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Abstract. The monitoring of vital signs in a dynamic environment is challenging. 

This work demonstrates an approach to estimate the respiratory rate (RR) under real-

driving conditions by using two accelerometers for signal recording and de-noising. 

One accelerometer was attached to the seatbelt for recording respiratory movements; 

another one was attached to the left side of the car seat for recording noise. The 

frequency components of the noise were used to suppress the noise hidden in the 

signal. The performance of the proposed approach is evaluated for three testers 

under three driving conditions, i.e., engine on, flat road and uneven road. The 

estimated RRs for three testers are 11.54 ± 2.28 breaths per minute (bpm), 15.57 ± 

5.77 bpm, and 9.63 ± 4.58 bpm. The median estimated RR for three testers are 12.08 

bpm, 18.26 bpm, and 7.76 bpm, where the manually counted reference RRs are 12 

bpm, 18 bpm, and 7 bpm respectively. The average difference between estimated 

RRs and reference RRs is 0.71 bpm for the condition engine on, 3.36 bpm for flat 
road, and 4.58 bpm for uneven road. The results exhibit the ability of the proposed 

approach to estimate RR under real-driving conditions. 
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1. Introduction 

For many people, a car is an important living space, where people spend a considerable 

amount of time. As the way of driving is changing towards assisted or autonomous 

driving [1], an in-vehicle regular medical check-up may be more feasible than ever [2, 

3]. Therefore, a vehicle can be turned into a diagnostic space. To this end, the issue of 

monitoring vital signs in a dynamic environment such as in a moving car should be 

addressed. A meaningful vital sign is respiration, which can indicate a variety of 

pathological conditions including respiratory, cardiovascular and metabolic disorders [4]. 

The use of health enabling technologies can advance the monitoring of respiratory-

related parameters, such as respiratory rate (RR). Since respiration induces rhythmical 

body movements, microelectromechanical sensors (MEMS) mounted on a certain part 

of the body (e.g., chest wall) are usually applied to monitor respiration. For instance, by 

using accelerometers on the chest wall, the respiratory rate can be measured during 

different breathing conditions [4]. Respiratory flow waveforms can also be estimated 

from accelerometer data [5]. This low-cost and unobtrusive device can be used for 
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screening breath disorders such as obstructive sleep apnea, to support other clinical 

diagnostic approaches, e.g., gating technique in obtaining motion-free images [6, 7]. 

Nevertheless, the current research mainly investigates respiration monitoring under 

static environments. In-vehicle monitoring is still challenging due to the unstable 

environment such as the vibration from the moving vehicle, the running engine and the 

artifact from the human body [8, 9]. The objective of this work is to demonstrate an 

approach to estimate respiratory rate under real-driving conditions for autonomous 

driving using two accelerometers for signal recording and de-noising at the passenger 

seat. 

2. Methods 

2.1. Measurement System 

We set up a measurement system in a test vehicle (Mini One, 66 kW, BMW, Munich, 

Germany) using two sensor modules with three-axis accelerometers (Shimmer3 IMU, 

Shimmer, Ireland), and a laptop (Latitude 5480, Dell, Texas, USA). The sensors can 

generate accelerometers accompanied with UNIX timestamps. Based on our previous 

experiment experience, the position of side-waist can best reflect the respiratory 

movements [10]. To monitor the respiratory movements, one sensor was attached to the 

seat belt at the position side-waist, namely Sensor I. To record noise from the 

environment, another sensor was attached to the left side of the passenger seat, i.e., 

Sensor II (Fig. 1). The sampling rates for both sensors were configured as 204.8 Hz. The 

laptop was carried in the vehicle for storing and observing the respiratory movement data 

in real-time. Sensor I was connected to the laptop via Bluetooth. Sensor II stored the data 

in its local SD card, and the data were manually transferred to the laptop after the 

experiment. 

 
Figure 1. The positions of two sensors on the passenger seat. 

2.2. Experiment 

We designed an experiment covering three driving-conditions. As a preliminary work, 

three healthy volunteers participated in the experiment as testers. The BMI for male 

Tester 1 (T1) was 20.8, for female Tester 2 (T2) 22.0, and for male Tester 3 (T3) 23.4.  

Each tester was required to sit in a state of relaxation on the passenger seat where 

the sensors were placed. The test vehicle was driven under three conditions: (1) Engine 
on: start the engine but keep the vehicle in a parking lot; (2) Flat road: drive the vehicle 

on a flat surface without potholes at a speed 20 - 30 km/h. (3) Uneven road: drive the 

vehicle on a gravel parking lot at a speed 10 ± 2 km/h. The duration for each driving 

condition was 2 - 3 minutes, i.e., a session. Each tester experienced four sessions under 

one condition. Therefore, we collected the datasets consisting a total of 36 sessions. 
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2.3. Data Processing 

Sensor I generates data containing signal and noise, while the Sensor II generate data 

purely containing noise. A preprocessing pipeline was applied to the data of both sensors 

(Fig. 2).  

(1) Band-pass filter: A Butterworth band-pass filter was applied to tri-axial 

acceleration  Because the normal RR range is 8 to 20 breaths per 

minute (bpm) [11, 12], the cutoffs were configured as [0.05 Hz, 1 Hz], which 

were commonly used for extracting respiratory information [7, 13]. After this 

step, we obtained filtered acceleration .  

(2) Principal Component Analysis (PCA): The PCA was applied to the filtered 

acceleration, and the first principal component (PC) was selected as the fusion 

of the tri-axial data, which is .  

(3) Fast Fourier transformation (FFT): The PC was transformed from the temporal 

domain to the frequency domain using FFT. We selected the series referring to 

the frequency interval [0.05 Hz, 1 Hz]. After this step we obtained the Fourier 

series . 

 

 
Figure 2. Data preprocessing pipeline. 

 

After the preprocessing, we obtained two Fourier series  and  for each session. 

The magnitudes of  represent the frequency distribution of the mixture of the vital 

signal and noise, whereas the magnitudes of  represent the frequency distribution of 

the noise. Given a frequency component, the higher magnitude implies higher noise at 

the frequency component. Thus, we defined a suppressing factor (SF) aiming to suppress 

the frequency components in , where the noise is higher in . The kth SF can be 

calculated by the suppressing function, 

 

SF k  

 

The frequency distribution of the noise-inhibited signal can be obtained by .  

The highest peak in the targeting frequency interval [0.05 Hz, 1 Hz] can be used to derive 

the corresponding frequency . The whole process can be summarized as shown in 

Fig. 3.  

 
Figure 3. Data processing flowchart. 

2.4. Results Evaluation 

To evaluate the , we determined the reference RRs for all testers before the 

experiment. We observed testers’ respiration when they were in a state of relaxation and 

calculated their average RRs. We assume that a healthy person’s RR remains stable when 
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she/he has no active movements within a short term. The reference RRs are manually 

observed as 12 bpm, 18 bpm, 7 bpm for T1, T2, and T3 respectively. The differences 

between the estimated RRs and the reference RRs were compared across conditions and 

testers. 

3. Results 

3.1. Results of Data Processing 

 
Figure 4. FFTs of Sensor I data and Sensor II data of three driving conditions: engine on (column 1), flat 
road (column 2) and uneven road (column 3). 

 

The FFTs of Sensor I data reflect the frequency component distribution of a mixture of 

the vital signal and noise. The FFTs of Sensor II data reflect the frequency component 

distribution of the noise. The results confirm that both signal data and noise data have 

similar low-frequency distribution (Fig. 4). Applying the SF function to the noise FFT, 

we obtain a vector of SF. To apply the IF to the Sensor I data, some components of the 

low-frequency noise can be reduced and the signal is highlighted (Fig. 4 row 4). 

3.2. Comparison of Estimated and Reference RRs 

The estimated RRs for the three testers are 11.54 ± 2.28 bpm, 15.57 ± 5.77 bpm, and 

9.63 ± 4.58 bpm. The estimated RRs are distributed around the testers’ reference RRs 
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(Table I). The approach performs the best on T1’s. The medians (Q2) of estimated RRs 

for all testers are close to their reference RRs (Fig. 5, left). From the perspective of the 

driving environment, we calculated the difference between the estimated RRs and the 

reference RRs. The results show that under the condition engine on, we have the best 

estimation, with an average difference of 0.71 bpm and the lowest variance of difference 

(Fig 5, right). Under the condition of flat road, the average difference is 3.36 bpm; and 

under the condition of uneven road, the average difference is 4.58 bpm. 

Table 1. The median (Q2) and the 25% and 75% quantiles (Q1, Q3) of three testers’ estimated RRs. 

Tester Q1 (bpm) Q2 (bpm) Q3 (bpm) Reference RR (bpm) 

T1 11.18 12.08 12.61 12 

T2 14.62 18.26 19.11 18 

T3 6.86 7.76 12.25 7 

 

 
Figure 5. Violin plots of estimated RRs as for three testers (left) and the difference between estimated RRs 

and reference RRs for three driving conditions (right). The reference RRs are labeled by dashed blue 

horizontal lines (left).  

4. Discussions and Future Work 

With an additional sensor to intentionally record noise, the pure noise frequency 

components can be revealed. Based on the noise information, the suppressing factor is a 

more reasonable approach than directly subtraction in frequency domain between the 

two data sources. The results, including the distribution of estimated RRs and the average 

errors, exhibit the ability to de-noise respiratory signal in the frequency domain using an 

additional sensor. 

The results show the variance for different testers. The reasons could be the 

difference in the body sizes between individuals like females and males. The body size 

could affect the movements of the seatbelt induced by respiration. The orientation of the 

signal sensor varies for large and small body sizes. The respiratory depth also varies 

between individuals, which can influence the amplitude of sensor data. 

The results also demonstrate the difference of performance for the three selected 

driving conditions. Under the condition engine on, we can obviously get the most stable 

estimation in the given experiment. Even the variance of difference for flat road is larger 

than uneven road, it can still produce more centralized distribution than the uneven road. 

With engine on, the main noise comes from the high-frequency components and nearly 

no distortion on the signal. Unlike engine on, low-frequency components can be brought 

in when the car is driven on road. Uneven road means more low-frequency than flat road.  
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In this work, the simulated autonomous driving simplified the question of separating 

the signal from noise. More artifacts are possibly to be brought and many factors will 

affect the smoothness of breathing in regular traffic, such as congestion, aggressive 

drivers, mood of the driver. All these factors should be investigated in the future.  

One limitation of the current work is the manually observing reference RRs. A piezo 

respiration sensor placed on the chest and abdomen can be used to obtain more precise 

reference RRs [14]. The placement of the additional sensor for noise recording might be 

optimized. So far it is still unknown whether the placement of the noise sensor can 

influence the performance of estimation and which position could be the best choice. As 

a preliminary research, only healthy testers are participated. Unhealthy or patient with 

respiratory disease like COPD patient should be included and the sample size should be 

scaled up in in future work. 

The noise difficulty is unavoidable in estimating vital signs when implementing 

pervasive healthcare. The knowledge and experience acquired in this work might be 

generalizable to measurements of other vital signs using accelerometers such as the 

ballistocardiography (BCG). 
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