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ABSTRACT

Bone age assessment on hand radiographs is afitggaad time consuming task to determine growstutbances in
human body. Recently, an automatic processing ipgetombining content-based image retrieval armqpstt vector

regression (SVR), has been developed. This appnastevaluated based on 1,097 radiographs frortineersity of

Southern California. Discretization of SVR contiiggorediction to age classes has been done hyifigdtion. In this
paper, we apply novel approaches in mapping of dRinuous output values: (ii) rounding, where 8.added to the
values before truncation; (iii) curve, where a éinenapping curve is applied between the age claardgiv) age, where
artificial age classes are not used at all. Weuatalthese methods on the age range of 0-18 yeai2-17 years for
comparison with the commercial product BoneXpedt tis using an active shape approach. Our methesishrroot-
mean-square (RMS) errors of 0.80, 0.76 and 0.78syeaspectively, which is slightly below the perfance of the
BoneXpert.
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1. INTRODUCTION

Bone age assessment (BAA) on hand radiographfésjaently and costly task in radiological diagmostDiscrepancy
between chronological age and skeletal maturitffleced by the bone age, is indicating growth diséimces, other
diseases, and forms an important parameter in $arenedicine, too. Usually, BAA is performed matydly trained
radiologists, requiring domain knowledge and exgmres [1,2]. Conventional approaches suffer froimdeery
subjective or sophisticated in application. Henagjous approaches in automation of this procese baen published
[3-15].

Already in 1996, an automatic BAA method was prése3], classifying distal and middle phalanx bewé hands by
shape deformation features with classification gaié 70.5% and 73.7%, respectively. A private dsgh with 120
images has been used. In [4], feature extractiothergap between metaphysis and diaphysis of finges analyzed
and epiphyseal region of interest (eROI) introdudddthods for handling various issues in eROI etiom have been
published in a process pipeline and evaluated dh radliographs. The idea of ROI location was reasbpising
landmarks for modeling finger positions in a wir@del [5]. Registration has been done by affine dfammations,
comparing with a prototype image of a template haiwmvever, the work of [4,5] was focused on eRCtawntion and
registration, BAA actually was not performed. I1j,[@ecision trees have been trained with six companal features,
classifying ulna and proximal phalange | bones waithaccuracy of 97.6% and 95.3%, respectively. dpgpmoach of [7]
applied artificial neural networks to BAA by tramg of several models on various bone complexegréprocessing,
Gabor transform and Gaussian filtering have been s reduce noise and enhance structural featdese, training
and testing has been done on 120 and 40 imagegctegly. Both publications tried to adopt the malnmethod of [2]
with automatic approaches. The work of [8] was &&xlion carpal shape and area descriptors. Forapgtection of
resulting features, principal component analysi$ discriminate analysis have been used. Variowssifiars have been
trained on a private dataset, including 909 radiphs, and results compared to feature statistiteohand atlas from
[1]. A fully automatic process pipeline has beeasented for phalange bones [9]. Physiological featof the medial
finger and morphological features of the joint betw distal and middle phalanx are extracted argsifiad by neural
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networks on a dataset composed of 917 images. Oh fhe discrete cosine transformation (DCT) andinaar

discriminant analysis (LDA) were applied to BAA. DGnd LDA coefficients are used as features andpesed to
prototypes from a database. On 396 radiographsjded by Hanyang University Medical Center, an agererror of
0.6 years has been achieved. For improvement oparahility of automatic BAA approaches, a new hatlds dataset
has been published by the University of Southerlif@@aia (USC) [11]. The image set reflects a stamtreference
database for evaluation of automated BAA methadsddition, first experiments on the data set wiittzy classifiers
on carpal bone and phalangeal ROIs have been done.

Summarizing the state of the art, it is obvioust terious promising approaches have been presdoteautomatic
BAA. However, two significant weak points in preu work raised: (i) comparability of results is tresed by
evaluation on various private data sets and (iijysnal, heuristic approaches for feature extradtiave been applied,
which suffer from high variability in bone developnt resulting from different age, gender and etlonigin.

Improving these drawbacks, the USC hand atlas @éas bsed in our previous work that is based orectiitased image
retrieval (CBIR) [12]. Here, eROI patches are awtoally extracted from hand radiographs, similad tabeled regions
retrieved from the Image Retrieval in Medical Agplions (IRMA) framework [16,17], arkinearest neighbor (KNN) is
used for classification of algebraic combinatiofsederence ages of the retrieved images. A megor ef 0.97 years
was reported on the age range of 0-18 years. Tathad was improved applying a support vector macl8vM) for
classification [13,14]. Similarity between extratteROIls and prototypes was expressed by the corsslation
function (CCF), resulting in feature vectors witthd@ional gender information. A mean error of 0M8&s achieved on
the age range of 0-18 years.

Although this is a promising method, the naturas agnge is not applicable for binary classifieke IEVM. Hence, a
classification scheme with 30 classes (Tab. 1) wasduced according to [18] and several SVMs wesebined to
predict the bone age by a one-against-one votiigreBarding the combination scheme of binary SViksifiers, i.e.
one-against-one or one-against-all, one has to wdfeproblems in training since the classifiersialfy require same
class sizes, and with a high number of classeg @B@), the entire scheme may become instable. Tesk points were
improved in [15] using support vector regressiodR$[19,20,21] instead as SVM for BAA. The suppoftcontinuous
values by SVR avoided the application of voting mels gaining performance.

Class Agerangein years Class Agerangein years

00 0.00-0.66 15 5.00-5.50

01 0.66-0.83 16 5.50-6.00
02 0.83-1.00 17 6.00-7.00

03 1.00-1.16 18 7.00-8.00
04 1.16-1.33 19 8.00-9.00
05 1.33-1.50 20 9.00-10.00
06 1.50-1.66 21 10.00-11.00
07 1.66-2.00 22 11.00-12.00
08 2.00-2.33 23 12.00-13.00
09 2.33-2.50 24 13.00-14.00
10 2.50-3.00 25 14.00-15.00
11 3.00-3.50 26 15.00-16.00
12 3.50-4.00 27 16.00-17.00
13 4.00-4.50 28 17.00-18.00
14 4.50-5.00 29 18.00-99.00

Table 1: Age classes and corresponding age range [18].
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Figure 1: Processing pipeline with SVR integration and camims value preprocessing.

However, the continuous output of SVR was mappethéoclassification scheme by simple truncatiorpiEdiction
values. In this work, we aim at optimizing the po#idn of bone age classes by applying novel apgres in mapping
the continuous SVR output to a resulting bone agasurement.

2. MATERIAL AND METHODS

Fig. 1 illustrates the processing pipeline of owtmod. At first, epiphyseal centers on hand radipgs are located. The
selected regions are processed, eROls extractedotated into reference position. CCF values ammded and the
feature vectors are built. SVR is trained and #sulting model is used for evaluation.

2.1 Evaluation data

The USC hand atlas represents the standard datatdedor research in automatic BAA approachesday the image
set contains 1,103 hand radiographs from varioescagses, gender and ethnics [11]. The data epsed by semi-
automatic eROI location and extraction. In Figttie epiphyseal hand regions with their correspandiombers are
shown.

In total, 14 available eROls are used disregardirgepiphyseal centers close to the wrist. The eR(@& extracted,
normalized, and rotated into vertical alignmentctsan eROI is represented by a 60 x 50 pixels.rAftecessing of all
images, 29,050 eROls are available. To provide evaiplity to other work, 15 radiographs yieldinglhést mean error
have been excluded, and the resulting data sabéddd USC-15.

2.2 Feature extraction

In the first step of feature extraction, prototypeges from each class of USC data are randomlgechand fixed as
reference images. The eROI number 15 (cf. Figf2h@se prototype images are shown in Fig. 3 foB@lclasses. The
feature vector is based on the cross correlationtion (CCF) to express the similarity between eRk@itracted from
unclassified hand radiographs and the prototypedditionally, gender information (male vs. femal®) used to
acknowledge their different characteristics in gitogpurts [13,14,15].
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Figure 2: Epiphyseal ROIs and the corresponding region numbers.
2.2SVM and SVR

Due the high amount of classes, the SVM needs to be extended by the one-against-one approach, resulting in several
SVMs [13,14]. Each model divides two classes and the final prediction is determined by voting. In contrast, the SVR is a
regression method naturally handling continuous labels and prediction values. Given a training data set
{(Z1,y1), (X2, y2), ., (X, y2)} Of sizen with feature vectorg; and labely;, SVR tries to find a target functigf(x).

One godin approximation of this function is a maximal deviatioredbr every target valug;.

For this, are-intensive loss function is introduced that penalizes data points with higher deviatien Thenchoice o€

is critical: if the value ot is set too lowf (X) approximates optimally the target values in the training data but can lead
to conceivable bad results on the test data (over fitting). On the other hand,tdo high, the approximation of the
target values is imprecise and again results in a poor prediction. In such caseSYRanethod is used that implicitly
optimize e by means of the parameter[20]. Now, € is traded off against complexity of the model and certain error
tolerances of data points in the training set, so called slack variables.

N NEN

class 0 class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9

class 10 class 11 class 12 class 13 class 14 class 15 class 16 class 17 class 18

i

i

class 20 class 21 class 22 class 23 class 24 class 25 class 26 class 27 class 28 class 29

Figure 3: Prototype images of each class [14].
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Figure 4: Various mapping approaches in train and test phase.

2.3 Mapping

Due to the fact that SVR handles continuous values, various forms of input and output data transformation in
test phase are possible. In general, training can be done on age readings or age classes. In case of training c
continuous class prediction of SVR has to be mapped back to an age value in test phase. Fig. 4 illustrates
approaches, and their integration in train (left) and test phase (right). Those methods are denoted as SVR-TI
Round, SVR-Curve and SVR-Age:

1. SVR-Trunc was presented in [15]. Here, continuous SVR output is simply truncated in test phase to |
class scheme. The predicted age is determined as the center value of the corresponding class bounds

2. SVR-Round is a modified approach of SVR-Trunc. Instead of truncation of the output values, the predi
rounded in two steps. First, all values outside the classification scheme bounds are mapped to the clc
In the second step, floating point numbers are rounded as usual with a thresbaldAgje is accordingl
calculated to [15].

3. SVR-Curve referees to the most investigative but also promising transformation of the class-trained SVI
values. This approach uses a map reflecting relationship between age values and classes in train anc
Fig. 5 depicts the mapping curve for the SVR output range of classes labeled 0-29 (Tab. 1). As illustr
method supposes linear slope between the class bounds and accordingly performs assignment.

4. SVR-Ageinterprets BAA as natural regression problem without detouring (artificial) age classes. In con
mapping approaches used so far are based on the age classes. Since SVR is designed to cope witr
values, age readings are directly used as input values in training phase. The prediction value reflects i
can be immediately compared to radiologist readings for evaluation in test phase.

2.3 Evaluation

To produce comparable results, all experiments are done accordingly to settings in [13,14,15]. The random ¢

for all experiments fixed, class prototypes have been carried over from [13,14]. SVR-Round, SVR-Curve and

are evaluated using a five-fold cross-validation scheme. Optimal parameters have been determined in [15] by

and grid regression. In addition, experiments on each possible subset provided an optimal set of best regions. These
parameters have been reclaimed in our experiments.
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Figure 5: Mapping between age and class output in SVR-Curve.
For all experiments, the mean error was computed
1 . .
Mean =; Z?:l | Testl - Tradl

with n denoting the size of the data set, which here is the number of hand radiographs. The variables.,q4 denote
the estimated age and the radiologists reference reading, respectively.

For comparison, the root mean squared (RMS) error is additionally calculated in some experiments. It is define

1 . . 2
RMS :\/; Z?=1(restl - 7‘radl)
and gives more weight to high deviations from estimated age than the mean error.

3.RESULTS

The results of our experiments and the experiments done by [15,22] can be found in Tab. 2. Comparing SVR—
SVR-Round, the mean error decreases remarkably from 0.768 to 0.720 and rather slightly from 0.692 to 0.679
ranges of 0-18 years and 2-17 years, respectively. SVR-Curve further decreases the mean error to 0.695 yeal
years for hands of 0-18 years and 2-17 years, respectively. Using SVR-Age without class transformation, the 1
increases again on the age range of 0-18 years to 0.729 and remains nearly static for the age range of 2-17 ye
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Table 2: Mean error and standard deviation of experiments.

Dataset Age SVR-Trunc SVR-Round SVR-Curve SVR-Age BoneXpert[22]
uscC 0-18 0.768 £0.657 0.720+0.631 0.695+0.612 0.729 £ 0.595

2-17 0.692 +0.572 0.679+0.560 0.627 £0.542 3960.540
USC-15 2-17 0.799 (RMS) 0.801 (RMS) 0.737 (RMS) 0.756 (RMS) 0.61 (RMS)

For comparison with BoneXpert, the evaluation df egdproaches on USC-15 shows only slightly différessults
between SVR-Trunc and SVR-Round. SVR-Curve redtleesRMS value drastically to 0.737, but does nachethe
performance of BoneXpert. SVR-Age results in a Riue of 0.756, which is below that of SVR-Roudit still
higher than SVR-Curve.

For those approaches with training on age classeésherefore comparable class prediction valuesetraluated class
hits are illustrated in Table 3. The percentageaofectly classified hands rises, comparing SVRaAtrand SVR-Round,
from 35.52% to 38.87%. The class hit ratios withRsS&urve of 36.24% shows only slightly differencesSlVR-Trunc.

4. DISCUSSION

In this work, SVR has been readopted for BAA angrioved by smarter mapping methods. With SVR-Ro8MR-
Age and SVR-Map three new approaches have beeerpees all improving performance on USC data. Eatidn
shows that, regarding mean and RMS error, SVR-Cpregluces the best results on both age ranges.sirgcon
percentage of correctly classified hands SVR-Rqerformance better, resulting in higher accuracy.

Comparing with the commercial product BoneXpere pgrocess has been improved by application of S\ge-and
SVR-Curve, recognizable by significantly reduced ®Malue, but still does not reach the performarfcBameXpert.

Noticeable here is that with the application of SRBund, the mean error decreases but the RMS vatoains nearly
constant. A reason for this behavior could be théiguous experiment setting with removal of worsthhnds. If there
are many hands with high mean error values in ¢hetlse RMS value decreases proportionately masifgiant from

removing of these outliers. The high percentagexaft class hits for SVR-Round and therefore low@am of majorly

misclassified hand radiographs supports this assampAnyway, the setting of the experiments fomparison with

BoneXpert is not optimal and might be improved gsirew reference values that are produced with ¢tmeneercial

product.

Furthermore, it is conspicuous that SVR-Map perfolretter than SVR-Age. Differing from expectatithe application
of SVR-Age without detour over age classes, ancethee without loss of information in trainings sea is not mirrored
in the results. Training on age classes seemsrforpebetter than directly on age, even this diszation step is not
necessary anymore with SVR.

In addition, the USC images reflect a standard deta@omposed of carefully selected images. Thigfig useful for the
definition of prototypes but does not representdgiphand radiographs from daily routine. To evédude performance
of the presented methods in practical work, hardlogaphs with typical artifacts, e.g. noise, méggment, and
superimposition of irrelevant structures such astfrre fixations, should be processed.

Table 3: Class distance hits of all approaches in theragge of 0-18 years

Classdistance 0 1 2 3 4 5 6 7 8 9 10 >11
SVR-Trunc (%) 32.52 46.23 1553 3.36 1.09 0.73 0.09 0.27 0.09 0.00 0.00 0.09
94.28 | 5.72
SVR-Round (%)  38.87 43.78 12.62 2.72 1.18 0.27 0.27 0.09 0.09 0.00 0.09 0.02
95.27 | 4.73
SVR-Curve (%)  36.24 44.23 13.71 3.72 1.00 0.45 0.18 0.18 0.18 0.00 0.09 0.02
94.18 | 5.82
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Also, the current method of prototype selectionnmprovable. Alternatively, prototypes might be geated by mean
values or selection of optimal prototypes. In fartexperiments best regions selection should bened by parameter
optimization methods. Evaluation of all possiblésets ensures to find the optimal solution, buhéswvily time-

consuming.

5. CONCLUSION

In this work, we comprehensively examined the irdégn of SVR in the processing pipeline of BAA amiation. On a
USC image set eROls are located and extracted., Teature vectors are built up from CCF similaritgasurements,
compared to prototype images. For classificatiba, regression model SVR is used in combination wétious smart
age mapping methods for pre- and post-processimgefreadings. The introduction of mappings apgresdor SVR
continuous output improved the performance of thec@ss pipeline. With SVR-Round, SVR-Curve and SAfe,
three approaches have been presented decreasimgam#d&MS error, and increasing class hits, resmdgt Despite
these improvements, these methods do not yet teagberformance of the commercial product BoneXget is based
on the active shape model. Data-driven SVM methliks SVR, however, are more general and applicatiier image-
based classification problems, for instance, theinaous tumor staging in screening mammography; [23

Anyway, investigative evaluation of hand radiograplata promises good performance for automatic BA€omputer-
aided diagnostics (CAD) that in special should balyed with images from daily routine to evaluatetability in
practical application.
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