similarity measure. Again, the original imagdkhis size has also been confirmed experimentally.

heres and+ denote the mean of the original and the twice
raterpolated image of the dimensiois x L, respectively.
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Fig. 27. (Continued.)Results of aspect ratio correction of the photograph. Pixels with efiloé are displayed in black. The frame indicates the inner area
for guantitative error comparisons ignoring border effects. (m) Cubic interpola¥os; 6 (Keys). (n) Cubic interpolationN. = 6 (C2-cont.). (o) Mitchell
and Netravali's subjective bes\ = 4. (p) Notch filter, N = 4. (q) Lagrange interpolatiod&v = 4. (r) Lagrange interpolatiodv = 5.

In most medical applications of interpolation, the geometriés mentioned before, the nearest neighbor method exactly
transform is rather moderate and the number of pixels comproduces the image in this specific task. The kernel's
taining structured information may be reduced only slightlgO-discontinuities atrx| = 1/2 result in a shift of the pixel
after interpolation. Therefore, the correlation coefficiefitare values. In the case of aspect ratio expansion, this shift is
expected to be nearly 1.0 for all methods. To rank the varioggcktracked during the restoration of the initial image size.
interpolation methods a linear score is computed. AccordiRtherefore, no score is given for the nearest neighbor kernel.
to thg ker.nel size, !inegr interpolation is scored zero and cubie odd Lagrange kernels also show CO-discontinuities at
B-spline interpolation is scored one |z| = 1/2. Like the nearest neighbor effect incorporated with

G = Mean(C) — Mean(Clinecar ) (35) this specific transform, the score%- > 0.99 of the odd
©- Mean(Cspiine) — Mean(Clinear) Lagrange kernels do not reflect the general method’s quality.

Three common tasks of image interpolation in medicﬂl]The cubic B-spline interpolator’s quality also is obtained by

imaging have been introduced in Section Il for the experime ej C2-continuous cubic |n.terpolators with = 8 andN :_6
tal comparison of interpolation methods. The first experimeRPiNts. Note that the continuity of the second derivation of
was designed to quantify the qualitative results obtained RQlynomials also results in the best>4 4 kernel. However,
Section IV.B (Interpolation quality). However, experimentaiearly half of the improvement from th& = 2 linear FIR-
results depend on both the content of the scene and Hgsnel to theN — oo B-spline lIR-interpolator already is
geometric transform, which are analyzed by the second atained by the 2< 2 cubic interpolation. All approximators
third experiments, respectively. and the DC-inconstant truncated sinc interpolators result in
1) Correction of Aspect Ratios in CCD-Photographsworse than linear interpolation, independent of the size of
Table Il shows the similarities” and scoresS- obtained the kernel. In contrast to the excellent Fourier properties, the
by the aspect ratio correction of the eye image (Fig. 1gaussian kernels are not convincing in this experiment, which
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Fig. 27. (Continued.)Results of aspect ratio correction of the photograph. Pixels with erfof) are displayed in black. The frame indicates the inner
area for quantitative error comparisons ignoring border effects. (s) Lagrange interpolaties, 8. (t) Second-order Gaussian interpolatiaN, = 4.

(u) Second-order Gaussian interpolatiaW, = 6. (v) Sixth-order Gaussian interpolatioN = 6. (w) Sixth-order Gaussian interpolatiod = 8. (x)
tenth-order Gaussian interpolatiody = 8.

is caused by both their insufficient interpolator characteristics This time, only the tenth-order Gaussian kernel with= 8
and their DC-inconstancy. support points is superior significantly to the cubic B-spline
2) Rotation of MRI SectionsThe second interpolation taskinterpolator (p < 0.005). The C2-continous 8< 8 cubic
was performed by rotating the MR image (Fig. 2). In contrasind the N = 7-point Lagrange kernel have scores equal
to the aspect ratio correction, the number of pixels contribut the cubic B-spline interpolator and no significance was
ing to the image nearly is unchanged and almost all pixedemonstrated. In general, differences in scores of at least
must be recalculated for both forward and backward rotatiod.01 are required in Table III for statistical significange<
Therefore, the absolute value of the correlation coefficiefit005). Hence, the C2-continous cubic interpolator is best for
is reduced in general. Nevertheless, the amount of image= 6 and NV = 4 points. Note that slight variations of the
distortion caused by interpolation depends on the choskee parametes for the four-point cubic interpolation scheme
angulation. Fixed angles of 22.530°, and 43 have been used raise the scores from negative values (even worse than linear
for the comparison of interpolation methods in [14], [1], andhterpolation) up to 90% of the cubic B-spline’s IR quality.
[9], respectively. In this paper, 50 normal distributed angleEhe C2-continuous four-point cubitx = —3/4) performs
(N(p,0) = N(45°,10°)) have been determined randomlysignificantly bettep < 0.005) than all other cubic four-point
and used for quantitative interpolation error evaluation. THesrnels including those suggested by Keys.
mean correlatiotMean(C") of 50 corresponding forward and 3) Perspective Projection of X-Ray Image§he third ex-
backward rotations is summarized in Table Ill and scored periment was designed to assess the influence of the test
the same fashion as in the previous example. The standamége selection on the interpolation errors. A set of 50 dental
deviationsStD(C) verify the dependency of the current georadiographs was arbitrarily chosen from clinical records. Some
metric transform and were used fpivalue determination by of thesen vivoradiographs show teeth with or without fillings,
the Student’st-test. while others show dental implants (Fig. 3). The radiographs
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TABLE I cubic kernel already yields 96% of the improvement obtained
RESULTS OFASPECT RATIO CORRECTION OF THEPHOTOGRAPH by the migration from linear to B-spline interpolation. As
e Fea—— c 3 mentioned previously, it depends on the contents of the image
nterpolation sheme rder ¢ whether there is a gain from using a four-point C2-continuous
Nearest neighbor Ix1— 1.0000000  — cubic kernel or the cubic B-spline IIR-interpolator.
Linear 2x2 0.9999217 0
Cubic 2x2 a=0 0.9999563  0.45
Quadratic (approx.) 3x3 a=1 0.9995775 <0 . .
Quadratic (interpo.) 3x3 a=1 0.9999771 0.72 D. Computational Complexity
Lagrange 3x3 . 0.9999972 0.9 The convolution of N x N mask points with the weights
B-spline (approx.) 4 x4 cubic 0.9993620 <0 3 R
Cubic, h o T{sinc} 4x4 a= _é 0.9999896  0.89 h(z) of a s_e_parated kernel take¥® + N multiplications,
Cubic (C2-cont.) 4x4 a=-3 0.9999941  0.95 N? — 1 additions andN? + 1 memory accesses. The only
gUE?C ixi a= *1 g-ggggggi’ 8-22 differences in complexity between the various interpolation
uie R 3, 1 ' ' and approximation methods are expressed by the complexity
Cubic (approx.) 4x4 b=zc=3 0.9998717 <0 - . ’
Cubic (notch filter) 4x4 b= %C =21 09989262 <0 of the kernelh(x) and by the prefiltering step in the case of
Lagrange 4x4 0.9999820  0.79 B-spline interpolation. Table V shows the complexities of the
%aussuind _ ‘51 x ‘; M=2 g-gggégg; < 8 mere kernel$(x) and the computation of the prefiltered image
runcated sinc X - . < . . . . .
Lagrange 5 x5 0.9999985 1.0 values necessary for B—sp_l!ne |nterpola_t|on for one d|m_en5|on
Truncated sinc 6x6 — 0.9883882 < 0 only. Some kernels additionally require the evaluation of
Windowed sinc 6x6 — 0.9999926  0.93 mathematical functions such as sine or cosine, which can be
gug}c’(fé x T{fl)nc} 2*2 - g-ggggg‘;g ?-gg efficiently implemented by library calls.
uDb1C -cont. X - . . . . .
Lagrange Ex6 — 0.9999919 092 Th_e nearest nelghbor k_ernel itself needs_ no computatpns at
Gaussian 6x6 M=2 0.9999580 0.47 all. Linear interpolation simply uses the distances as weights
Gaussian 6x6 M=6 0.9999127 <0 whose computations involve one addition in each dimension.
ITr‘mcatOd sinc ;z ; - g'gggggg? 1<og The number of additions of the piecewise quadratic and cubic
Lagrange . . . T
Cubic (C2-cont.) 8x8 0.9999979  1.00 polynomials was reduced by specializing the kernel for the
Lagrange 8x8 — 0.9999955 0.97 various distances. Instead of computing the distance to the
Gaussian 8x8 M=6 0.9999949  0.96 current mask point first and then evaluating the polynomial, the
Gaussian 8x8 M=10 0.9999815 0.78 : ) s : :
olynomials’ coefficients are adjusted such that all polynomi-
B-spline (interpol.) — cubic 0.9999979 1 poly : poly

als take the distance to the center of the mask as argument and
no other distances need to be computed. This also reduces the
_ i number of terms in some polynomials, e.g., in the case of the
were acquwed_from the jaws _Of both humans and dogs. E e-parameter cubics. All polynomials are implemented using
image was projected perspectively both forward and backwaggs {omer scheme. The 1-D quadratic kernel with a mask size
Again, the standard deviation of the interpolation error as wejt r _ 3 requires six multiplications and five additions. The

as its mean were determined and analyzed for all methqglse\vise cubic kernels ne@ multiplications. Depending
included in this study. . on the parameter choice, some coefficients are zero and
The results of the third experiment are presented {Re number of additions varies. If B-spline interpolation is
Table IV.  Although the selected perspective transforfdtended, the image must be prefiltered. Uneeral. have
approximately halves the number of pixels, the meafeyeloped a fast recursive prefiltering algorithm, which in one
correlation is still about 1.0, but smaller in comparison to thgimension only needs two multiplications and two additions
former experiments. Since the standard deviation is enlargefhy). Additionally, the coefficientst for convolution have
the results in general depend more on the image content thgnpe scaled once. Furthermore for each pixel and each
on the interpolation task. However, all kernels wifi > 0 dimension, two values must be retrieved from memory and
significantly outperform the linear interpolator except the tWayne intermediate result, as well as the new pixel value, must
point cubic(Sc = 0.1). The p-values are below 0.005 excepthe stored. Compared with traditional matrix approaches such
for the 0.40-scored Mitchell and Netravali's subjective besgis LU factorization, this involves either fewer multiplications
kernel (p < 0.05). The Lagrange kernels withV = 8 and and additions (if the LU factorization is computed together
N = 6 points, the sixth-order Gaussian method with= 6, with the adjusted image points) or fewer memory accesses (if
and Keys’ 6x 6 cubic interpolator are scored larger than thehe LU factorization is precomputed). Each Lagrange term is
cubic B-spline interpolator. Again, the C2-continuous cubidake product of N — 1 scaled distances from the interpolated
with V = 8 and N = 6 equal the performance of the cubigoint to the mask points with the distance to the current mask
B-spline interpolator. Note that the differences among thmoint missing. If one splits each term into two products of the
large group of methods scored above 0.85 are not significaiigtances left and right from the current position and computes
statistically. As with the other experiments, the C2-continuowd! terms together, both subproducts can be determined in
cubic interpolator turned out to be the best cubig 4 mask. an iterative manner. In our implementation of the Gaussian
Significance was found to the = —1 kernel (p < 0.05) kernel, all terms with the same power are combined, their
and all other four-point cubic§p < 0.005), except the coefficient is precomputed, and the Horner scheme is applied.
a = —1/2 kernel introduced by Keys. The C2-continuoud his significantly reduced the number of operations (Table V).
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TABLE I
RESULTS OF ROTATING THE MR IMAGE

Interpolation sheme N Order Mean(C') StD(C') Sc

Nearest neighbor 1x1 — 0.9928903 11.8470-10~%1 <0
Linear 2x2 - 0.9979303  0.23633-10~* 0

Cubic 2x2 a=0 0.9982730 0.41216-107* 0.18
Quadratic (approx.) 3x3 a=1 0.9962795 0.01756-10"%* <0
Quadratic (interpol.) 3x3 a=1 0.9991039 0.26889-10~* 0.60
Lagrange 3x3 0.9996543 0.28137-10~1 0.88
B-spline (approx.) 4x4 cubic 0.9944113 0.00773-107* <0
Cubic, h o< T {sinc} 4x4 a=-1 0.9996622 0.11956-10~* 0.89
Cubic (C2-cont.) 4x4 a= —% 0.9996832  0.09277-10~% 0.90
Cubic 4x4 a=-1 0.9990500 0.87344-107*% 0.57
Cubic 4x4 a=-13 0.9971569 3.12454-10~%1 <0
Cubic (approx.) 4x4 b=1c= % 0.9986348 0.06956-107* 0.36
Cubic (notch filter) 4x4 b= %, c=-1 09902155 0.03835-107%* <0
Lagrange 4x4 — 0.9995642 0.13466-107* 0.84
Gaussian 4x4 M=2 0.9993863 0.58101-10~* 0.75
Truncated sinc 5x5 — 0.9966259 5.25823-107% <0
Lagrange S5x5 — 0.9998303 0.05710-10~* 0.98
Truncated sinc 6x6 — 0.9927909 8.93101-107% <0
Windowed sinc 6x6 — 0.9997279  0.12405-10~* 0.92
Cubic, h o« T{sinc} 6x6 — 0.9998022 0.11676-10"% 0.96
Cubic (C2-cont.) 6x6 - 0.9998630 0.07970-10~* 0.99
Lagrange 6 x6 0.9997688 0.12720-10~1 0.94
Gaussian 6x6 M=2 0.9997001 0.17202-10~% 091
Gaussian 6x6 M=6 0.9998250 0.13613-10"* 0.97
Truncated sinc TXT — 0.9978243 3.50711-10"%* <0
Lagrange TXT — 0.9998782 0.02683-10~% 1.00
Cubic (C2-cont.) 8x8 — 0.9998767 0.09077-10"% 1.00
Lagrange 8x8 — 0.9998388 0.11275-107* 0.98
Gaussian 8x8 M=6 0.9998630 0.10039-10~* 0.99
Gaussian 8x8 M=10 0.9998956  0.08430-10~* 1.01
B-spline (interpol.) —  cubic 0.9998789 0.09218-10* 1

E. Runtime Measurements function necessary to determine the weights. Increasing the

The runtimes of the various interpolation schemes wefPsder Of the Gaussian kemel slows the interpolation only

measured on a Sun Ultra 1. Sources have been compiL@Gdesﬂyaiven s0, this Its' t'mtﬁ ccl)(nsun:]ng, gniteﬁ|0|znc$/ can
using GNU's gcc version 2.7 without optimization. A shel € gained by precompuling the kernel's weights and storing

script was used to average 50 rotations of the MR ima%éem in a lookup table (LUT). Then, only the indexes are

of the head. As the rotation is quite time consuming andetermlned during interpolation and the weights to convolve

hinders th : fih interpolation times. Fi %th are retrieved from memory resulting BN memory
inders fhe comparison of fhe mere interpo’ation 1 ' 719 9%cesses. The dotted lines in Fig. 28 indicate the limits given

distinguishes between interpolation and geometric transfogg 4x 4 6x 6 and 8x 8 LUT's filled with 10000

time. The listed runtimes, however, refer to the entire tasijonis per unit. These sizes have been determined according

interpolation and rotation. o _ to unchanged interpolation errors and correspond to those
The rotation of the 256« 256 pixel image took approxi- g gqested by Osturt al. [26]. This is advantagous for com-

mately 0.10 s. Simple interpolation methods such as r_16""“Et?l?ationally intensive kernels like the Gaussians or truncated

neighbor, linear, and 2< 2 cubic interpolation are fairly gincs. However, direct computation of the cubic and Lagrange

fast and require less time than the rotation of the pix@leignts is faster than retrieving them from memory, as in the

coordinates. Also the 3« 3 kernels run quickly, both for |yt approach.

quadratic and Lagrange interpolations, with 0.12 and 0.13 s the image is only zoomed in or out, further accelera-

respectively. Compared with the>4 4 cubic kernel quadratic tions can be achieved. Especially for rotations, Danielson and

interpolation took 70.6% of the cubic interpolation timeHammerin, and Unsest al. describe fast separable algorithms

Our theoretical examinations suggest a performance gainwiich perform the rotation through successive 1-D distortions

approximately 60%. In general, the Lagrange kernels are([8], [9], and [14], respectively).

bit slower than the piecewise cubic polynomials of the same

mask size. Interpolation with the cubic B-spline took about

1.5 times as long as interpolation with ax44 cubic kernel, V. DisCussION

but less time than interpolation with a6 6 cubic kernel. The  Although image interpolation is as old as computer vision,

Gaussian interpolation required around 0.63, 1.10, and 1.5#rpolation technigques are still discussed, and new techniques

for mask sizes of 16, 36, and 64 pixels, respectively. This poare introduced [11], [19]. Furthermore, different names refer to

performance is caused by the evaluations of the exponenttz same techniques, and several names are used redundantly
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TABLE IV
REsuLTS OF PESPECTIVE PROJECTION OF X-RAY IMAGES

Interpolation sheme N Order Mean(C) StD(C) Se

Nearest neighbor 1x1 0.9936343 19.0280 1077 <0
Linear 2x2 — 0.9980701 5.25685- 1074 0

Cubic 2x2 a=0 0.9981339 5.04139-10~* 0.10
Quadratic (approx.) 3x3 a= % 0.9974805 6.98560-10~*% <0
Quadratic (interpol.) 3x3 a=1 0.9984671 4.19490-10~* 0.62
Lagrange 3x3 — 0.9984819 4.25232-107* 0.65
B-spline (approx.) 4 x4 cubic 0.9968359 9.02280 - 107* <0
Cubic, h o< T{sinc} 4x4 a=-1 0.9986753 3.78956-10~* 0.95
Cubic (C2-cont.) 4x4 a= —% 0.9986815 3.84236-10"* 0.96
Cubic 4x4 a=-1 0.9984586 4.28731-107* 0.61
Cubic 4x4 a=-13 0.9978173 5.71267-107%* <0
Cubic (approx.) 4x4 b=gf,c=% 009983238 456332-107" 0.40
Cubic (notch filter) 4x4 b= %, c= _}Z 0.9955231 13.4080-10"*% <0
Lagrange 4x4 - 0.9986569 3.82337-10"* 0.92
Gaussian 4x4 M=2 0.9974407 9.61097-10~% <0
Truncated sinc 5x5 — 0.9961569 11.3030-107% <0
Lagrange 5x5 — 0.9986287 4.01965-10"% 0.88
Truncated sinc 6x6 — 0.9815888 87.2910-10~* <0
Windowed sinc 6x6 — 0.9986980 3.76893-10"% 0.99
Cubic, h o« T {sinc} 6x6 0.9987203 3.76786-10~* 1.02
Cubic (C2-cont.) 6x6 — 0.9987081 3.87584-10~% 1.00
Lagrange 6x6 — 0.9987273 3.73975-10"1 1.03
Gaussian 6x6 M=2 0.9986155 4.08325-10"* 0.86
Gaussian 6x6 M=6 0.9986203 4.18948 - 10~1 0.87
Truncated sinc TXT7T — 0.9972603 7.51157-107% <0
Lagrange TxT7T — 0.9986487 4.03737-10~" 0.91
Cubic (C2-cont.) 8§x8 — 0.9987059 3.89373-10~% 1.00
Lagrange 8x8 — 0.9987291 3.79463-107% 1.04
Gaussian 8x8 M=6 0.9987178 3.84378-10~*% 1.02
Gaussian 8x8 M=10 0.9986632 4.07097-10~* 0.93
B-spline (interpol.) - cubic 0.9987056 3.89628-10~% 1

TABLE V

COMPUTATIONAL COMPLEXITY

Interpolation sheme Size Multiplications Additions Others
Truncated sinc N N +2 N -1 sin
Windowed sinc N 6N + 2 3N ~-1 sin +2N cos
Nearest neighbor 1 — — —
Linear 2 1
Quadratic 3 6 5 —
B-spline (approx.) 4 12 8 —

interpol. prefilter K 2 2 4 mem. access

Cubic, 1 param. N =2,4,6,8 3N 2N —1
Cubic, 2 param. 4 12 9 —
Lagrange N 4N -6 2N -3 —
Gaussian N N(X +5) NH+2)-1 N exp

The number of operations are given per pixel. K, N, and M denote the number of samples of the 1D-signal, the size, and the order of the

kernel, respectively.

to describe different methods. Therefore, one might hamember of image pixels before and after the interpolation is
trouble in finding the optimal kernel for a specific interpolatiomomparable, the interpolation error is expected to be smaller.
application. All interpolation methods smooth the image more or less.
This paper compares the most commonly used interpolatibnages with sharp-edged details and high local contrast are
techniques, including FIR-kernels with sizes ofxl1 to 8 more affected by interpolation than others. The comparison
x 8 and the cubic B-spline IIR-interpolator. Here, we dids accomplished by spatial and Fourier analysis of the kernel
not differentiate between the processes of decreasing dudctions, visual quality assessment, quantitative interpolation
increasing the data rate, which sometimes is called decimatiemor determination, computational complexity analysis, and
versus interpolation, respectively [4]. Instead, we define then time measurement based on representative applications
general characteristics of approximator versus interpolatand clinical images.
[11] and of DC-constancy versus DC-inconstancy. The in- For each interpolation technique discussed in this paper,
terpolation error increases with the more severe geometekamples can be given where each scheme is optimal. In
deformations and depends on the content of the image. If ttne following, each method’s key features are stressed. In the
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LUT4 LUT6 LUTS
1 1 1
1x1 Nearestneighbor  0.13s N1 ' ' ' Interpolation
2x2 Linear 0.15s ' ' X [ Geometric transform
_______ Cabic . Ol8s L !
3x3 Quadratic 0.22s ' ! '
...... Lagrange 023s T || :
4x4 Cubic 0.27 s : ; !
Lagrange 0.28s ! ' !
_______ GaussianM=2 0735 K - -
5xS Truncated sinc 063s K N\ NI
_______ Logrange  034s SN 0 . !
6x 6 Truncated sinc 0.72s [N NN \} \{: ]
Cubic 039s  ISISERNERY, :
Lagrange 042s EOEUSSSS ] : :
Gaussian M=2 110s K N N N -
GaussianM=6 1135 [ SR N
7x7  Truncated sinc 0.78 s NN NN = NN ]
Lagrange | 0505 K S
8x8 Cubic 054s K VNN i
Lagrange 058s R L SNNNNNNN
Gaussian M=6 1545 RN N
______ Gaussian M=10 __ 1.60s K NN AN NN
’ B-spline (interpol.) 0.36s m ' | ' l ‘ : 1 1
A EH T T 1
(I) s 0.125 s 0.15 s 0.115 s 1.00 s 1.25s 1.5s 1.75s

Fig. 28. Run times measured on a Sparc Ultra 1. Further speedup of the Gaussian and truncated sinc kernels is achieved by implementation via look
up tables (LUT).

frequency space, the ideal interpolation method is represenidte notch filter is the best kernel with respect to the cutoff
by the IIR sinc kernel. Simple truncations of the infinitdrequency characteristics, but it is weak in practice. Wolberg
sinc function result in DC-inconstant interpolators, but propetaims that despite the added flexibility made possible by a
windowing enables the design of high quality kernels. Theecond parameter, the benefits of the two-parameter method
Blackman—Harris windowed sinc yields the best stopbam®mpared to the one-parameter case should be scrutinized [13].
response in the Fourier domain. The nearest neighbor methditimately, the authors suggest that merging image restoration
is the fastest technique, but also incurs the largest interpolatieith reconstruction can yield significant improvements in the
error. The linear kernel requires no further multiplications. Alguality of reconstruction filters.

though it has limited features, linear interpolation was recently From our numerical simulations, the C2-continuous cubics
discovered by Grevera and Udapa to be the most frequerdgem superior to other cubic approaches. In addition, the C2-
mentioned method in publications during the past five yearentinuity yields a generic concept suitable for the design of a
[34]. However, with just a little increase of computation timéamily of kernels with different sizes. There are some interpo-
the 2 x 2 cubic kernel performs better when compared wittation tasks where the kernel’s dimensions should be locally
the linear interpolator in all the quantitative experiments of thadaptive, e.g., transforming cartesian into polar coordinates on
study. If the situation requires small kernel sizes, the two-poiatrigid grid. Based on their definitions, Gaussian, Lagrange,
cubic method should be chosen, which confirms Maelandisd C2-continuous cubic interpolations seem to be suitable
conclusion [6]. for such generic kernel families.

In general, large kernel sizes were found to be superiorThe B-spline interpolation method differs from all other
to small interpolation masks. Although modern computers at@chniques in this study. Since the B-spline approximator
able to process a huge amount of data in realtime, fast meth@sot applied directly to the image data, its corresponding
might be required for online resampling of image sequencksrnel is unlimited spatially. In other words, the B-spline
or films [15]. Using quadratic 3x 3 instead of cubic 2x interpolator is an IIR-filter. It produces one of the best results
2 interpolations, the interpolation error is decreased furthén. terms of similarity to the original image, and of the top
Our experiments show the three-point Lagrange techniquent@thods, it runs the fastest. Theory, efficient design, and
have smaller errors than the three-point quadratics, but ogdplications of B-spline signal processing are analyzed by
Lagrange kernels are CO-discontinuous while even kernélsser, Aldroubi, and Eden [35]-[37]. They found the third-
are Cl-discontinuous, which might be a knock-out criterioorder (cubic) B-spline interpolator to be sufficient for several
in some applications. practical applications [10]. Further enlargement of the kernel’s

Several approaches to the design of four-point cubic kernelsler will not only improve the interpolation quality, but
could be found in the literature. The two parameter approaalso increase the numerical complexity of the kernel and the
[31], [33] comprises interpolators as well as approximatorprefilter. In addition, this will magnify the edge effects, which
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already are considerable when compared to FIR methods. [15]
The Gaussian method introduced by Appledorn was de-
signed to have excellent Fourier properties [19]. Using Iardleﬁ]
kernels, the interpolation error was found to be quite small.
However, the sum of the samples of the Gaussian kernell}gl
not necessarily one, and the zero crossings do not fit exac %]
Since those properties are essential for interpolation, artifacts
are introduced, e.g., during aspect ratio correction of the eye
image (see Fig. 27). Therefore, at the expense of some mirﬁiﬁ]
irregularities in the Fourier domain, the Gaussian methqgh)
might be substantially improved if the kernels were forced
to be DC-constant interpolants and agree with (5) and (6). [21]
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