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Abstract

Categorization of medical images means selecting the appropriate class for a given image out of a set of pre-defined categories. This is an

important step for data mining and content-based image retrieval (CBIR). So far, published approaches are capable to distinguish up to

10 categories. In this paper, we evaluate automatic categorization into more than 80 categories describing the imaging modality and direction

as well as the body part and biological system examined. Based on 6231 reference images from hospital routine, 85.5% correctness is

obtained combining global texture features with scaled images. With a frequency of 97.7%, the correct class is within the best ten matches,

which is sufficient for medical CBIR applications.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The increasing amount of digitally produced images

requires new methods to archive and access this data.

Conventional databases allow for textual searches on meta

data only. Often, the database scheme only holds references

to the image data, which are stored as individual files on the

file system. Especially images may contain semantic

information that cannot be conveyed by a textual descrip-

tion. Thus, a growing interest in image data mining and

content-based image retrieval (CBIR) can be observed [1].

While data mining denotes the analysis of (often large)

observational data sets in order to find unsuspected

relationships and to summarize the data in ways that are

better understandable to human observers [2], CBIR aims at
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searching image databases for specific images that are

similar to a given query image. Here, the search is based on

the appearance of the images instead of (or in addition to)

using a textual description. Usually, a sample image is

presented to the system, which answers this query by

returning all similar matches. This concept is referred to as

the query by example (QBE) paradigm. It was introduced by

Niblack et al. when presenting the query by image content

(QBIC) system in the early 1990s [3,4]. Consequently,

CBIR and the QBE paradigm do not directly aim at

summarizing data. Rather, they are concerned with the

understandable presentation of relevant extracts of a large

set of data to a user. However, the methods studied in CBIR

are mostly relevant to data mining in image databases, as

many data mining processes rely on notions of similarity or

distance between data items, which are also used and

investigated in CBIR research.

There are several areas of application for CBIR systems.

For instance, biomedical informatics compiles large image

databases. In particular, medical imagery is increasingly
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acquired, transferred, and stored digitally. In large hospitals,

several tera bytes of data need to be managed each year [5].

However, picture archiving and communication systems

(PACS) still provide access to the image data by

alphanumerical description and textual meta information.

This also holds for digital systems compliant with the

Digital Imaging and Communications in Medicine

(DICOM) protocol. Therefore, integrating CBIR into

medicine is expected to significantly improve the quality

of patient care [6].

Müller et al. have recently reviewed the increasing

research on content-based retrieval approaches to medical

applications [5]. The majority of research is focussed on a

particular image content, modality, body region, or

pathology. Therefore, categorization of medical images is

important for medical CBIR systems that are not restricted

to a specific context. Especially in applications of digital

radiology such as computer-aided diagnosis or case-based

reasoning, the image category is of major importance for

subsequent processing steps because it allows context-

specific selection of appropriate filters or algorithmic

parameters.

Categorization of medical images means image classi-

fication into a predefined order scheme. For instance, the

Systemized Nomenclature of Medicine (SNOMED, http://

www.snomed.org), the Medical Subject Heading (MeSH,

http://nlm.nih.gov/mesh), as well as the Unified Medical

Language Systems (UMLS, http://nlm.nih.gov/research/

umls) provide order codes for the body region examined,

the imaging modality used, and contrast agents applied for

the examination. But so far, the categorization is usually

done manually by the physician or radiologist during the

routine documentation. The DICOM header also provides

tags to decode the body part examined and the patient

position, which are usually set by the digital modality

according to the imaging protocol used to capture the pixel

data. However, this information cannot always be con-

sidered reliable [7]. Therefore, automatic and reliable

categorization of medical images is an important field of

research.

This paper is organized as follows. In Section 2, we

briefly review CBIR systems provided for medical appli-

cations. In particular, the semantics of features that are used
Fig. 1. Architecture of
in such systems is analyzed. In Section 3, we focus on

medical image categorization using global texture features.

The exhaustive experiments that are presented in Section 4

are based on a large set of more than 6000 images arbitrarily

selected from clinical routine and representing as many as

80 categories. Based on the promising results (Section 5), a

perspective of medical CBIR is given in Section 6.
2. Content-based image retrieval in medicine

Fig. 1 shows the general system architecture for content-

based retrieval. At data entry time, numerical features are

computed from each image stored within the database.

Using the QBE approach, the same features are extracted

from the query image and compared to the features stored

within the database. The images that correspond to the most

similar features are then retrieved from the database and

presented to the user to answer his query.

Each module in Fig. 1 also exemplifies where the

approaches of medical CBIR systems can be distinguished.

Most systems apply several restrictions to the input images

[5]. As mentioned before, in the majority of published

papers, the systems are unable to cope with images of more

than one modality or body region, since they implicitly or

explicitly use particular properties of the data during image

processing. For instance, the WebMIRS system proposed by

Long et al. combines text-based retrieval on the meta data

stored in a database with content-based retrieval on x-rays

of the human cervical and lumbar spines [9]. The images are

roughly segmented, the anatomical segments are labelled by

structural names, and finally these regions are classified

according to pathology or high-level semantic features of

interest. A high amount of a priori knowledge about the

structure of the images is used for these preprocessing steps.

Specific systems for computed tomographies (CT) of the

head, functional positron emission tomographies (PET),

mammographies, or photographies obtained in dermatology

are overviewed in [5].

Also, the Medical CBIR systems differ in query

formulation. Although the QBE paradigm is most promi-

nent, manually drawn sketches or shapes are also used to

input a query [10]. From the technical point of view, a large
CBIR systems.

http://www.snomed.org
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variety is found with respect to database organization (e.g.

distributed or central storage, indexing and fast access

methods), design of the retrieval engine (e.g. static or

learning from the user’s interaction, providing query

refinement and relevance feedback), and concepts of user

interfacing (e.g. proprietary or web-based front-ends,

complexity and usability).

However, the most important differences result from the

feature extraction methods and the distance measures that

are used to compute the most similar responses with respect

to a given query (Fig. 1). In the majority of systems, the

images are described by global features. Here, a single

numerical value or a small set of numbers, which are then

combined into a single feature vector, are used to represent

the entire image. In general CBIR approaches, these

numbers are computed from global color histograms. In

medical applications, color is rather seldom present and less

discriminative as compared to general image collections,

i.e. as obtained from the internet. Furthermore, most

information in medical images is local [6]. This opens the

so called semantic gap, which is defined as ‘the lack of

coincidence between the information that one can extract

from the visual data and the interpretation that the same data

has for a user in a given situation [1].’

In order to close the semantic gap, the image retrieval in

medical applications (IRMA) approach defines successive

semantic levels of information abstraction, which are

sequentially computed [8,11]. In the first stage of feature

extraction, global texture descriptions are used only to

determine the imaging modality and view direction as well

as the body region and biological system imaged. With

respect to the image category, appropriate local features are

used to partition the image into visually significant regions.

Since the level of detail may vary with respect to the query,

this segmentation is performed hierarchically by iterative

region merging. In the finest level of details, each pixel is

represented by its own feature vector while on the top level,

the entire image is merged into the root node, which is

connected to a single feature vector. As a result, the image is

represented by a graph in a tree topology and image

similarity is computed by means of graph or subgraph

matching. Based on different sets of features, a couple of

graphs is stored with each image and individually selected

according to the actual context of the user’s query. For

instance, queries concerning bone fractures or bone tumors

within the same skeletal radiograph are answered based on a

graph that was computed from edge or texture features,

respectively.

According to Müller et al., only five other research

projects currently aim at creating a content-based image

retrieval system for general medical applications, namely

I2C, COBRA, KMeD, MedGIFT, and ImageEngine [5]. The

ImageEngine [12] is primarily a text-based information

retrieval system but first experiments produced interesting

results in combination with some basic components of

computer vision. Both, I2C [13] and COBRA [14]
characterize the images based on global features only. In

I2C, these features are calculated from the complete image

and in COBRA, they are extracted from an automatically

segmented image region. The MedGIFT system is based on

the freely available GNU Image Finding Tool (GIFT) [15].

A hierarchical approach is applied that is based on effective

concepts used in textual information retrieval. In particular,

a very high dimensional feature space (dimensionality

approx. 85,000) of different low-level features is used to

compute inverted files that allow efficient access to the data.

Closer related to the IRMA approach, KMeD [16]

introduces four semantic layers to model local features

and their spatial relationship.

Regardless of the number of semantical levels defined by

each system, all of them apply global features on a rather

low level of semantics, i.e. features that directly describe the

appearance of the images compressing the information that

is based on the pixel values. Although several works discuss

semantic image retrieval [17–20], only some systems

attempt small steps towards this goal. For example, these

first steps consist of connecting low-level features with

textual high-level features [20]. Other systems try to find

objects in the images and a mapping of the objects in one

image onto the objects in another image [18,19]. This means

that a semantically valid segmentation is needed, which is

yet an unsolved problem in image processing, as image

segmentation is very closely connected to image under-

standing. Consequently, manual annotations are required in

several system approaches to medical CBIR [6].

In summary, the current state of the art of medical CBIR

systems is dominated by global low-level features applied

for different tasks, which, however, can all be expressed in a

short and concise manner by the term image categorization.
3. Categorization of medical images

In general, automatic categorization as a mapping of

images into pre-defined classes involves three basic

principles [21]:
(i)
 representation, i.e. the extraction of appropriate

features to describe the image content,
(ii)
 adaptation, i.e. the selection of the best feature subset

regarding discriminative information, and
(iii)
 generalization, i.e. the training and evaluation of a

classifier.
So far, automatic categorization of medical images is

restricted to a small number of categories. For instance,

several algorithms have been proposed for orientation

detection of chest radiographs, where lateral and frontal

orientation are distinguished by means of digital image

processing [22,23]. For this two-class experiment, the error

rates are below 1% [24]. In a recent investigation, Pinhas

and Greenspan report error rates below 1% for automatic
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categorization of 851 medical images into eight classes [25].

In a previous investigation of the IRMA group, six classes

are defined according to the body part examined from 1617

images and an error rate of 8% is reported [26].

However, such a low number of classes is not suitable for

applications in evidence-based medicine or case-based

reasoning. Here, the image category must be determined

in much more detail. In the following sections, it is therefore

analyzed whether global features can still be used to

distinguish medical images into a large number of

predefined categories that represent semantics rather than

dense clusters in feature space.
4. Experiments on automatic categorization
4.1. The image corpus

A detailed classification scheme has been developed to

encode medical images according to their content [27] The

four axes of the IRMA code assess the imaging technique

and modality (T-axis, four levels of detail), the relative

direction of the imaging device and the patient (D-axis,

three levels of detail), the anatomic body part that is

examined (A-axis, three levels of detail), and the biological

system being under investigation (B-axis, three levels of

detail). Thus, each image encoding has the form TTTT-

DDD-AAA-BBB, with presently 797 unique entities

available on the four axes.

Currently, about 10,000 images have been taken

randomly from clinical routine at the Aachen University

Hospital, Aachen, Germany, and manually IRMA-coded

resulting in more than 400 used codes. In contrast to other

coding schemes, the IRMA code is mono-hierarchical, i.e.

without cycles, which allows to uniquely merge sub-groups.

At the date of our experiments, the corpus contained 6335

images. Mostly, secondary digitized images from plain

radiography (5839 images) but also images from other

modalities, e.g. computed tomography and ultrasound

imaging were collected. All images have been categorized

by an experienced radiologist according to the IRMA code

[27]. In total, 351 different codes were assigned and several

codes were used for one or two images, only. Since it is

almost impossible to effectively categorize images from

categories with very few members available, we take

advantage of the IRMA-code hierarchy and pursue 2,1,2,

and 1 levels of detail on the T-,D-,A-, and B-axis,

respectively. This yields 135 unique IRMA codes matching

the scheme TT**-D**-AA*-B**. Additionally, a threshold

is applied for the minimum number of images in each

category and all images from categories below the threshold

are disregarded. This results in 6231 images from

81 categories using a minimum of five images per category

(Table 1).
4.2. Image features

As previously mentioned, global features describing

color and shape, which are commonly applied in CBIR-

systems, are mostly inapplicable in the medical domain.

According to previous investigations, we applied texture

measures and resized representations of the images as global

feature vectors.

4.2.1. Texture measures

Considering texture, a wide range of features has been

proposed in the literature. To make the texture properties

comparable, all images were scaled into an identical size of

256!256 pixels, ignoring the initial aspect ratio. Based on

several experiments, those features being most suitable to

distinguish medical images have been chosen:
1.
 Based on the fundamental work of Haralick and

coworkers [28], Tamura et al. suggested coarseness,

contrast, and directionality to describe an image’s texture

properties [29]. These features are computed on a per-

pixel basis. Therefore, we collect the values into a three-

dimensional histogram (6!8!8Z384 bins) and use the

Jensen-Shannon-divergence to measure the similarity

between two histograms [30].
2.
 Castelli et al. used various texture features to describe

image properties [31]. These encompass the global

fractal dimension (computed using reticular cell count-

ing), the coarseness, the gray-scale histogram entropy,

some spatial gray-level statistics, and the circular Moran

autocorrelation function. In all, 43 values are extracted

and combined into a feature vector.
3.
 Motivated from fast indexing of JPEG-compressed

images, Ngo et al. used the variance of the first nine

alternation current (AC) coefficients obtained by the

discrete cosine transform (DCT) over all 8!8 pixel

blocks of an image [32]. Applied to medical images,

results were improved when the direct current (DC) and

some more of the AC coefficients are also considered. In

this study, the first 21 DCT coefficients are used.
4.
 In 2001, Zhou and Huang proposed an algorithm to

capture properties of edges within an image [33]. A

water-filling process is applied to the binarized gradient

image. Canny’s edge detector is used to determine the

gradient. The three parameters, i.e. the deviation of the

Gaussian kernel used to smooth the image as well as

the lower and the upper threshold for the edge tracing

algorithm, were empirically optimized. According to the

authors’ initial suggestion, we use the filling time, fork

count, and loop count, where both counts are computed

for a global and a per-edge-segment maximum.

4.2.2. Scaled image representations

In previous work, down-scaled images r(x,y) and s(x,y)

have been used successfully as feature vectors. Here, r and s

denote the reference and the search image, respectively.
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To obtain vectors of identical size h!h, h2{8,16,24,32},

the images are again scaled ignoring their original aspect

ratio. For this type of feature, several similarity measures

can be applied.
1.
 Resulting from its mathematical simplicity, the Eucli-

dean distance measure (EDM)

DEDMðr; sÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh

xZ1

Xh

yZ1

ðrðx; yÞKsðx; yÞÞ2

vuut (1)

determines the pixel-wise quadratic distance between

both images. However, EDM results in large distances

for similar radiographs acquired from the same region of

the same patient within the same orientation but with

different radiation.
2.
 Adopted from signal processing, the normalized cross-

covariance function (CCF)
DCCFðr; sÞ Z max
jmj;jnj%d

Ph
xZ1

Ph
yZ1ðrðx Km; y KnÞK �rÞðsðx; yÞK �sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

xZ1

Ph
yZ1ðrðx Km; y KnÞK �rÞ2

� �
$
Ph

xZ1

Ph
yZ1ðsðx; yÞK �sÞ2

� �q
8><
>:

9>=
>; (2)

completely unordered vector field of pixel mappings
returns the maximum correlation over a selected warp

range, i.e. the two-dimensional translations over d pixels

are performed explicitly. In Eq. (2), �r and �s denote the

pixel-wise mean gray value of r and s, respectively. For

our experiments, we used dZbh/8c, where b$c denotes the

truncation of a real into the next lower integer value.

Note that CCF normalizes the image brightness, which is

another common cause of variability found in medical

images.
3.
 The tangent distance was introduced by SIMARD et al.

[34]. It models the manifold for each vector in the feature

space generated by small transformations by using a

linear approximation, the so-called tangent subspace.

The projection of a sample onto a reference’s subspace

can then be computed efficiently. Let t(r,a) denote a

transformation of an image r, which depends on L

parameters a2lL (e.g. the scaling factor and the rotation

angle). Then, the subspace is obtained by a linear

combination of the vectors vl, lZ1,.,L that are the

partial derivatives of t(r,a) with respect to al, which is

added to the resized image r(x,y). The tangent distance

DTAN is then defined as the minimum distance between

the tangent subspaces of reference and observation (two-

sided tangent distance). In the experiments, only one of

the two subspaces was considered (one-sided tangent

distance) [24]:

DTANðr;sÞ

Zmin
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh

xZ1

Xh

yZ1

rðx;yÞC
XL

lZ1

alvlðx;yÞ

 !
Ksðx;yÞ

 !2
vuut

8<
:

9=
;

(3)
Instead of an approximation for line thickness, as it has

been initially proposed by Simard et al. for optical

character recognition, a tangent modelling global

brightness is integrated. Since there is a trade-off

between important image details, which are lost when

the representation is too small, and robustness to noise or

non-perfect alignments, which is lost once the

representation gets too detailed, we chose sizes of

h2{16,24,32}.
4.
 Alternatively, the image distortion model (IDM) allows

local displacements for each pair of corresponding

pixels compared within the distance measure [35]. This

is especially useful for medical images due to individual

anatomical properties in each image. The policy is to

match each pixel of the sample image to one in the

reference image. This ensures that all sample pixels

are explained by the reference. To prevent a
between two images, it is useful to include the local

context into the search process for a correspondence

hypothesis. Denoting the coordinate offsets by x 00 and

y 00, while x 0 and y 0 denote the offsets within the search

window for a corresponding pixel, the distance is

computed by

DIDMðr; sÞ Z
XX

xZ1

XY

yZ1

min
jx0j;jy0 j%W1

X
jx00 j;jy00 j%W2

jjrðx Cx0 Cx00;

8<
:

y Cy0 Cy00ÞKsðx Cx00; y Cy00Þjj2

)
ð4Þ

where X, Y%h denote the size of the scaled images

keeping their original aspect ratio. The results are

improved if the horizontal and vertical image gradients

as computed by a Sobel filter are used instead of the

intensity values. For our experiment, W1Z2 (5!5

pixel-sized search window for corresponding pixels),

W2Z1 (3!3 pixels of local context), and hZ32 are

used.
4.3. Automatic classifiers

A k-nearest-neighbor classifier (k-NN) is used, which

embeds the distance measures for the features described

above. The classifier opts for the category which gets the

most votes over the k references that are closest to the

sample vector according to the distance measured. In our

experiments, k is chosen from {1,5}. This is a simple yet

effective method, which is also useful to present classifi-

cation results interactively.
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According to Jain, classifier combination can be grouped

into three main categories [21]:
(i)
Table

The 8

Categ

index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

The I
parallel,
(ii)
 serial (like a sieve), and
(iii)
 hierarchical (comparable to a tree).
Since it is an easy way to post-process existing results

obtained from the single classifiers, the classifiers are

combined parallel. Another reason is that we examine

dynamic category partitioning of the image corpus and do

not focus on the optimization of one static category set at

present. For parallel combination, the classifier results are

first transformed to a common scale. Then, a weighted

summation of the results is performed to compute
1

1 image categories in use for evaluation

ory IRMA code Images Ca

ind
Absolute Relative (%)

11**-1**-50*-0** 1278 20.51 42

11**-2**-50*-0** 611 9.81 43

11**-1**-41*-7** 448 7.19 44

11**-2**-23*-7** 179 2.87 45

11**-1**-20*-7** 174 2.79 46

11**-2**-33*-7** 165 2.65 47

11**-2**-31*-7** 157 2.52 48

11**-4**-21*-7** 155 2.49 49

11**-1**-31*-7** 152 2.44 50

11**-1**-33*-7** 139 2.23 51

11**-1**-80*-7** 124 1.99 52

11**-1**-70*-4** 116 1.86 53

11**-2**-94*-7** 105 1.69 54

11**-1**-94*-7** 101 1.62 55

11**-1**-46*-7** 99 1.59 56

11**-2**-32*-7** 89 1.43 57

11**-4**-62*-6** 87 1.40 58

11**-4**-61*-6** 86 1.38 59

11**-1**-91*-7** 86 1.38 60

11**-4**-41*-7** 85 1.36 61

11**-3**-62*-6** 82 1.32 62

11**-1**-32*-7** 82 1.32 63

11**-3**-61*-6** 80 1.28 64

11**-1**-96*-7** 75 1.20 65

11**-1**-45*-7** 65 1.04 66

13**-1**-80*-2** 64 1.03 67

11**-2**-92*-7** 64 1.03 68

11**-1**-92*-7** 64 1.03 69

11**-2**-41*-7** 63 1.01 70

11**-3**-94*-7** 60 0.96 71

11**-1**-51*-7** 54 0.87 72

14**-3**-20*-1** 52 0.83 73

11**-1**-95*-7** 45 0.72 74

11**-2**-96*-7** 44 0.71 75

11**-1**-21*-7** 43 0.69 76

11**-2**-95*-7** 36 0.58 77

11**-2**-46*-7** 36 0.58 78

14**-3**-72*-0** 34 0.55 79

11**-2**-43*-7** 34 0.55 80

11**-4**-31*-7** 31 0.50 81

11**-5**-91*-7** 29 0.47

RMA code is explained in Table 2.
the combined classifier vote. For a first experiment, a

smaller subset of the image corpus is used to optimize the

weighing coefficients, which are then applied to combine

the results for the full image corpus.

4.4. Evaluation

Based on the image corpus, exhaustive experiments were

carried out using the leaving-one-out scheme for evaluation

[36]. Each time, one image is used as the test image and the

remaining images as references. Then, the mean categoriz-

ation rate over all permutations is computed. The hierarch-

ical organization of the code allows to investigate

classification results at a certain level of detail (given

enough images per category for meaningful experiments).
tegory

ex

IRMA code Images

Absolute Relative (%)

11**-2**-91*-7** 29 0.47

14**-3**-73*-0** 28 0.45

14**-3**-21*-7** 28 0.45

12**-1**-73*-4** 28 0.45

11**-4**-23*-7** 28 0.45

11**-2**-44*-7** 28 0.45

11**-1**-44*-7** 28 0.45

11**-2**-21*-7** 27 0.43

11**-1**-42*-7** 25 0.40

11**-2**-42*-7** 24 0.39

11**-1**-93*-2** 24 0.39

31**-2**-94*-7** 23 0.37

14**-3**-71*-0** 22 0.35

11**-1**-43*-7** 21 0.34

11**-2**-93*-7** 20 0.32

14**-3**-20*-7** 18 0.29

12**-1**-71*-4** 18 0.29

31**-2**-30*-7** 16 0.26

13**-1**-50*-0** 16 0.26

14**-3**-73*-4** 15 0.24

12**-1**-52*-3** 15 0.24

11**-2**-22*-7** 15 0.24

11**-1**-93*-7** 15 0.24

11**-1**-71*-4** 15 0.24

11**-1**-70*-5** 14 0.22

31**-3**-33*-7** 11 0.18

31**-3**-32*-7** 11 0.18

11**-1**-95*-2** 10 0.16

11**-1**-72*-4** 10 0.16

12**-1**-72*-4** 9 0.14

12**-2**-73*-4** 8 0.13

12**-1**-53*-3** 8 0.13

11**-1**-73*-4** 8 0.13

14**-4**-71*-2** 7 0.11

14**-3**-50*-0** 7 0.11

11**-1**-80*-2** 7 0.11

13**-1**-72*-2** 6 0.10

13**-1**-71*-2** 6 0.10

12**-1**-70*-4** 5 0.08

11**-2**-45*-7** 5 0.08

****-***-***-*** 6231 100.00



Fig. 2. Intra-class variability. All radiographs are coded identically (IRMA 1121-120-800-700).

Table 2

The IRMA codes used in Table 1

Technique

11** Plain radiography

12** Fluoroscopy

13** Angiography

14** Computed tomography
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Since the IRMA concept proposes to pursue the most likely

categories for each unknown image for further content

abstraction [8,11], it was also investigated whether the

correct category occurs among the first k neighbors. This

estimates how many hypotheses must be kept for sub-

sequent processing steps.
31** Magnetic resonance imaging

Direction

1** Coronal

2** Sagittal

3** Axial

4** Other

Anatomy

20* Cranium, unspecified

21* Facial cranium

22* Cranial base

23* Neuro cranium

30* Spine, unspecified

31* Cervical spine

32* Thoracic spine

33* Lumbar spine

41* Hand

42* Radio carpal joint

43* Forearm

44* Elbow

45* Upper arm

46* Shoulder

50* Chest, unspecified

51* Chest, bones

52* Lung

53* Hilum

61* Right breast

62* Left breast

70* Abdomen, unspecified

71* Upper abdomen

72* Middle abdomen

73* Lower abdomen

80* Pelvis, unspecified

91* Foot

92* Ankle joint

93* Lower leg

94* Knee

95* Upper leg

96* Hip

Biosystem

0** Unspecified

1** Cerebrospinal system

2** Cardiovascular system

3** Respiratory system

4** Gastrointestinal system

5** Uropoietic system

6** Reproductive system

7** Musculosceletal system
5. Results

The feature describing properties of the edge structure

performs worst in all experiments and does not exceed 22%

recognition rate (Table 1). The texture features proposed by

Castelli and the features based on Ngo’s approach perform

on a similar level of about 40%. Note however, that the

DCT-based feature vector contains only half the number of

components. For these features, a best recognition rate of

43.9% resulted. The histograms based on Tamura’s texture

features yielded the best results among the features

proposed for general-purpose image retrieval (66% correct-

ness). In nearly all cases, 5-NN improves the recognition

rate for this type of feature.

In general, the scaled representations perform better than

all texture features examined. Even for Euclidian distance

on 8!8 pixel representations, which is the most primitive

approach, EDM and CCF yield more that 70%. On very

small images, CCF performs worse than EDM. IDM for

representations scaled to a fixed height of 32 pixels yields

the best results of 82.3%. Contrary to the texture features,

the best results among the scaled representations are

obtained using 1-NN.

CCF and IDM model spatial variability within a local

neighborhood while the texture features capture rather

global image properties. Therefore, a combination of

classifiers based on the IDM (best among scaled represen-

tations) and the texture features according to Tamura (best

among global texture features) is evaluated (Table 3). An

improvement to over 85% recognition rate is obtained for

both, 1-NN and 5-NN classifiers. However, for the task of

retrieving the correct class within the ten best matches, the

best rate of 97.72% is obtained using re-scaled images of

24!24 pixels with CCF.

Additional experiments for radiographs only (5776

images from 57 categories) and a minimum number of

10 class members (6155 images from 70 categories for all



Table 3

Classification results based on 6231 images from 81 categories of at least five entries

Global feature Similarity measure 1-NN (%) 5-NN (%) Within 5 (%) Within 10 (%)

Edge structure Mahalanobis 17.46 21.78 40.06 89.17

DCT-based texture Mahalanobis 40.80 43.94 60.82 92.33

Texture (CASTELLI) Mahalanobis 39.51 42.29 61.27 93.36

Texture (TAMURA) Jensen-Shannon 66.10 65.99 80.16 96.47

Re-scaled 8!8 Euclidian, EDM 70.92 70.69 82.54 96.79

Covariance, CCF, dZ1 70.84 72.59 84.45 97.59

Re-scaled 16!16 Euclidian, EDM 71.88 70.47 82.60 97.03

Covariance, CCF, dZ2 75.86 75.73 86.45 97.62

Tangent, TDM 72.88 71.83 82.94 96.15

Re-scaled 24!24 Euclidian, EDM 71.79 70.33 82.51 96.95

CCF, dZ3 76.07 76.31 86.62 97.72

Tangent, TDM 72.40 71.45 82.76 96.32

Re-scaled 32!32 Euclidian, EDM 71.58 70.18 82.31 96.89

CCF, dZ4 76.06 76.42 86.60 97.71

Tangent, TDM 72.38 71.58 82.60 96.39

Down-scaled hZ32 IDM 82.30 80.71 90.11 97.03

TAMURA & IDM Parallel combination 85.48 85.36 92.97 95.25

The correctness is given for one-nearest-neighbor (1-NN) and five-nearest-neighbor (5-NN) classifiers. The frequency that the correct class occurs at least once

within a set of k best responses is displayed for kZ5 (within 5) and kZ10 (within 10).
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images and 5756 images from 54 categories) are provided in

[36]. However, the figures obtained do not significantly

differ from those presented in Table 3.
6. Discussion

Obviously, the recognition rates obtained by scaled

representations outperform all global texture measures

omitting any local information. Note that this result

corresponds to previous investigations [26]. Nevertheless,

the experiments show that global texture features are very

useful to improve the categorization accuracy within a

combined classifier, since their decision for each sample is

less correlated with the decision made by the classifiers

based on scaled representations.

The classifier combination improves the results because

the two single classifiers evaluate different aspects of an

image, Tamura texture features are global whereas the IDM

keeps local pixel neighborhood information. The classifier
Fig. 3. Different sample sizes. The arrows annotate (number of samples, correctn

significantly larger as compared to small sample sizes.
results are therefore rather uncorrelated and allow to

compensate errors from the single classifiers. With respect

to combined classifier results, error rates of 15% remain

(Table 3). In other words, 905 out of the 6231 images are

misclassified. This is due to several reasons:
†

ess
The visual appearance of images in some categories still

varies largely. This holds also for images coded with an

identical IRMA code. For instance, Fig. 2 illustrates the

high intra-category variability. All radiographs are coded

with plain radiography, coronal posterioanterior direc-

tion, body region abdomen, and the musculoskeletal

biosystem (1121-120-800-700). By grouping sparse

categories into larger supersets, this variability is further

increased: For example, from the 905 misclassified

images, 124 images belong to a category with five or less

samples when referring to the fully detailed code. This

includes 43 images that lie in an isolated category with

respect to the complete IRMA code.
of classification). The correctness for categories with many samples is



Fig. 4. The intra-class variability for large categories is compensated by their size: arbitrarily selected images from 11**-1**-50*-0** (upper row) and their

respective nearest neighbors (lower row), which are also all from 11**-1**-50*-0**.
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†

Fig

IRM
As seen in Fig. 3, the categories differ considerably in size.

In general, the recognition rates among the categories are

very inhomogeneous. Almost all large categories have a

recognition rate significantly above the overall rate of

85% whereas images from small classes are frequently

misclassified. This shows that a sufficient number of

representatives must be contained in the reference data.

To come closer to this requirement, reference labelling of

images is still in process. Note that large categories

contain enough references to allow reliable recognition,
. 5. Inter-class similarity. All mammographies in axial/craniocaudal view are co

A-coded 11**-4**-61*-6** (lower row).
even when pathologies or other alterations are present.

Fig. 4 shows images selected arbitrarily from the largest

category containing thoraces from coronal view.
†
 Although some categories differ in IRMA code, the

images have a similar appearance. Fig. 5 illustrates this

problem for mammographies that were acquired in

craniocaudal and oblique orientation. Inspecting the

confusion matrix reveals other cases such as finger vs.

toe, upper arm vs. upper leg, or different projections of the

cervical spine.
ded 11**-3**-61*-6** (upper row), while other/oblique orientation is



Fig. 6. Misclassification resulting from collimation field interference. The misclassified image is displayed on the left. Only the third nearest neighbor is from

the correct class.
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†
 The presence of collimation fields influences the feature

extraction process and the similarity computations

(Fig. 6). Especially the classifiers based on scaled

representations are influenced by these areas since they

produce significant contributions to distance calculation

when comparing background (all-white or all-black) to

image pixels. However, a preprocessing step which

identifies and masks out collimation fields can be added

to avoid this problem [37].

In the course of our experiments, the 1-NN seems to be

the better choice for EDM and IDM, while for the remaining

settings, the 5-NN led to better results or no significant

difference are observed. The problem of determining the

best setting for k is well known and general rules are hard to

construct. The problem is reflected in our results, as even on

the same data differences can be observed. More impor-

tantly, the hierarchical IRMA code employed to describe the
image content allows to investigate the results at an arbitrary

level of detail. This will help to develop a hierarchical

classifier scheme in the future. For instance, a second

classifier stage can be designed to distinguish different

views of mammographies or fingers and toes, which

frequently are confused based on a simple classification

using global features. In addition, such schemes allow to

incorporate a-priori knowledge on high semantical levels.

In conclusion, this work presents an extensive evaluation

of automatic categorization using global features on a

medical image corpus obtained from clinical routine. Even

for a large number of 81 categories, a correctness rate of

82.3% was obtained using a single classifier based on scaled

representations of the images and a similarity measure that

is robust to local image deformations. The categorization

rate is improved to 85.5% when a parallel combination of

single classifiers based on scaled representations and global

texture features is used. Considering image categorization
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as initial step for medical CBIR, the correct image

category should be within the five or ten nearest neighbors.

In this case, recognition rates of 97.7% are obtained using

re-scaled images with 24!24 pixels. Since further

improvements of the automatic categorization may result

from a hierarchical combination of classifiers, this correct-

ness, which is based on global low-level image features

only, can be regarded as sufficient for most applications in

data mining. It allows to compile medical CBIR systems

that are no longer restricted to a specific context. Likewise

the IRMA approach, where image categorization is the very

first step of image processing, the semantical knowledge

about the image content enables appropriate selection of

algorithms and their parameters for further image proces-

sing and analysis. Therefore, it is an important step to close

the semantical gap of currently available systems.
7. Summary

This paper presents a comparative evaluation of methods

for automatic categorization of medical images. Automatic

categorization is a first step towards the use of data mining

methods on medical image databases and it is obviously

necessary for medical applications such as cased-based

reasoning. Methods of content-based image access are

applied taking into account the special properties of medical

images.

Existing systems and features used in medical appli-

cations are briefly reviewed. Most of the systems are either

applicable to a very limited task only or they strongly rely

on alphanumerical descriptions or annotations that have to

be created manually. Contrarily, the approach presented

here is applicable to any type of medical imagery and not

limited to a narrow set of tasks, since the automatical

categorization allows for appropriate selection and para-

meterization of successive image processing steps.

So far, published approaches for automatic categoriza-

tion are designed for a small number of categories, i.e. not

more than 10 different classes. For instance, the separation

of frontal and lateral views of chest radiographs has been

frequently discussed in literature. The systems proposed are

able to solve this two-class problem with a correctness up to

99.9%. They are based on global features, which means that

a relatively small number of numerical values is used to

describe the entire image.

However, medical images usually render some otherwise

very successful discriminative features for images like color

inapplicable. Therefore, texture and structure descriptors as

well as down-scaled representations are evaluated as feature

types using a nearest neighbor classifier and the automatic

combination of classifier results. However, we still focus on

global features, where the entire medical image is

represented with less than 1024 numerical values.

Experiments for evaluation are carried out on a corpus of

6335 images selected arbitrarily from clinical routine. A
reference categorization of the images is encoded using a

multi-axial, mono-hierarchical coding scheme. This categ-

orization was done by experienced radiologists familiar

with the code. The hierarchy of the code allows the analysis

of the automatic categorization performance (depending

on the features and the classifier used) at various levels

of differentiation. Experiments are done for 54 and

57 categories or 70 and 81 categories using radiographs

only or all images, respectively. In particular, the exper-

iments based on 6231 images from all kind of modalities,

which were separated into 81 classes with at least 5 samples

per class are analyzed. A maximum classification accuracy

of 85% is obtained using a simple nearest neighbor

classifier. Accuracy is increased to 98% if the correct

category is only required to be within the ten best matches,

which is sufficient for most applications in content-based

image retrieval.

In conclusion, this work presents an extensive evaluation

of different methods for automatic categorization of medical

images. It is shown that the presented approaches are

promising to offer new possibilities for content-based access

to medical images as an accuracy of 98% within the ten best

matches is sufficient for most applications. Thus, content-

based image retrieval systems that are no longer limited to a

special context are becoming possible.
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[7] Güld MO, Kohnen M, Schubert H, Wein BB, Lehman TM. Quality of

DICOM header information for image categorization. Proc SPIE

2002;4685:280–7.

[8] Lehmann TM, Wein BB, Dahmen J, Bredno J, Vogelsang F,

Kohnen M. Content-based image retrieval in medical applications-A

novel multi-step approach. Proc SPIE 2000;3972:312–20.



T.M. Lehmann et al. / Computerized Medical Imaging and Graphics 29 (2005) 143–155154
[9] Long LR, Thoma GR. Landmarking and feature localization in spine

x-rays. J Electronic Imaging 2001;10(4):939–56.

[10] Petrakis GM. Design and evaluation of spatial similarity approaches

for image retrieval. Image Vision Comput 2002;20(1):59–76.
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Mark Oliver Güld received the Diploma degree in computer science

from RWTH Aachen in 2001. Since then, he works as a PhD student at

the Institute of Medical Informatics at the RWTH Aachen University

Hospital. His main research topic is the implementation of a distributed

image processing platform for image retrieval.



T.M. Lehmann et al. / Computerized Medical Imaging and Graphics 29 (2005) 143–155 155
Thomas Deselaers received the Diploma degree in computer science

(with honors) in 2004 from RWTH Aachen University, Germany. From

June 2001 to March 2003, he was a student researcher at the

Department of Computer Science of RWTH Aachen University. In

September and October 2002, he was a visiting student researcher at the
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