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Abstract 

A new formalism to generate pseudocolor spectra is introduced. Therefore, a parametric path in the RGB-color cube is derived to 
guarantee constant brightness progression. The resulting spiral-like curve allows the generation of various color spectra by adjusting 
the spiral’s frequency and phase. The formalism allows the determination of the resulting number of colors in dependency of both 
parameters. Therefore, these spectra are particularly useful to represent 12 bit data on common computer graphic adapters with 4096 
displayable pseudocolor values instead of 256 displayable grey intensities. In this paper, the spectra are applied to medical X-ray 
images yielding an enhanced visualization of the diagnostic information. 
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1. Introduction 

Modern methods of medical diagnosis, such as X-ray imaging (including CT and DSA), ultrasound or MRI, contain 
information that is usually displayed as grey scale pictures. Diagnosis is often based on small luminosity differences, e.g. 
textures caused by tumours. There are two major reasons why those images may be visualized by pseudocoloring. The 
first reason is that, although the human eye is able to distinguish lOI3 luminosity values, under usual illumination 

conditions, only less than 50 can be differentiated simultaneously [l]. However, the physiological properties of the eye 
permit much higher color sensitivity. Secondly, the original data in medicine often contains up to 4096 shades of grey 
(12-bit), while the true color graphic adapters (24-bit), which were usually used to display the images, quantize each 
direction of the RGB-cube with 8-bit resolution, yielding only 256 different grey values. Therefore, one can use 
pseudocoloring to emphasize the detailed structure in grey scale images. 

A lot of pseudocolor mapping schemes are described in the literature [2]. Following the edges of the RGB-cube results 
in a constant-saturation pseudocoloring. Clark and Leonhard [3] translated the grey scale into a rainbow-like color 
spectrum with respect to a physiological homogeneous brightness (Fig. 1). A major drawback of those mapping schemes 
is their piecewise definition, which complicates calculation and implementation. Concerning medical-x-ray images, 
constant-brightness as well as constant-saturation pseudocoloring extinguishes the relationship between high and low 
X-ray intensities, and thus leads to an essential loss of diagnostic values [4]. 

In this paper, a parametric grey-to-color transformation is introduced that, on the one hand, maintains the original 
progression of brightness and, on the other, generates plenty of color changes to make use of the eye’s capability to 
distinguish many colors at the same time. In the next section, the parametric equation for pseudocoloring in the 
continuous RGB-domain is derived. The length of the parametric curve can easily be calculated, and is used in Section 
3 to approximate the maximal number of different pseudocolors in the discrete RGB-domain. The pseudocoloring of 
medical X-ray images is exemplified in Section 4 before the results are discussed in Section 5. 
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Fig. 1. The transformation of the grey scale ramp (b) to a rainbow-like color spectrum (c) as proposed by Clark and Leonhard (31 is shown in the 

RGB-cube (a). The piecewise linear curve was found experimentally with respect to a uniform progression of hue and constant brightness. 

2. The spiral’s formalism 

Pseudocoloring can be described mathematically by a transformation curve in a color space (Figs. l(a), 2(a)). The 
curve is equidistantly sampled to create as many points as there are input grey values. Each grey value is mapped to the 
specific color defined by the coordinates of the corresponding sample point in the color space. 

Using the RGB-model, those mapping schemes can directly be used as look-up tables (LUT) for the computer 

graphics adapter. The main diagonal in the RGB-cube from black to white represents ascending grey values (intensities). 
To realize both color and continuous-brightness, the transformation curve should follow a spiral-like path along this 

diagonal. 
In a continuous three-dimensional domain a spiral-like curve along the z-axis with the parameter t is given by 

;(t)= (Z) = (;::;:;F::r). (1) 

The phase cp defines the direction, and frequency w is related to the number of rotations of the spiral around the z-axis. 
The function r(t) determines the form of the spiral, and z(t) its progression. To use Eq. (1) for pseudocoloring, the z-axis 
has to be mapped to the main diagonal of the RGB-cube. This can be realized by the matrix M: 

R 

0 

G = M-v’, 

B 

rotating the coodinate system (x, y, z)~ into (R, G, B)T. 

(2) 
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(b) 
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Fig. 2. Using Eq. (7) with the functions r(t) = r*(t) and z(r) = z,(t) and the parameters w = 271.1.3 and cp = 3.0, the spiral curve as shown in (a) is 

obtained. Part (c) shows the corresponding pseudocoloring of the grey scale ramp (b). 

2.1. Determination of matrix M 

Any rotation of a Cartesian coordinate system is given by: 

M= 

( 

cos,L?+ a;(1 - cosp) aZ sin p + a,a,( 1 - cos ,B) -ay sin p + a,az( 1 - cos ,0) 

-a, sin ,D + aya,( 1 - cos p) cosp+a:(l -cosp) a,sinp+a,a,(l -cos/3) (3) 

ay sin ,8 + a,a,( 1 - cos ,B) -a, sin ,L3 + a,a,( 1 - cos ,L?) cos,0+a,2(1 -cos,B) 

where /3 determines the rotation angle and a,, av and a, the cosine of the solid angles between the rotation axis g and the 
coordinate axis x,y and z, respectively. Referring to Fig. 3(a), one can easily determine the cosine of the solid angles, 
because g must stay in the (x, y)-plane: 

a, = cos45” = i 
z2’ 

q,.=cos135”=-i 
Jz’ 

and a, = ~0~90” = 0. (4) 

T’ b=fl 

‘. L 135” 
.. 
z X 

4P 

a 3, 9 

Fig. 3. An appropriate rotation of the coordinate system is achieved if the rotation axis g stays in the (x,y)-plane (a). Therefore, the solid angles 

between .Y,Y and 2 and g are 45”, 135” and 90”, respectively. The rotation angle fi can be determined considering the shaded triangle (b). 
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Fig. 3(b) illustrates the rotation angle ,f3. The length of the edges of the RGB-cube is set to 1, resulting in the length of the 
planar diagonals being ~6 and the length of the main diagonal being ~6. The angle ,6 of the skew-angled triangle with 
the edges a = ~6, b = fi and c = 1 is given by the cosine theorem 

cos(P) = 
a2 + c2 - b2 Jz 

2ac 
= -L * sin@) = - 

J7 Js’ 

With Eqs. (4) and (5), the rotation matrix M can be determined: 

( 

cosp+a;(l -cosP) a&2,( 1 - cos p) 

M= u,L7*( 1 - cos p) cosp+a;(l -cosP) 

uY sin p -a, sin p 

;;;)=&(:;F :I” ;) 

and the parametric Eq. (2) for pseudocoloring finally results in 

(6) 

with 0 5 t 5 1. Note that, for the sake of mathematical simplicity, the color-axes in Eq. (7) are normalized to 1, whereas 
in Figs. 1 and 2 the RGB-cube is scaled to S-bits. 

In Eq. (7), the phase cp determines the starting color, and frequency w the dynamic of color changes. In addition, one 
can adjust the degree of coloring by the orthogonal distance r(t) between the spiral curve and the main diagonal. 
Nevertheless, the functions t(t) and z(t) must ensure the spiral to reside within the finite RGB-cube. 

2.2. Determination of functions r and z 

The largest distance r(t) is limited by the remaining volume within a rotating RGB-cube, if the main diagonal is 
considered as the axis of rotation. Fig. 4(a) shows the RGB-space. Due to the symmetry of the cube, the remaining 
volume is determined by two planar triangles, e.g. A-B-C and A-D-B. The one-dimensional projection of the rotating 
cube is shown in part (b) of this figure. The triangular planes overlay to a M-formed shape. In this projection, the 
distance r(t) must stay within both triangles. Therefore, the largest slope dr/dtltzO is equivalent to tan(r) of the skew- 
angled triangle A-B-C. Again, the slope tan(r) is given by the cosine theorem 

cos(y) = 
a2 + b2 - c2 ~6 

2ab 
= z * tan(r) = 5. 

Taking into acount the a-stretch of the t-axis, the piecewise linear function rl (t) and the continuous function r2( t) in 

Fig. 4(b) are given as 

ifOIt< l/2 

1 - t elsewhere 
and r2(t) = 

J 
i.t(l -t). 

r(t) o* :~E=r& 
A a=/3 

I : . 

A c=l c 0 w 1 t 

a b 

Fig. 4. The largest distance r(r) between the spiral and the main diagonal A-Bequals the remaining volume within the rotating RGB-cube. In the one- 

dimensional projection (b) of the rotating cube (a), the intersection triangles like A-B-C and A-D-B overlap to an M-formed shape. Both the piecewise 

linear and the continuous distance function r,(t) and r*(t), respectively, remain within the triangles (see Eq. (9)). 
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Finally, z(t) must be chosen so that z(t) 1 rZO = 0 and z(t) 1 (=I = fi. In the easiest case, z(t) = z, (t) is linear: 

z1(t) = ht, (10) 

but z(t) can also be used to gamma-correct the intensity scale. 

Using ri and zl (see Eq. (9) and (lo), respectively), the only parameters remaining in Eq. (7) are w and cp. The variation 
of both parameters results in many psuedocolor spectra (Fig. 2). For a given (w, cp)-tuple, the grey-to-color LUT can 
easily be generated by scaling t to the number of input grey levels, and calculating as many equidistant spiral points as is 
required for output color values. 

3. The spiral’s length 

In practice, X-ray films are often digitized with a 12-bit quantization, but reduced to &bit (256 shades of grey) for 
display. To avoid this loss of valuable information, the spiral’s formalism can be used to generate an appropriate 
transformation into 4096 displayable pseudocolors. The required length of the spiral can be realized using high 
frequencies w. 

The simplicity of the parametric formalism has the beneficial effect that the length of the spiral can be determined a 
priori. In the continuous space, the length of a parametric curve v’(t) = (x(t), y(t), z( t))T between the points tl and t2 is 
given as 

Using Eq. (1) and the identity cos2( - ) + sin2( - ) = 1, Eq. (1 

I 

I(w)= g 14 > 
2 

0 
+(r(t) -w)* + 2 'dt. 

0 

) results in: 

(11) 

(12) 

With r2( t) and zI (t) defined in Eq. (9) and (lo), respectively, Eq. (12) yields: 

’ J(l - 2t)2 + t2(1 - t)2w2 +2dt with JLl I(w) = w-&. (13) 

Let us now consider the discrete RGB-space with N3 voxels and, thus, N quantizing steps in each direction: red, green 
or blue. To guarantee that the voxels of the RGB-cube are crossed by the spiral only once, the number of rotations 

iZ= 
wt 

27-r t=l 

length I(o) of the spiral in units of N 

rotations = 0 / 2u 

20 30 

quantizing steps N 

Fig. 5. The maximum number of different colors C,,, has a parabolic dependence on the quantizing steps N of each direction of the RGB-cube (see 

Eq. (17)). The inset shows the length I(w) of the spiral curve as a function of rotations (see Eq. (13)). 

(14) 



256 TM. Lehmann et al.llmage and Vision Computing 15 (1997) 251-2.57 

must be limited. To approximate the cut-off frequency w,,,,,, a single turn of the spiral is considered. After one turn, 
equivalent to the increase At = 27r/w, at least the maximum distance 

(&A!! 
N (15) 

between two neighboring voxels must be covered along the main diagonal, thus AZ(C) > d. Using zl (see Eq. (lo)), one 
gets with AZ(~) z az(t)/atAr the cut-off frequency 

W max = 27rN, 

and therefore, one can realize at least: 

(16) 

(17) 

(4 (b) 

(d) 
Fig. 6. (a) Original X-ray image of a pelvic bone metastasis after radiotherapy; (b) pseudocolored image of (a) using the rainbow method [3]; (c) (d) 

results of pseudocoloring using the spiral method with the parameters W(C) = 27r. 1.3, ‘p(c) = 3.0 and W(O) = 2~. 3.0, Lo = 0. The structure of the 

sclerose is most conspicuous in part (d). 
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different colors (Fig. 5). Furthermore, the required number of rotations n to realize C = I/d colors is given by Eqs. (14) 

(13) and (15) as 

c &a 
n=-. M 1.35 - g with II,,, = 1.35. ~ E ’ N 

max 

N r N ’ 

Eqs. (17) and (18) may be used to assess the capacity of the spiral’s formalism for pseudocoloring. On the one hand, with 
N = 256, for instance, one can depict about 50,000 (ZZ 16-bit) different brightness values. On the other hand, one needs 
only 22 rotations of the 256 possible ones to represent a 12-bit image with C = 4096 pseudocolors. 

4. Application to medical X-rays 

Fig. 6 shows examples of the enhancement of a scelerosed structure in the pelvic bone using spiral pseudocoloring. 
Although the lightness axis is approximated by the black to white diagonal of the RGB-space, the detailed image 
structure and the brightness progression is well pronounced. The usefulness of this algorithm applied to dental 
radiographs is discussed elsewhere [4]. 

5. Conclusion and discussion 

The spiral-like path in the RGB-cube maps grey scale images to pseudocolor images keeping their original brightness 
progression. This feature is essential in medical imaging. The parametric formalism presented in this paper is easily 
computed in the RGB-space and allows the a priori calculation of the number of resulting colors, depending on the 
spiral’s frequency w. Adapting w and the phase (p, various pseudocolor spectra can be generated. 

Better results could be obtained if other color models were used. Within the HLS-system [5], the lightness is directly 
represented by one of the axes. Because the HLS-space is of a high geometric symmetry, Eq. (7) could easily be 
transferred by dropping the matrix M. To visualize images which have been pseudocolored in the HLS-space, an 
additional transformation back to the RGB-space has to be performed. 

Further improvement may be achieved by taking into account the physiological color sensitivity of the human eye. 
Color spaces like Lab or Luv model human perception accurately, but completely lose the mathematical simplicity of the 
proposed pseudocoloring. The AR,Yh (Achromatic, Red-green, Yellow-blue) color system proposed by Naiman [6] 
seems to be a promising compromise. Therefore, the transfer of the spiral’s formalism to the AR,Yb system for 
pseudocoloring medical X-ray images is the aim of future research. 
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