Appendix 1

1 General search term

("deep learning" OR "deep neural network" OR "cnn" OR "convolutional neural network" OR "rnn" OR "recurrent neural network" OR "dbn" OR "deep belief network" OR "Istm" OR "long short term memory" OR "autoencoder") AND ("biosignal" OR "biomedical signal" OR "physiological signal" OR "ecg" OR "electrocardiography" OR "electrocardiogram" OR "emg" OR "electromyography" OR "electromyogram" OR "ppg" OR "photoplethysmography" OR "photoplethysmogram" OR "pcg" OR "phonocardiography" OR "phonocardiogram" OR "bcg" OR "ballistocardiography" OR "ballistocardiogram" OR "scg" OR "seismocardiography" OR "seismocardiogram" OR "eog" OR "electrooculography" OR "electrooculogram" OR "eda" OR "electrodermal activity" OR "Respiration" OR "Blood Pressure") AND NOT (images[Title] OR image[Title]) AND ("2010/01/01"[PDAT] : "2017/12/31"[PDAT])

2 PubMed search query

(("deep learning"[All Fields] OR "deep neural network"[All Fields] OR "cnn"[All Fields] OR "convolutional neural network"[All Fields] OR "ron"[All Fields] OR "recurrent neural network"[All Fields] OR "dbn"[All Fields] OR "deep belief network"[All Fields] OR "lstm"[All Fields] OR "long short term memory"[All Fields] OR "autoencoder"[All Fields]) AND ("biosignal"[All Fields] OR "biomedical signal"[All Fields] OR "physiological signal"[All Fields] OR "ecg"[All Fields] OR "electrocardiography"[All Fields] OR "electrocardiography"[All Fields] OR "electrocardiogram"[All Fields] OR "photoplethysmography"[All Fields] OR "pcg"[All Fields] OR "phonocardiography"[All Fields] OR "ballistocardiography"[All Fields] OR "ballistocardiogram"[All Fields] OR "cog"[All Fields] OR "seismocardiogram"[All Fields] OR "cog"[All Fields]

3 Scopus search query

(TITLE-ABS-KEY (("deep learning" OR "deep neural network" OR "cnn" OR "convolutional neural network" OR "rnn" OR "recurrent neural network" OR "dbn" OR "deep belief network" OR "lstm" OR "long short term memory" OR "autoencoder")) AND TITLE-ABS-KEY (("biosignal" OR "biomedical signal" OR "physiological signal" OR "ecg" OR "electrocardiography" OR "electrocardiogram" OR "emg" OR "electromyography" OR "electromyogram" OR "ppg" OR "photoplethysmography" OR "photoplethysmogram" OR "pcg" OR "phonocardiography" OR "phonocardiogram" OR "bcg" OR "ballistocardiography" OR "ballistocardiogram" OR "scg" OR "seismocardiography" OR "seismocardiogram" OR "eog" OR "electrooculography" OR "electrooculogram" OR "eda" OR "electrodermal activity" OR "blood pressure" OR "Respiration")) AND NOT TITLE (images OR image) AND NOT TITLE-ABS-KEY (conference AND proceedings)) AND PUBYEAR > 2009 AND PUBYEAR < 2018

4 ACM search query

"query": {{("deep learning" "deep neural network" "cnn" "convolutional neural network" "rnn" "recurrent neural network" "dbn" "deep belief network" "lstm" "long short term memory" "autoencoder") AND ("biosignal" "physiological signal" "ecg" "electrocardiography" "electrocardiogram" "biomedical signal" "emg" "ppg" "photoplethysmography" "electromyography" "electromyogram" "photoplethysmogram" "pcg" "phonocardiogram" "phonocardiography" "ballistocardiography" "ballistocardiogram" "bcg" "scg" "seismocardiography" "seismocardiogram" "eog" "electrooculography" "electrooculogram" "eda" "electrodermal activity" "blood pressure" "respiration") AND acmdlTitle:(-images -image) } "filter": {"publicationYear":{ "gte":2010, "lte":2017 }}

Appendix 2

Performance of DNN for Biosignal Analysis

Ref. No.	Architecture used	Optimizer/Regularizers	Database / Experiment	Performance
				Accuracy(acc), Sensitivity(sen), Specificity(spe)
44	SDAE	Ranking Criteria:	MIT-BIH, INCART	• BT (acc: 98.77%; sen: 86.39%; spe: 99.64%)
		EntropyBreaking Ties		• Entropy(acc: 98.16%; sen: 78.28%; spe: 99.55%)
50	AE	Split Bregmann Technique	MIT-BIH, BONN	• acc: 90.20%; sen: 99.70%;spe: 99.30%"
51	SDAE		DAISY	• For Compress ration (93.5): 21.99 SNR
52	DAE	• Wavelet transform with scale-adaptive	MIT-BIH	• SNR: 21.56 - 22.96 dB
		thresholding		• RMSE: <0.03
61	DCNN	• Fine tuning of Weights	PAF	• Precision:
		• Performance of the Deep feature tested		 End-to-end CNN: 93.60%
		with conventional classifier		 CNN - kNN: 90.79%
				 CNN - Linear: 87.58%
				 CNN - Gaussian SVM: 92.96%
				• CNN - MLP: 90.65%"
12	LCNN,	• LCNN and LSTM with rule inference	MIT-BIH, CCDD	• acc: 99.40%; sen: 97.59%; spe: 99.54%
	LSTM	• Fusion of decision from two network		
53	DAE	Stacked Contractive de-noising AE	MIT-BIH	• RMSE: 0.075 - 0.350
				• SNR: 2.40dB improvement
56	CNN	Lead Asymmetric pooling layer	РТВ	• acc: 96.00%
64	CNN	Rule inference	CCDD	• acc: 86.22%
		Bayesian feature fusion		
70	DBN	• Stack of two different RBM is used	MIT-BIH	• acc: 90.20%; sen: 99.70%; spe: 99.30%
		RBM parameters are adjusted using		

		Persistent Contrastive divergence		
69	SAE,DBN	Robust Dictionary Learning used	MIT-BIH	• acc: 97.00%; sen: 100.00%; spe: 67.20%
71	DBN		MIT-BIH	Acc: 75% - 95% based on the signal contamination level
30	1-D CNN	 Wavelet transform (WT) Each component of WT is input to 1- D-CNN 	CEBSDB, WECG, FANTASIA, NSRDB, STDB, MITDB, AFDB, VFDB	 Individual identification rate: 93.50% acc (Normal: 96.50%; Abnormal :90.50%)
83	DAE	DAE is used to extract featureDNN for classification	MIT-BIHExperiment	 Recognition rate ECG: 94.39% Pressure data: 95.67% Emotion (Calm) data: 98.10
87	CNN	• Heart model is used	Experiment	 Localization of PVC in heart model: 78% Classification of Epicardium and endocardium region: 90.00%
90	DNN	DNN with pre-training	Experiment	• acc: 85.52%; sen: 91.76%; spe: 78.27%
45	CNN	Feature fusion	РТВ	• acc : 99.33%
46	DCNN		РТВ	• acc: 95.22%; sen: 95.49%; spe: 94.19%
19	CNN	 Models are used to generate abnormal heartbeat For training 	MIT-BIH	Personalized patient specific Design
58	CNN		MIT-BIH	• acc: 94.03%; sen: 96.71%; spe: 91.54%
72	Sparse AE	Sparseness and feature learning	MIT-BIH	• acc: 71.39% ; sen: 39.97%; spe: 89.97%
60	1-D CNN	Adaptive 1-D-CNN implementation	MIT-BIH	• acc: 99.00%; sen: 93.90%; spe: 98.90%
47	CNN	• 1-D CNN	MIT-BIH	• acc: 99.93%; sen: 99.81%

48	CNN		Fantasia	 For 2 Sec Segment acc: 94.95%; sen: 99.37%; spe: 95.81% For 5 Sec Segment acc: 95.11%; sen: 91.13%; spe: 95.88%
49	CNN		MIT-BIH	 For 2 Sec Segment acc: 92.50%; sen: 98.09%; spe: 93.13% For 5 Sec Segment acc: 94.90%; sen: 99.13%; spe: 81.44%
59	CNN		MIT-BIH	• acc: 92.70%
62	RNN	• Equal Error rate used to check training performance	ECG ID and MIT- BIH	Better Recognition rate
63	RNN	Deep LSTM RNN Model, Dropout	Synthetic signal	• Percent Root Mean square difference : 2.42%
75	SDAE	Spectrogram input	MIT-BIH	 Disease: acc: 97.50%; sen: 99.00%; spe: 85.90% Beat Recognition: acc: 98.80%; sen: 99.80%; spe: 71.40%
74	LSTM-RNN		Physionet-Sleep	Classification of arrhythmias : 99.00%
66	DBN	• Feature extracted from ECG signals is fed as input	Experiment	• sen: 80.00%; spe: 50.00%
72	DBN	Signal Quality Assessment	MIT-BIH	• acc: 75% – 95% based on signal quality
68	DBN	Signal quality assessment	• MIT-BIH AFDB	 acc: 87.00% (clean Signal) Noise level (-20dB): 58.70%
77	CNN	Multi-scale CNN	LTAFDB, AFDB, HEDB, LTAFDB, AFDB	• acc: 98.18%; sen: 98.22%; spe: 98.11%
94	CNN		MIT-BIH	 Recognition Rate: 98.51% Classification acc: 92 %
80	DNN		MIT-BIH	• acc: 99.41%; sen: 96.80%

93	CNN	• Spectrogram are fed as input	MIT-BIH	 STFT: acc: 98.29%; sen: 98.34%; spe: 98.24% SWT: acc: 98.63%; sen: 98.79%; spe: 97.87%
78	DBN		Experiment	 acc: With calibration: 85.30% Without calibration: 97.60%
81	CNN		NinaProExperiment	 Acc: Dataset-1: 66.59%; Dataset-2: 60.27%; Amputees: 38.09%
84	DBN	• Split and merge DBN	Experiment	• acc: 89.29%; sen: 89.39%; spe: 2.88%
85	DBN	• Greedy learning algorithm	Experiment	• acc: 88.60%
88	CNN, RNN	Ensemble LearningTransformed input is used	Experiment	• Ratio of MSE: 90.30%
91	CNN	Spectrograms are used	University of Copenhagen	 Spectrogram: acc: 96.69%; sen: 94.24%; spe: 97.59% SPWD: acc: 81.92%; sen: 99.71%; spe: 75.37% CWT: acc: 96.80%; sen: 94.80%; spe: 98.80%
95	CNN	• Transfer learning	Experiment	• acc: 97.81
97	CNN	Multilead Stream Signal	NinaPro, csl- hdemg, CapgMyo	• acc: 99.70%
67	RNN	Gated RNN	2016 Physionet Challenge	• acc : 89.00%
65	CNN		2016 Physionet Challenge	• acc: 79.50%; sen: 70.80%
73	RNN		MITHSDB	• acc: 74.90%

54	DBN		TROIKA	• acc: 96.10%
57	CNN		Experiment	• acc: 95.00%
23	SAE	• Sparse AE	Experiment	 acc: Valence: 73.60%; Arousal: 80.78%
79	CNN	Adam Optimizer	Simulated signals	• acc: 77.5%
76	CNN		Experiment	Correlation Coefficient : 0.73
82	DAE	DNN based DAE	MIT-BIH	 Recognition Rate: 94.39% Classification Acc: 95.67 %
86	DNN	• Input: features from signals	Experiment	• acc: 91.12%
89	CNN		Experiment	• acc: 80.20%
92	DCNN	• Split flag on CNN weights	Physionet- PPG	• acc: 84.15%
96	DBN-DNN	Bootstrap OptimizationEnsemble learning	Experiment	• Estimation Acc: 99.29%
98	CNN	• LeNET-5 and AlexNet	Physionet	• acc: 97.00%; sen: 93.20%; spe: 95.12%
99	CNN	• Mel spectral coefficient based spectrogram as input	2016 Physionet Challenge	• acc: 84.80%; sen: 76.50%; spe: 93.10%
100	CNN	 Mel spectral coefficient based spectrogram Power spectral density 	2016 Physionet Challenge	• acc: 81.30%
101	DNN	GRU Block used	MIT-BIH	RMSE to reconstruct Biosignals
102	DBN	DBN with Sparse Coding	UCDDB	 Class wise acc: Wake: 98.49%; S1: 80.05%; S2: 91.20%; SWS: 98.22%; REM: 95.31%
10	DBN, CNN, SAE		Maze-Ball	Proposed approach better than previous methods

103	CNN		Experiment	• Acc:
				 ECG: 71.65%; EDA: 71.33%
104	DAE	• Input: features from signals	DEAP	• Overall performance is better than previous approach
105	SAE	• Input: features from signals	DEAP	• Classification rate improved by: 5.60%
106	DBN		Experiment	Rapid Artefacts elimination
107	CNN	Spectrogram as input	Experiment	Significance of study is discussed
108	DBN-DNN	Artificial features are generated	Experiment	Efficient for low number of samples
				Better than previous approach
109	DBN-DNN	Mimic features generated	Experiment	Efficient for low number of samples
				Better than previous approach