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Abstract In todays health care, imaging plays an impor-
tant role throughout the entire clinical process from diag-
nostics and treatment planning to surgical procedures and
follow up studies. Since most imaging modalities have gone
directly digital, with continually increasing resolution, med-
ical image processing has to face the challenges arising from
large data volumes. In this paper, we discuss Kilo- to Ter-
abyte challenges regarding (i) medical image management
and image data mining, (ii) bioimaging, (iii) virtual reality in
medical visualizations and (iv) neuroimaging. Due to the in-
creasing amount of data, image processing and visualization
algorithms have to be adjusted. Scalable algorithms and ad-
vanced parallelization techniques using graphical process-
ing units have been developed. They are summarized in this
paper. While such techniques are coping with the Kilo- to
Terabyte challenge, the Petabyte level is already looming on
the horizon. For this reason, medical image processing re-
mains a vital field of research.
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1 Introduction

Recent advances in biomedical signal processing and im-
age processing have frequently been reviewed [21, 35, 36].
Usually, such review articles are driven by classifying the
methods that are used for processing pixel and voxel data,
e.g., image segmentation, or their applications in diagnos-
tics, treatment planning and follow up studies. In contrast,
this paper focuses on processing large data volumes of med-
ical images and its related challenges.

During the last years, the amount of medical image data
grew from Kilo- to Terabyte. This is mainly due to improve-
ments in medical image acquisition systems with increasing
pixel resolution and faster reconstruction processing. For ex-
ample, the new Sky Scan 2011 x-ray nano-tomograph has a
resolution of 200 nm per pixel and the high resolution mi-
cro computed tomography (CT) reconstructs images with
8000 x 8000 pixel per slice with 0.7 um isotropic detail
detectability. This results in 64 Megabyte (MB) per slice.
New CT and magnetic resonance imaging (MRI) systems
can scale the image resolution and the reconstruction time.
Whole human body scans with this resolution reach several
Gigabytes (GB) of data load.

Large medical image data occurs in two different ways:
first, a huge amount of image data from thousands of im-
ages such as in picture archiving and communication sys-
tems (PACS) and second, a large amount of image data from
a single data set. In practice, both ways multiply.
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This paper discusses both aspects and is structured in the
following manner: Sect. 2 outlines specific current research
projects dealing with the problem of large image data. Sec-
tion 2.1 considers the management of thousands of medical
images, the difficulty of image content-based queries and
the acceptance by the physicians. Section 2.2 focuses on a
large data set from fluorescence microscope images depict-
ing molecular and cellular bioimaging probes. These images
can be tracked over time and need several GB to save the
raw data. Section 2.3 introduces another problem handling
GB data. In virtual reality (VR) stereoscopic real-time inter-
action and visualization use multiple views rendered from
a single huge data set. The efficiency of these methods de-
pends on the number of views, the pixel size of rendered im-
ages and the size of medical data sets. The rendered views
can be blended with additional information from analyzed
data like the flow field inside a human nasal cavity. An-
other example of large medical image data is described in
Sect. 2.4. It considers the problems associated with Giga- to
Terabyte data sets created by collection microscopic images
from human brain cuts in nerve fiber resolution. These cuts
are registered to a single volume data set. Three-dimensional
(3D) visualization and interaction with Giga- to Tera-voxel
data require specific modern software techniques. Section 3
gives an overview of advanced programming techniques on
this topic. In Sect. 4, we summarize and conclude this paper
with an outlook on future challenges.

2 Examples of large medical imaging
2.1 Medical image management and image data mining

PACS is a field, where an “explosion” of data has been ob-
served. In clinical routine, most modalities such as plain x-
ray, CT, MRI, ultrasound (US) as well as optical imaging
techniques such as endoscopy and microscopy have turned
direct digital, feeding the PACS with large amounts of im-
age data. Several TB per year must be handled by the sys-
tems [41], which is regarded as a logistic problem. In med-
ical informatics, we refer to “information logistics” when
we aim at providing the right information at the right time
to the right place [48, 49]. Several milestones of informa-
tion logistics have been reached already [23, 24]. Regarding
medical images, however, retrieval from PACS archives still
is based on alpha-numerical annotations, such as the natural
language text of diagnosis, or simply the name of the patient,
the date of acquisition, or some study meta-information.
Almost 15 years ago, Tagare et al. already reported on the
impact expected from accessing image archives and mining
image data by content rather than textual description [56],
and content-based image retrieval (CBIR) in medicine has
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become a subject of intense research [13, 38]. Appropri-
ate image features (signature) and similarity measures have
been analyzed, ranging from

— global (i.e., the entire image is described by a single sig-
nature) to

— local (i.e., each image object or region of interest (ROI)
is indexed with its own signature) to

— structural (i.e., a signature is assessing the local or tem-
poral constellation of relevant objects) approaches.

CBIR-PACS integration has also been addressed in re-
cent research [15, 46, 61]. However, CBIR-based methods
are still unavailable in today’s radiological routine. Possible
obstacles to the use of CBIR in medicine include the lack of
(i) translational cooperation between biomedical and engi-
neering experts, (ii) effective representation of medical con-
tent by low-level mathematical features, (iii) comprehensive
system evaluation and appropriate integration tools [38].

The image retrieval in medical applications (IRMA,
http://irma-project.org) approach aims at providing a frame-
work for medical CBIR applications including interfaces to
PACS and hospital in formation systems (HIS) [19, 34]. In
other words, IRMA exactly addresses the Kilo- to Terabyte
challenge in medical image management and data mining.
Figure 1 depicts a web-based graphical user interface (GUI)
build from standardized IRMA in put/output (I/O) templates
[12]. In cooperation with the National Library of Medicine
(NLM) at the National Institutes of Health (NIH), United
States, a distributed retrieval system has been developed al-
lowing shape-based access to a large database of spine x-ray
images. In total, this database holds about 50 000 vertebrae.
In terms of data volume, the IRMA-based application sup-
porting screening mammography [43] is even more com-
prehensive. Currently, it holds 10517 digital mammogra-
phies with annotated ground truth, each in high resolution
and with replicates in different sample sizes. Depending
on the vendor of the imaging device, a single mammog-
raphy provides up to 54 MB of uncompressed data [58].
Here, the Kilo- to Terabyte step already applies. Hence, all
issues related to performance are unresolved, still crucial
and currently remain. Due to the steadily increasing amount
of medical image data, fast feature extracting and indexing
techniques are needed that simultaneously narrow the gap
between the numerical nature of features and the semantic
meaning of images. Combining image content with natural
language-based access to medical case records will provide
advanced case-based reasoning methodology for medical
diagnostics as well as treatment [42]. Therefore, interfac-
ing image processing with automatic text analysis forms the
subsequent challenge in medical informatics.

2.2 Bioimaging

A relatively young field generating rapidly increasing quan-
tities of image data is the investigation of biomolecular sys-
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Fig. 1 Content-based medical image retrieval using the IRMA frame-
work

tems by molecular and cellular bioimaging [17]. A single
(3D + r)-dataset acquired by fluorescence microscopy, for
instance, can easily reach a volume of several GB of raw
data. Recording only two such datasets per day leads to an
estimated mean data volume of about 1000 to 1500 GB
per year, making the visual inspection of this data impos-
sible. Apart from the logistics of handling this data, their
sheer volume also drives the need for automated analysis
[14, 40] to replace visual examinations. Biomolecular sys-
tems are intrinsically dynamic, thus making the quantitative
and reproducible analysis of motion the major challenge.
Accordingly, various approaches for tracking molecular or
cellular structures have been developed, with early work in
the 1970s e.g., [1]. In [11], methods are described to eval-
uate polymer transport and turnover in fluorescent speckle
microscopy (FSM), based on cross correlation and particle
flow. Approaches for tracking micro-tubules can be found
in [50], where active contours and a hidden Markov model
(HMM) are used [39], or in [14] for a speckle-based tech-
nique. A global minimization method by simulated anneal-
ing for the tracking of fluorescent structures was developed
in [47].

Many cell functions crucially depend on the dynamics
of the cytoskeleton, which, in mammalian cells, consists of
actin filaments, microtubules and intermediate filaments. An
approach to assess the influence of proteins such as GAR22
on the polymerization of microtubules is described in [27].
In [31], a registration-based method for tracking the con-
tinuous translocation of intermediate filaments towards the
nucleus is developed (Fig. 2). The motility of cells is in-
fluenced by so-called focal adhesions (FAs). The analysis
of their dynamics requires the segmentation and tracking of
FAs [63].

Motion estimation is often formulated as an ill-posed
problem [5]. In addition to measurements on the image
data the solution requires regularization via a priori knowl-
edge of the typically expected properties of the motion field.

Fig. 2 Cytoskeletal filaments of a living cell superimposed with mo-
tion vectors

These regularizers should reflect the properties of the mov-
ing structures, for instance by models from mathematical
physics [45, 57] or fluid flow models [8, 10], and lead to
mathematically tractable optimization criteria [16, 32, 33,
60]. In this context, an interesting question is how precise
these regularizers agree with models of cellular mechanics,
organization and formation.

2.3 Virtual reality in medical visualization

VR technology has long been a promising candidate for a
more efficient analysis of large data [59], the key hypoth-
esis being that the use of real-time, stereoscopic displays
and direct user interaction enables better understanding in
less time. General overviews on VR-based visualization are
given in Part VII of the Visualization Handbook by Hansen
and Johnson [22]. VR-based data analysis largely relies on
the key concept of interactive data handling in order to fa-
cilitate an intuitive trial-and-error exploration. One of the
major advantages of this approach is the rich user interface
provided by VR technology, which enables us to combine
interactive exploration and immersive sensation.

Although VR has become accepted as a valuable tool in
the analysis of simulated technical and physical processes,
in the medical world the situation is somewhat ambivalent.
In the clinical practice of medical imaging, VR has not yet
become widely accepted. Interviews with radiologists re-
vealed that they are well trained on the extraction of 3D
information from CT, MRI, and positron emission tomogra-
phy (PET) data which is presented as two-dimensional (2D)
slices. Also, presentation of medical images in VR requires
the preparation of raw data in a pre-processing step, thus
becoming a cost factor in the radiologists daily workflow.
However, the situation is quite different in research-related
activities. Here, scientists not only appreciate the potential
of VR for gaining insight into complex and large medical
data, but VR-based visualization has also proven its impact
for the discussion of results across disciplines between med-
ical experts and researchers from other fields.

@ Springer



1. Scholl et al.

Diffusion tensor imaging (DTI) is a good example for ac-
tive research going on in the medical field, which can profit
from VR-based visualization and interaction methods. DTI
currently provides the most advanced method for the assess-
ment of white matter fiber pathways in the living human
brain. Hereby, the course of the fibers is estimated by mea-
suring water diffusivity in the brain. From this DTI data,
an effective diffusion tensor can be estimated within each
voxel. The quantities as mean diffusivity, principal diffu-
sion direction, or anisotropy of the diffusion ellipsoid, can
be computed from the elements of the diffusion tensor [4].
In contrast to deterministic tractography, the probabilistic
approach accounts for the uncertainty within the estimated
white matter fiber pathways and allows for drawing a clearer
picture of the overall fiber architecture within the human
brain.

Traditional visualization software most widely used in
DTI tractography research only reconstructs fiber tracts as
solid paths in 3D without any information about the uncer-
tainty. Therefore, in a project of Jiilich Aachen Research Al-
liance (JARA, http://www.jara.org), a VR-based visualiza-
tion tool for the analysis of probabilistic tractography data is
being developed [30]. The interactive visualization of prob-
abilistic fiber tracts allows the domain scientists to directly
interpret their results in 3D space (Fig. 3). The mental work-
load previously required from judging 2D slices or missing
uncertainty information in non-interactive plots can be sig-
nificantly reduced. Different probability values are coded
with different colors and transparencies, permitting a 3D
impression of the fiber tract while still revealing its main
direction and the uncertainty around it. Using specific 3D
visualization and interaction methods, interesting parts of
the probabilistic fiber tracts can be revealed intuitively and
referenced with anatomical landmarks. This allows a more
accurate inspection of the anatomic structures in the direct
vicinity of fiber pathways. Domain experts have stated that
by combining anatomical information from a reference brain
with overlaying fiber tracking results in 3D, the visualiza-
tion gives considerably more valuable insight than standard
visualization methods.

The analysis of flow phenomena is another case where
VR-based, immersive visualization technology has gained
in importance in recent years. With the ever growing perfor-
mance of modern high performance computers, simulations
that are run on those machines are becoming more and more
complex. Today’s common visualization techniques are in-
adequate for analyzing current simulations, which are usu-
ally based on unsteady 3D processes. Here, utilizing VR
technology promises to facilitate the analysis procedure, be-
cause it allows for a visualization and interactive, explo-
rative analysis of complex, time-variant computational fluid
dynamic (CFD) data directly in 3D space. In the domain of
computational engineering science, VR technology has been
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Fig. 3 Interactive exploration of probabilistic tractography data in a
CAVE virtual environment

Fig. 4 The Virtual Windtunnel: Interactive exploration of the flow
field inside a human nasal cavity by real-time particle tracing in 3D
space

successfully employed for nearly two decades. One of the
first examples was the Virtual Windtunnel by Bryson et al.
[7].

Recently, a growing number of research projects have
been initiated in the medical field, where flow phenomena
play a crucial role. Fluid mechanics researchers, computer
scientists, and medical experts are collaborating within in-
terdisciplinary teams one concentrating on the investigation
of the aerodynamics of nasal respiration [25] and the other
on the computational analysis of artificial blood pumps [26].
Using the Virtual Windtunnel paradigm implemented in a
cave automatic virtual environment (CAVE)-like environ-
ment (Fig. 4) and direct interaction with the data in 3D space
(Fig. 5), researchers significantly profit from VR for identi-
fying and extracting relevant flow features in their datasets.

2.4 Neuroimaging
A new data set of the human brain with a volume ranging

to GB is generated by 1320 histological cuts [2, 44]. Each
cut has a thickness of 100 um and is scanned by polarized
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Fig. 5 (Color online) Direct interaction with “virtual red blood cells”
flowing through a simulated artificial blood pump allows an intuitive
navigation in space and time. Here, the domain expert picks a particle
in order to navigate to a specific point in time

B4t tramatar fuction for volurms 1

Fig. 6 (Color online) Multi-modal ray casting visualization of MRI
(blue) and PET (ocher) data sets with two different 1D transfer func-
tions

light imaging (PLI) with 3569 x 2700 pixel [3]. The total
amount of memory for all scanned images reaches 47.4 GB
or 11.9 GB using 32 or 8 bits per pixel, respectively. Nerve
fiber paths are reconstructed from PLI scans and saved in
a second huge data set. PLI-based reconstruction of nerve
fibers is comparable to DTI. However, PLI provides an extra
ordinary high resolution, which currently cannot be reached
using in-vivo techniques. Further, the polarized histological
cuts are scanned using a microscope and attain several TB
of volume per data set. Micron resolution meets nerve fiber
resolution and enables analysis of the architecture of nerve
fibers in human brain.

Interactive visualization and navigation is a challenging
task with these huge amounts of data. A particular 3D nav-
igator has been developed to visualize specific areas of the
brain with the corresponding nerve fiber data in real-time.
Interactive visualization of nerve fibers combined with PLI

scans can be achieved using a multi-modal technique. Here,
multiple volume data sets are combined [51]. For this pur-
pose, multiple data sets are loaded into the memory of the
central processing unit (CPU) or the graphics processing
unit (GPU), which requires memory space for all sets at
once.

Figure 6 shows a multi-modal ray casting from two vol-
ume data sets (MTI and PET from a head) combined in a
single 3D view using two different transfer functions. The
images from the brain are combined in a 3D view with pre-
viously reconstructed nerve fibers. Figure 7 represents a 3D
visualization of reconstructed nerve fibers from 36 PLI scans
from a small area of the brain 27.39 x 22.72 x 3.20 mm°.

3 Software techniques coping with large data

Due to the increasing load of data (Table 1) image process-
ing and visualization algorithms have to be adjusted. For ex-
ample, the artificial blood pump dataset consists of a 3.6 mil-
lion cell tetrahedral grid for each of 200 time steps, leading
to a total of 30 GB of data. Such data sizes are quite easy
to handle in standard visualizations. However, interactive,
real-time post-processing and rendering of the data on high-
resolution, immersive displays is a challenging task, requir-
ing the development of advanced parallelization, data man-
agement, and computer graphics methods. Future datasets in
this field are predicted to reach the TB level.

Scalable algorithms must be developed using parallel
techniques to reduce processing time and increase memory
efficiency [28]. If the data amount exceeds the memory of
the CPU or GPU, several techniques can be employed, in-
cluding compressed or packed representations of the data
[29], decomposition techniques, multi-resolution schemes
[20, 53, 54], or out-of-core techniques [18]. Recent research
combined bricking and decomposition with a hierarchical
data structure.

Here, we consider the interactive rendering of large vol-
ume data containing billions of samples [37, 52]. Different
programming steps are used for the data management: (i)
decomposition techniques to reach a multi-resolution sub-
division of the data, (ii) streaming techniques to asynchro-
nously reach the right viewing data, and (iii) algorithms to
render the volume visualization or to visualize the zoomed
data.

Decomposition techniques of volume data subdivide into
smaller bricks, which are processed further. Each brick de-
composes the data into a hierarchical multi-resolution using
data structures like binary space partitioning (BSP) tree, oc-
tree or kd-tree, can be used for the decomposition. The tree
structure is hierarchical where the leaves represent the orig-
inal data and the inner nodes hold a filtered, coarse-to-fine
representation of the original volume data and are saved out-
of-core. A streaming technique fetches the current viewing
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Fig. 7 (Color online) 3D visualization of 20 816 reconstructed nerve
fibers (15 MB) from 36 PLI slides of a human brain. The region with
size of 27.39 mm x 22.72 mm x 3.20 mm that is marked in red on the

left hand side is zoomed on the right. The color of the nerve fibers rep-
resents their direction. In the small area shown, all fibers have nearly
the same direction

Table 1 Examples of large medical image data (fps = frames per second; fpd = frames per day)

Data Resolution No of images No of slices No of pixel No of bits Total memory

Whole body MRI scan 8 mm 1 250 256 x 256 8 16 MB
Screening mammography 50 pm 4 1 5000 x 6000 16 230 MB
Whole body CT scan 1 mm 1 2000 512 x 512 12 750 MB
4D sequence of a beating heart 20 fps 240 512 x 512 12 per sec: 1.75 GB
PLI human brain scan 20 um 1 3200 8000 x 8000 16 200 GB
IRMA mammography database 50 um 10517 1 5000 x 6000 16 590 GB
Fluorescence microscopy 2 fpd per year: 1 TB
Microscopic human brain scan 1.5 ym 1 7200 106667 x 106 667 16 66 TB
LIFE full body MRI cohort 8 mm 200000 250 256 x 256 8 3PB
data asynchronously at runtime. Only this visible datais sent 2. Paralle]l GPU-based programming on a single node with

to the visualization pipeline which renders the specific 3D
view by using a GPU-based ray casting algorithm.

The main disadvantage of working with Giga- to Ter-
abyte volume data, aside from the logistic problem, is the
runtime performance. The user can’t accept waiting for an-
swers from the program. Therefore, current research is fo-
cused on advanced parallelization techniques in order to
reach an acceptable real-time response. These techniques
require different hardware architectures, with one or more
computers and one or more CPUs and GPUs. Several pro-
gramming languages have been developed to support such
architectures:

1. Parallel CPU-based programming on a single node (one
computer with multiple CPUs) with shared memory us-
ing threaded programming techniques like OpenMP or
QtThreaded.
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one GPU or multiple GPUs using programming lan-
guages for the massive parallel cores on the graphic card
[53-55, 62]. With advances in GPU architecture, several
algorithms have reached higher efficiency by transferring
the program from CPU to GPU. This means instead of
four to eight parallel CPUs, 240 to 480 massively paral-
lel processing cores on the graphic card are used. Several
languages have been developed by the graphic cards in-
dustry to code algorithms for execution on the GPU, for
example:

— Compute Unified Device Architecture (CUDA) is the
computing engine in NVIDIA graphics processing
units. C for CUDA is a C-like programming language
developed especially for NVIDIA graphic cards.

— Open Computing Language (OpenCL) is a framework
that executes across heterogeneous platforms consist-
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ing of CPUs, GPUs, and other processors. OpenCL
provides parallel computing using task-based and
data-based parallelism. OpenCL is the common lan-
guage for general purpose programming on any graph-
ics card.

3. Parallel programming on multiple nodes in a cluster of
linked computers connected through a fast local area net-
work (LAN), which is also referred to as Grid computing
[9]. Special software interfaces manage the communica-
tion between the processes, like the message passing in-
terface (MPI).

4 Summary and conclusion

Current research in medical image management and data
mining, bioimaging, virtual reality in visualization and neu-
roimaging has been discussed and advanced programming
techniques have been summarized. Handling Giga- to Ter-
abyte of image data, scalable programs have to be developed
to support different parallel hardware architectures. Modern
programming languages like C for CUDA, OpenCL and Qt-
Threaded have been introduced supporting process thread-
ing on several CPUs and GPUs.

The next level, from Tera- to Petabyte, is already looming
on the horizon. High-throughput nextgeneration sequencing
produces up to 100 TB of data for a single investigation (30
repetitions). In translational medical research, whole body
MRI is gaining popularity. The recently launched Leipzig
Interdisciplinary Research Cluster of Genetic Factors, Clini-
cal Phenotypes and Environment (LIFE) project in Germany
already aims at full-body MRI scanning of a population co-
hort with 200 000 subjects. Assuming a gray scale resolution
of eight bit, 256 x 256 pixel slices, and 8 mm slice thickness
[6], one scan yields about 16 MB, and the entire cohort will
be approximately 3 PB.

In the future, PACS, CBIR and HIS have to overcome
the logistic problem handling Tera- to Petabyte of biomed-
ical image data. Data compression, decomposition and par-
allelization techniques will be the keys in developing real-
time applications, which also attain the acceptance from the
physicians.

References

1. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW
(1976) Mobility measurement by analysis of fluorescence photo-
bleaching recovery kinetics. Biophys J 16(9):1055-1069

2. Axer M, Axer H, Grissel D, Amunts K, Zilles K, Pietrzyk U
(2007) Nerve fiber mapping of the human visual cortex using po-
larized light imaging. IEEE Trans Nuclear Sci, pp 4345-4347

3. Axer M, Dammers J, Grissel D, Amunts K, Pietrzyk U, Zilles K
(2008) Nerve fiber mapping in histological sections of the human
brain by means of polarized light. In: Conference Proceedings Hu-
man Brain Mapping, Melbourne

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Basser PJ, Mattiello J, Lebihan D (1994) MR diffusion tensor
spectroscopy and imaging. Biophys J 66:259-267

Bertero MA, Poggio T, Torre V (1988) Ill-posed problems in early
vision. Proc IEEE 76(8):869-889

Brennan DD, Whelan PF, Robinson K, Ghitta O, O’Brien JM,
Sadleir R, Eustace SJ (2005) Rapid automated measurement
of body fat distribution from whole-body MRI. AJR Am J
Roentgenol 185(2):418-423

Bryson S, Levit C (1991) The virtual windtunnel: an environment
for the exploration of three-dimensional unsteady flows. In: IEEE
Visualization’91, Proceedings, pp 17-24

Corpetti T, Memin E, Perez P (2002) Dense estimation of fluid
flows. IEEE Trans Pattern Anal Mach Intell 24(3):365-380
Coveney PV (2005) Scientific grid computing. Philos Transact A
Math Phys Eng Sci 363(1833):1707-1713

Cuzol A, Memin E (2009) A stochastic filtering technique for fluid
flow velocity fields tracking. IEEE Trans Pattern Anal Mach Intell
31(7):1278-1293

Danuser D, Waterman-Storer CM (2006) Quantitative fluorescent
speckle microscopy of cytoskeleton dynamics. Annu Rev Biophys
Biomol Struct 35:361-387

Deserno TM, Giild MO, Plodowski B, Spitzer K, Wein BB, Schu-
bert H, Ney H, Seidl T (2008) Extended query refinement for med-
ical image retrieval. J Digit Imaging 21(3):280-289

Deserno TM, Antani S, Long R (2009) Ontology of gaps in
content-based image retrieval. J Digit Imaging 22(2):202-215
Dorn JF, Danuser G, Yang G (2008) Computational processing
and analysis of dynamic fluorescence image data. Methods Cell
Biol 85:497-538

El-Kwae EA, Xu H, Kabuka MR (2000) Content-based retrieval
in picture archiving and communication systems. J Digit Imaging
13(2):70-81

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE Trans Pattern
Anal Mach Intell 6(6):721-741

Gerlich D, Mattes J, Eils R (2003) Quantitative motion analysis
and visualization of cellular structures. Methods 29(1):3-13
Gobbetti E, Marton F, Guitidn JA (2008) A single-pass GPU ray
casting framework for interactive out-of-core rendering of massive
volumetric datasets. Visual. Computing 24:797-806

Giild MO, Thies C, Fischer B, Lehmann TM (2007) A generic
concept for the implementation of medical image retrieval sys-
tems. Int J] Med Inform 76(2-3):252-259

Guthe S, Wand M, Gonser J, Strasser W (2002) Interactive ren-
dering of large volume data sets. IEEE Trans Vis Comput Graph
9(3):53-60

Handels H, Meinzer HP, Deserno TM, Tolxdorff T (2010) Ad-
vances and recent developments in medical image computing. Int
J Comput Assist Radiol Surg. doi:10.1007/s11548-010-0540-6
Hansen C, Johnson C (2004) The visualization handbook. Else-
vier, Amsterdam

Haux R (2006) Health information systems. Past, present, future.
Int J Med Inform 75:268-281

Haux R (2010) Medical informatics. Past, present, future. Int J
Med Inform 79:599-610

Hentschel B, Bischof C, Kuhlen T (2007) Comparative visualiza-
tion of human nasal airflows. Medicine meets virtual reality 15.
IOS Press, Amsterdam

Hentschel B, Tedjo I, Probst M, Wolter M, Behr M, Bischof C,
Kuhlen T (2008) Interactive blood damage analysis for ventricular
assist devices. IEEE Trans Vis Comput Graph 14(6):1515-1522
Herberich G, Ivanescu A, Gamper I, Sechi A, Aach T (2010)
Analysis of length and orientation of microtubules in wide-field
fluorescence microscopy. Lect Notes Comput Sci 6376:182-191
Howison M, Bethel EW, Childs H (2010) MPI-hybrid parallelism
for volume rendering on large, multi-core systems. In: Eurograph-
ics symposium on parallel graphics and visualization

@ Springer


http://dx.doi.org/10.1007/s11548-010-0540-6

12

1. Scholl et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Ihm S, Park I (1999) Wavelet-based 3D compression scheme for
interactive visualization of very large volume data. Comput Graph
Forum 18:3-15

von Kapri A, Rick T, Caspers S, Eickhoff S, Zilles T, Kuhlen K
(2010) Evaluating a visualization of uncertainty in probabilistic
tractography. In: Proc SPIE Med Imaging

Kolsch A, Windoffer S, Wiirflinger T, Aach T, Leube RE (2010)
The keratin filament cycle of assembly and disassembly. J Cell Sci
123:2266-2272

Komodakis N, Tziritas G (2007) Approximate labeling via graph
cuts based on linear programming. IEEE Trans Pattern Anal Mach
Intell 29(8):1436-1453

Komodakis N, Tziritas G, Paragios N (2007) Fast, approximately
optimal solutions for single and dynamic mrfs. In: IEEE Conf
Comput Vis Patt Recogni, pp 1-8

Lehmann TM, Giild MO, Thies C, Fischer B, Spitzer K, Keysers
D, Ney H, Kohnen M, Schubert H, Wein BB (2004a) Content-
based image retrieval in medical applications. Methods Inf Med
43(4):354-361

Lehmann TM, Meinzer HP, Tolxdorff T (2004b) Advances in bio-
medical image analysis past, present and future challenges. Meth-
ods Inf Med 43(4):308-314

Lehmann TM, Aach T, Witte H (2006) Sensor signal and image
informatics. State Art Current Top 47(2):57-67

Levoy M (1990) Efficient ray tracing of volume data. ACM Trans
Graph 9(3):245-261

Long LR, Antani S, Deserno TM, Thoma GR (2009) Content-
based image retrieval in medicine. retrospective assessment, state
of the art, and future directions. Int J Health Inform Syst Informat
4(1):1-16

Manjunath BS, Sumengen B, Bi Z, Byun J, El-Saban M, Fedorov
D, Vu N (2006) Towards automated bioimage analysis: from fea-
tures to semantics. In: Proc IEEE Int Symp Biomed Imaging, pp
255-258

Meijering E, Smal I, Danuser G (2006) Tracking in molecular
bioimaging. IEEE Signal Process Mag 23(3):46-53

Miiller H, Michoux N, Bandon D, Geissbuhler A (2004) A review
of content-based image retrieval systems in medical applications.
Clinical benefits and future directions. Int J] Med Inform 73(1):1-
23

Névéol A, Deserno TM, Darmonic SJ, Giild MO, Aronson AR
(2009) Natural language processing versus content-based image
analysis for medical document retrieval. ] Am Soc Inf Sci Technol
60(1):123-134

de Oliveira JEE, Machado AMC, Chavez GC, Lopes APB, De-
serno TM, Araujo A (2010) Mammosys: a content-based image
retrieval system using breast density patterns. Comput Methods
Programs Biomed 99(3):289-297

Palm C, Axer M, Grissel D, Dammers J, Lindemeyer J, Zilles L
(2010) Towards ultra-high resolution fibre tract mapping of the hu-
man brain: registration of polarised light images and reorientation
of fibre vectors. Front Human Neurosci 4(9):1-16

Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly
accurate optic flow computation with theoretically justified warp-
ing. Int J Comput Vis 67(2):141-158

Qi H, Snyder WE (1999) Content-based image retrieval in picture
archiving and communications systems. J Digit Imaging 12(2):81—
83

Racine V, Hertzog A, Jouanneau J, Salamero J, Kervrann C,
Sibarita JB (2006) Multiple-target tracking of 3d fluorescent ob-
jects based on simulated annealing. In: Proc IEEE Int Symp Bio-
med Imaging, pp 1020-1023

Reichertz PL (1977) Towards systematization. Methods Inf Med
16:125-130

Reichertz PL (2006) Hospital information systems. Past, present,
future. Int J] Med Inform 75:282-299

@ Springer

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Saban M, Altinok A, Peck A, Kenney C, Feinstein S, Wilson L,
Rose K, Manjunath BS (2006) Automated tracking and modeling
of microtubule dynamics. In: Proc IEEE int symp biomed imag-
ing, pp 1032-1035

Scholl I, Schubert N, Pietrzyk U (2010) GPU basiertes Volumen-
rendering von multimodalen medizinischen bilddaten in Echtzeit.
In: Bildverarbeitung fiir die Medizin 2010. Algorithmen, Systeme,
Anwendungen. Springer, Berlin

Shawn Mikula S, Trotts I, Stone JM, Jones EG (2007) Internet-
enabled high-resolution brain mapping and virtual microscopy.
Neurolmage 35:9-15

Strengert M, Magallon M, Weiskopf D, Guthe S, Ertl T (2004) Hi-
erarchical visualization and compression of large volume datasets
using GPU clusters. In: Eurographics symposium on parallel
graphics and visualization

Strengert M, Magallon M, Weiskopf D, Guthe S, Ertl T
(2005) Large volume visualization of compressed time-dependent
datasets on GPU clusters. Parallel Comput 31(2):205-219
Strengert M, Mueller C, Dachsbacher C, Ertl T (2008) CUDASA:
Compute unified Device and Systems Architecture. In: Eurograph-
ics symposium on parallel graphics and visualization

Tagare HD, Jaffe CC, Duncan J (1997) Medical image databases:
A content-based retrieval approach. ] Am Med Inform Assoc
4(3):184-198

Terzopoulos D (1988) The computation of visible surface repre-
sentations. IEEE Trans Pattern Anal Mach Intell 10(4):417-438
Trambert M (2006) Digital mammography integrated with pacs.
real world issues, considerations, workflow solutions, and reading
paradigms. Semin Breast Dis 9(2):75-81

van Dam A, Forsberg A, Leidlaw DH, LaViola J, Simpson RM
(2000) Immersive virtual reality for scientific visualization: a
progress report. IEEE Comput Graph Appl 20(6):26-52

Weickert J, Schnorr C (2001) A theoretical framework for con-
vex regularizers in PDE-based computation of image motion. Int
J Comput Vis 45(3):245-264

Welter P, Hocken C, Deserno TM, Grouls C, Giinther RW (2010)
Workflow management of content-based image retrieval for cad
support in pacs environments based on ihe. Int J Comput Assist
Radiol Surg 5(4):393—400

Westermann B, Ertl T (1998) Efficiently using graphics hard-
ware in volume rendering applications. In: Proceedings of SIG-
GRAPH’98, pp 169-178

Wiirflinger T, Gamper I, Aach T, Sechi AS (2011) Automated seg-
mentation and tracking for large scale analysis of focal adhesion
dynamics. J Microsc 241:37-53

Ingrid Scholl received the diploma
degree in computer science from
RWTH Aachen University, Ger-
many, in 1995. From 1995 to 1997,
she was a research scientist in
image processing at the Depart-
ment of Medical Informatics, Med-
ical Faculty, RWTH Aachen. Af-
ter two years maternity leave, she
was from 1999 until 2006 a se-
nior software developer at the GPC
Biotech AG and the MuellerBBM
VibroAcoustic GmbH in Munich.
Since 2006, she has been a profes-
sor of computer graphics at the FH

Aachen University of applied sciences, Aachen, Germany. Her re-
search interests are medical image processing, large data and multi-
modal visualization and general purpose GPU programming.



Challenges of medical image processing

13

Til Aach received his diploma and
Doctoral degrees, both with honors
in EE, from RWTH Aachen Uni-
versity in 1987 and 1993, respec-
tively. While working towards his
Doctoral Degree, he was a research
scientist with the Institute for Com-
munications Engineering, RWTH
Aachen University, being in charge
of several projects in image analy-
sis, 3D-television and medical im-
age processing. In 1984, he was
an intern with Okuma Machinery
Works Ltd., Nagoya, Japan. From
1993 to 1998, he was with Philips
Research Labs, Aachen, Germany, where he was responsible for sev-
eral projects in medical imaging, image processing and analysis. In
1996, he was also an independent lecturer with the University of
Magdeburg, Germany. In 1998, he was appointed a Full Professor and
Director of the Institute for Signal Processing, University of Luebeck.
In 2004, he became Chairman of the Institute of Imaging and Com-
puter Vision, RWTH Aachen University. His research interests are in
medical and industrial image processing, signal processing, pattern
recognition, and computer vision. He has authored or co-authored over
250 papers, and received several awards, among these the award of the
German “Informationstechnische Gesellschaft” (ITG/VDE), for a pa-
per published in the IEEE Transactions on Image Processing in 1998.
Dr. Aach is a co-inventor for about 20 patents. From 2002 to 2008, he
was an Associate Editor of the IEEE Transactions on Image Process-
ing. He was a Technical Program Co-Chair for the IEEE Southwest
Symposium on Image Analysis and Interpretation (SSIAI) in 2000,
2002, 2004, and 2006. He is a member of the Bio-Imaging and Sig-
nal Processing Committee (BISP-TC) of the IEEE Signal Processing
Society.

Thomas M. Deserno (né Lehmann),
PhD, is full professor of Med-
ical Informatics at the Medical
School, RWTH Aachen Univer-
sity, Aachen, Germany, where he
heads the Division of Medical Im-
age Processing. In addition to lec-
turing graduate courses on biomed-
ical imaging and image processing,
he co-authored the textbook Image
Processing for the Medical Sciences
(Springer-Verlag, 1997) and edited
the Handbook of Medical Informat-
ics (Hanser Verlag, 2005) and re-
cently Biomedical Image Process-
ing (Springer-Verlag 2011). His research interests include discrete re-
alizations of continuous image transforms, medical image processing
applied to quantitative measurements for computer-assisted diagnoses,
and content-based image retrieval from large medical databases. Dr.
Deserno has authored over 100 scientific publications, is Senior Mem-
ber of IEEE, a member of SPIE and IADMFR, serves on the Interna-
tional Editorial Boards of Dentomaxillofacial Radiology, Methods of
Information in Medicine, and World Journal of Radiology, and is Co-
editor Europe of the International Journal of Healthcare Information
Systems and Informatics.

Torsten Kuhlen is head of the
Virtual Reality Group at RWTH
Aachen University. In 2008, he was
appointed to a professorship in the
Department of Computer Science.
His research interests include ba-
sic technologies as well as scientific
applications of VR. For more than
10 years, he has been conducting
several VR joint research projects
in the field of mechanical engineer-
ing, flow simulation, medicine, and
life science. Since 2006, he is co-
speaker of the steering committee
of the VR/AR chapter of Germany’s
computer society.

@ Springer



	Challenges of medical image processing
	Abstract
	Introduction
	Examples of large medical imaging
	Medical image management and image data mining
	Bioimaging
	Virtual reality in medical visualization
	Neuroimaging

	Software techniques coping with large data
	Summary and conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


