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ABSTRACT 

Bone age assessment on hand radiographs is a frequently and time consuming task to determine growth disturbances in 
human body. Recently, an automatic processing pipeline, combining content-based image retrieval and support vector 
regression (SVR), has been developed. This approach was evaluated based on 1,097 radiographs from the University of 
Southern California. Discretization of SVR continuous prediction to age classes has been done by (i) truncation. In this 
paper, we apply novel approaches in mapping of SVR continuous output values: (ii) rounding, where 0.5 is added to the 
values before truncation; (iii) curve, where a linear mapping curve is applied between the age classes, and (iv) age, where 
artificial age classes are not used at all. We evaluate these methods on the age range of 0-18 years, and 2-17 years for 
comparison with the commercial product BoneXpert that is using an active shape approach. Our methods reach root-
mean-square (RMS) errors of 0.80, 0.76 and 0.73 years, respectively, which is slightly below the performance of the 
BoneXpert. 
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1. INTRODUCTION  

Bone age assessment (BAA) on hand radiographs is a frequently and costly task in radiological diagnostics. Discrepancy 
between chronological age and skeletal maturity, reflected by the bone age, is indicating growth disturbances, other 
diseases, and forms an important parameter in forensic medicine, too. Usually, BAA is performed manually by trained 
radiologists, requiring domain knowledge and experiences [1,2]. Conventional approaches suffer from being very 
subjective or sophisticated in application. Hence, various approaches in automation of this process have been published 
[3-15].  
 
Already in 1996, an automatic BAA method was presented [3], classifying distal and middle phalanx bones of hands by 
shape deformation features with classification rates of 70.5% and 73.7%, respectively. A private data set with 120 
images has been used. In [4], feature extraction on the gap between metaphysis and diaphysis of fingers was analyzed 
and epiphyseal region of interest (eROI) introduced. Methods for handling various issues in eROI extraction have been 
published in a process pipeline and evaluated on 540 radiographs. The idea of ROI location was readopted using 
landmarks for modeling finger positions in a wire model [5]. Registration has been done by affine transformations, 
comparing with a prototype image of a template hand. However, the work of [4,5] was focused on eROI extraction and 
registration, BAA actually was not performed. In [6], decision trees have been trained with six computational features, 
classifying ulna and proximal phalange I bones with an accuracy of 97.6% and 95.3%, respectively. The approach of [7] 
applied artificial neural networks to BAA by training of several models on various bone complexes. In preprocessing, 
Gabor transform and Gaussian filtering have been used to reduce noise and enhance structural features. Here, training 
and testing has been done on 120 and 40 images, respectively. Both publications tried to adopt the manual method of [2] 
with automatic approaches. The work of [8] was focused on carpal shape and area descriptors. For optimal selection of 
resulting features, principal component analysis and discriminate analysis have been used. Various classifiers have been 
trained on a private dataset, including 909 radiographs, and results compared to feature statistics of the hand atlas from 
[1]. A fully automatic process pipeline has been presented for phalange bones [9]. Physiological features of the medial 
finger and morphological features of the joint between distal and middle phalanx are extracted and classified by neural 

                                                 
1 Corresponding author: Daniel Haak, Department of Medical Informatics, RWTH Aachen University, Pauwelsstr. 30, D – 52057 
Aachen, Germany, email: dhaak@mi.rwth-aachen.de, phone: +49 241 80 85174, fax: +49 0241 80 82426 

Medical Imaging 2013: Computer-Aided Diagnosis, edited by Carol L. Novak, Stephen Aylward, Proc. of SPIE 
Vol. 8670, 86700A · © 2013 SPIE · CCC code: 1605-7422/13/$18 · doi: 10.1117/12.2008029

Proc. of SPIE Vol. 8670  86700A-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/09/2013 Terms of Use: http://spiedl.org/terms



 
 

 

 

 

 

networks on a dataset composed of 917 images. In [10], the discrete cosine transformation (DCT) and a linear 
discriminant analysis (LDA) were applied to BAA. DCT and LDA coefficients are used as features and compared to 
prototypes from a database. On 396 radiographs, provided by Hanyang University Medical Center, an average error of 
0.6 years has been achieved. For improvement of comparability of automatic BAA approaches, a new hand atlas dataset 
has been published by the University of Southern California (USC) [11]. The image set reflects a standard reference 
database for evaluation of automated BAA methods. In addition, first experiments on the data set with fuzzy classifiers 
on carpal bone and phalangeal ROIs have been done. 
 
Summarizing the state of the art, it is obvious that various promising approaches have been presented for automatic 
BAA. However, two significant weak points in previous work raised: (i) comparability of results is restricted by 
evaluation on various private data sets and (ii) in usual, heuristic approaches for feature extraction have been applied, 
which suffer from high variability in bone development resulting from different age, gender and ethnic origin. 
 
Improving these drawbacks, the USC hand atlas has been used in our previous work that is based on content-based image 
retrieval (CBIR) [12]. Here, eROI patches are automatically extracted from hand radiographs, similar and labeled regions 
retrieved from the Image Retrieval in Medical Applications (IRMA) framework [16,17], and k nearest neighbor (kNN) is 
used for classification of algebraic combinations of reference ages of the retrieved images. A mean error of 0.97 years 
was reported on the age range of 0-18 years. This method was improved applying a support vector machine (SVM) for 
classification [13,14]. Similarity between extracted eROIs and prototypes was expressed by the cross-correlation 
function (CCF), resulting in feature vectors with additional gender information. A mean error of 0.83 was achieved on 
the age range of 0-18 years.  
 
Although this is a promising method, the natural age range is not applicable for binary classifiers like SVM. Hence, a 
classification scheme with 30 classes (Tab. 1) was introduced according to [18] and several SVMs were combined to 
predict the bone age by a one-against-one voting. Disregarding the combination scheme of binary SVM classifiers, i.e. 
one-against-one or one-against-all, one has to cope with problems in training since the classifiers usually require same 
class sizes, and with a high number of classes (here 30), the entire scheme may become instable. These weak points were 
improved in [15] using support vector regression (SVR) [19,20,21] instead as SVM for BAA. The support of continuous 
values by SVR avoided the application of voting methods gaining performance.  

Class Age range in years Class Age range in years 
00 0.00-0.66 15 5.00-5.50 
01 0.66-0.83 16 5.50-6.00 
02 0.83-1.00 17 6.00-7.00 
03 1.00-1.16 18 7.00-8.00 
04 1.16-1.33 19 8.00-9.00 
05 1.33-1.50 20 9.00-10.00 
06 1.50-1.66 21 10.00-11.00 
07 1.66-2.00 22 11.00-12.00 
08 2.00-2.33 23 12.00-13.00 
09 2.33-2.50 24 13.00-14.00 
10 2.50-3.00 25 14.00-15.00 
11 3.00-3.50 26 15.00-16.00 
12 3.50-4.00 27 16.00-17.00 
13 4.00-4.50 28 17.00-18.00 
14 4.50-5.00 29 18.00-99.00 

Table 1: Age classes and corresponding age range [18]. 
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However, the continuous output of SVR was mapped to the classification scheme by simple truncation of prediction 
values. In this work, we aim at optimizing the prediction of bone age classes by applying novel approaches in mapping 
the continuous SVR output to a resulting bone age measurement. 

2. MATERIAL AND METHODS 

Fig. 1 illustrates the processing pipeline of our method. At first, epiphyseal centers on hand radiographs are located. The 
selected regions are processed, eROIs extracted and rotated into reference position. CCF values are computed and the 
feature vectors are built. SVR is trained and the resulting model is used for evaluation. 
 
2.1 Evaluation data 

 
The USC hand atlas represents the standard data available for research in automatic BAA approaches. Today, the image 
set contains 1,103 hand radiographs from various age classes, gender and ethnics [11]. The data is processed by semi-
automatic eROI location and extraction. In Fig. 2, the epiphyseal hand regions with their corresponding numbers are 
shown. 
 
In total, 14 available eROIs are used disregarding the epiphyseal centers close to the wrist. The eROIs are extracted, 
normalized, and rotated into vertical alignment. Such an eROI is represented by a 60 x 50 pixels. After processing of all 
images, 29,050 eROIs are available. To provide comparability to other work, 15 radiographs yielding highest mean error 
have been excluded, and the resulting data set is labeled USC-15. 
 
2.2 Feature extraction 
 
In the first step of feature extraction, prototype images from each class of USC data are randomly chosen and fixed as 
reference images. The eROI number 15 (cf. Fig. 2) of those prototype images are shown in Fig. 3 for all 30 classes. The 
feature vector is based on the cross correlation function (CCF) to express the similarity between eROIs extracted from 
unclassified hand radiographs and the prototypes. Additionally, gender information (male vs. female) is used to 
acknowledge their different characteristics in growth spurts [13,14,15]. 
  

 

Figure 1: Processing pipeline with SVR integration and continuous value preprocessing.  
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2.2 SVM and SVR 
 
Due the high amount of classes, the SVM needs to be extended by the one-against-one approach, resulting in several 
SVMs [13,14]. Each model divides two classes and the final prediction is determined by voting. In contrast, the SVR is a 
regression method naturally handling continuous labels and prediction values. Given a training data set 
{����, ���, ���	, �	�, … , ���� , ���} of size  with feature vectors ��� and label y�, SVR tries to find a target function �����. 
One goal in approximation of this function is a maximal deviation of � for every target value y�.  
 
For this, an ϵ-intensive loss function is introduced that penalizes data points with higher deviation than ϵ. The choice of ϵ 
is critical: if the value of ϵ is set too low, ����� approximates optimally the target values in the training data but can lead 
to conceivable bad results on the test data (over fitting). On the other hand, if ϵ is too high, the approximation of the 
target values is imprecise and again results in a poor prediction. In such cases, the �-SVR method is used that implicitly 
optimize ϵ by means of the parameter � [20]. Now, ϵ is traded off against complexity of the model and certain error 

 
Figure 2: Epiphyseal ROIs and the corresponding region numbers. 

.  

 

Figure 3: Prototype images of each class [14]. 

 

tolerances of data points in the training set, so called slack variables.  
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2.3 Mapping 
 
Due to the fact that SVR handles continuous values, various forms of input and output data transformation in train and 
test phase are possible. In general, training can be done on age readings or age classes. In case of training on classes the 
continuous class prediction of SVR has to be mapped back to an age value in test phase. Fig. 4 illustrates evaluated 
approaches, and their integration in train (left) and test phase (right). Those methods are denoted as SVR-Trunc, SVR-
Round, SVR-Curve and SVR-Age: 
 

1. SVR-Trunc was presented in [15]. Here, continuous SVR output is simply truncated in test phase to fit in the 
class scheme. The predicted age is determined as the center value of the corresponding class bounds. 

2. SVR-Round is a modified approach of SVR-Trunc. Instead of truncation of the output values, the prediction is 
rounded in two steps. First, all values outside the classification scheme bounds are mapped to the closest class. 
In the second step, floating point numbers are rounded as usual with a threshold of 0.5. Age is accordingly 
calculated to [15]. 

3. SVR-Curve referees to the most investigative but also promising transformation of the class-trained SVR output 
values. This approach uses a map reflecting relationship between age values and classes in train and test phase. 
Fig. 5 depicts the mapping curve for the SVR output range of classes labeled 0-29 (Tab. 1). As illustrated, this 
method supposes linear slope between the class bounds and accordingly performs assignment.  

4. SVR-Age interprets BAA as natural regression problem without detouring (artificial) age classes. In contrast, all 
mapping approaches used so far are based on the age classes. Since SVR is designed to cope with continuous 
values, age readings are directly used as input values in training phase. The prediction value reflects an age and 
can be immediately compared to radiologist readings for evaluation in test phase.  

 
2.3 Evaluation 
 
To produce comparable results, all experiments are done accordingly to settings in [13,14,15]. The random chosen, but 
for all experiments fixed, class prototypes have been carried over from [13,14]. SVR-Round, SVR-Curve and SVR-Age 
are evaluated using a five-fold cross-validation scheme. Optimal parameters have been determined in [15] by grid search 

 

Figure 4: Various mapping approaches in train and test phase. 

and grid regression. In addition, experiments on each possible subset provided an optimal set of best regions. These 
parameters have been reclaimed in our experiments.  
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For all experiments, the mean error was computed 
 

 

Mean = 
�
� 	∑ |	��������� − �!"#�| 

 
 
with  denoting the size of the data set, which here is the number of hand radiographs. The variables ���� and �!"#	denote 
the estimated age and the radiologists reference reading, respectively.  
 
For comparison, the root mean squared (RMS) error is additionally calculated in some experiments. It is defined as 
 

RMS = $1
 	∑ ��est) − �rad)�2)=1  

 
and gives more weight to high deviations from estimated age than the mean error. 

3. RESULTS 

The results of our experiments and the experiments done by [15,22] can be found in Tab. 2. Comparing SVR–Trunc with 
SVR-Round, the mean error decreases remarkably from 0.768 to 0.720 and rather slightly from 0.692 to 0.679 on the age 
ranges of 0-18 years and 2-17 years, respectively. SVR-Curve further decreases the mean error to 0.695 years and 0.627 
years for hands of 0-18 years and 2-17 years, respectively. Using SVR-Age without class transformation, the mean error 
increases again on the age range of 0-18 years to 0.729 and remains nearly static for the age range of 2-17 years. 

 

Figure 5: Mapping between age and class output in SVR-Curve. 
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For comparison with BoneXpert, the evaluation of all approaches on USC-15 shows only slightly different results 
between SVR-Trunc and SVR-Round. SVR-Curve reduces the RMS value drastically to 0.737, but does not reach the 
performance of BoneXpert. SVR-Age results in a RMS value of 0.756, which is below that of SVR-Round but still 
higher than SVR-Curve. 
 
For those approaches with training on age classes and therefore comparable class prediction values, the evaluated class 
hits are illustrated in Table 3. The percentage of correctly classified hands rises, comparing SVR-Trunc and SVR-Round, 
from 35.52% to 38.87%. The class hit ratios with SVR-Curve of 36.24% shows only slightly differences to SVR-Trunc.  

4. DISCUSSION 

In this work, SVR has been readopted for BAA and improved by smarter mapping methods. With SVR-Round, SVR-
Age and SVR-Map three new approaches have been presented, all improving performance on USC data. Evaluation 
shows that, regarding mean and RMS error, SVR-Curve produces the best results on both age ranges. Focusing on 
percentage of correctly classified hands SVR-Round performance better, resulting in higher accuracy.  
 
Comparing with the commercial product BoneXpert, the process has been improved by application of SVR-Age and 
SVR-Curve, recognizable by significantly reduced RMS value, but still does not reach the performance of BoneXpert. 
Noticeable here is that with the application of SVR-Round, the mean error decreases but the RMS value remains nearly 
constant. A reason for this behavior could be the ambiguous experiment setting with removal of worst 15 hands. If there 
are many hands with high mean error values in the set, the RMS value decreases proportionately more significant from 
removing of these outliers. The high percentage of exact class hits for SVR-Round and therefore low amount of majorly 
misclassified hand radiographs supports this assumption. Anyway, the setting of the experiments for comparison with 
BoneXpert is not optimal and might be improved using new reference values that are produced with the commercial 
product.  
 
Furthermore, it is conspicuous that SVR-Map performs better than SVR-Age. Differing from expectation, the application 
of SVR-Age without detour over age classes, and therefore without loss of information in trainings phase, is not mirrored 
in the results. Training on age classes seems to perform better than directly on age, even this discretization step is not 
necessary anymore with SVR. 
 
In addition, the USC images reflect a standard data set composed of carefully selected images. This is very useful for the 
definition of prototypes but does not represent typical hand radiographs from daily routine. To evaluate the performance 
of the presented methods in practical work, hand radiographs with typical artifacts, e.g. noise, misplacement, and 
superimposition of irrelevant structures such as fracture fixations, should be processed. 
 

 

Table 2: Mean error and standard deviation of experiments. 
 

Dataset Age SVR-Trunc SVR-Round SVR-Curve SVR-Age BoneXpert[22] 
USC 0-18 0.768 ± 0.657 0.720 ± 0.631 0.695 ± 0.612 0.729 ± 0.595  
 2-17 0.692 ± 0.572 0.679 ± 0.560 0.627 ± 0.542 0.639 ± 0.540  
USC-15 2-17 0.799 (RMS) 0.801 (RMS) 0.737 (RMS) 0.756 (RMS) 0.61 (RMS) 

 

Table 3: Class distance hits of all approaches in the age range of 0-18 years 
 

Class distance 0 1 2 3 4 5 6 7 8 9 10 ≥11 
SVR-Trunc (%) 32.52 46.23 15.53 3.36 1.09 0.73 0.09 0.27 0.09 0.00 0.00 0.09 

 94.28 5.72 
SVR-Round (%) 38.87 43.78 12.62 2.72 1.18 0.27 0.27 0.09 0.09 0.00 0.09 0.02 

 95.27 4.73 
SVR-Curve (%) 36.24 44.23 13.71 3.72 1.00 0.45 0.18 0.18 0.18 0.00 0.09 0.02 

 94.18 5.82 
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Also, the current method of prototype selection is improvable. Alternatively, prototypes might be generated by mean 
values or selection of optimal prototypes. In further experiments best regions selection should be optimized by parameter 
optimization methods. Evaluation of all possible subsets ensures to find the optimal solution, but is heavily time-
consuming.  

5. CONCLUSION 

In this work, we comprehensively examined the integration of SVR in the processing pipeline of BAA automation. On a 
USC image set eROIs are located and extracted. Then, feature vectors are built up from CCF similarity measurements, 
compared to prototype images. For classification, the regression model SVR is used in combination with various smart 
age mapping methods for pre- and post-processing of age readings. The introduction of mappings approaches for SVR 
continuous output improved the performance of the process pipeline. With SVR-Round, SVR-Curve and SVR-Age, 
three approaches have been presented decreasing mean and RMS error, and increasing class hits, respectively. Despite 
these improvements, these methods do not yet reach the performance of the commercial product BoneXpert that is based 
on the active shape model. Data-driven SVM methods, like SVR, however, are more general and applicable other image-
based classification problems, for instance, the continuous tumor staging in screening mammography [23]. 
 
Anyway, investigative evaluation of hand radiographs data promises good performance for automatic BAA in computer-
aided diagnostics (CAD) that in special should be analyzed with images from daily routine to evaluate suitability in 
practical application. 
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