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Abstract

A system for automatic quanti®cation of morphological changes of cell lines, proposed for
cytotoxicity tests of biomaterials, is presented. Light-micrographs of cultured cells are segmented by
adaptive thresholding within a local adaptive window. Connected cells in binarized micrographs are
separated by a novel morphological multiscale method, treating cells in their size-speci®c scale and hence
resulting in scale-independent separations. Signi®cant shape descriptors correlating well with cell toxicity
are extracted from single cells. Size and compactness distributions turned out to be reliable and useful
parameters, providing an alternative to the common subjective grading of shape deformations by visual
inspection. The system is evaluated for several standardized toxical reference substances and is now in
use for clinical biocompatibility testing. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Shape analysis; Segmentation; Mathematical morphology; Scale±space; Computer-assisted microscopy;
Quantitative cytology

1. Introduction

Biocompatibility is the most important requirement for the development of medical devices.
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To prevent toxic e�ects on humans following the implantation of synthetic protheses or
arti®cial organs, extensive toxicity tests are mandatory to evaluate the impact of new or
modi®ed materials. Morphological changes of standard cell lines cultured on these biomaterials
indicate toxicity. They can be related to pathological e�ects caused by the biomaterial.
However, cytotoxicity studies are currently limited to qualitative or semi-quantitative analysis,
based on visual inspection of stained microscopic samples and subsequent interactive
measurements of relevant features.
Cellular toxicity ®nally leads to changes in morphology. It is safe to assume that toxic e�ects

on vital cells result in a rounding, shrinking, and defacing of cells, which are otherwise more
extended and have di�erentiated contours [1]. Currently, the evaluation of cytotoxicity by
means of microscopic observation of cell deformation is qualitative and the e�ects can be
recorded only descriptively as deviations from normal cell morphology. This causes the well-
known ambiguities in interpretation and comparison of di�erent biological studies.
Fortunately, an increase in computational power, combined with advanced staining

techniques from molecular biology has recently led to computer-assisted examination of
relevant image features in microscopic samples [2,3]. The spatial frequencies of micrographs
thus can be used to extract information on distances between cells and their position in the
image. However, such information is less useful in quantitative cytology. Instead, the structural
analysis of cell populations is often performed by methods of mathematical morphology [4,5],
particularly by morphological ®lters for their shape Ð rather than frequency-oriented
operations [6]. These versatile tools can be used at di�erent stages of the automated feature
quanti®cation process such as preprocessing [7], segmentation [8], and feature extraction [9].
Furthermore, shape descriptors for binary objects and methods for separating connected
objects have been proposed [5,10,11].
Unfortunately, such bene®ts from modern technologies are not established in medical

routine yet. For example, deformations of naturally shaped ®broblasts, which represent a
standard cell line for cytotoxicity studies, are still determined by visual inspection. In this paper
we report a method to extract reproducible morphological cytotoxicity data of biomaterials by
automatic shape analysis and quantitatively evaluate populations of standard cell lines. For
this, the analysis of digitized micrographs is performed in three stages: (i) segmentation; (ii)
separation; and (iii) quanti®cation.
Generally speaking, image segmentation is the ®rst and most important step in image

analysis or pattern recognition systems. Several segmentation and interpretation techniques
have been developed [8,12,13], from which only a few are useful in digital cytological imaging
[14±17]. This is due to the numerous problems that arise from variances in illumination, layer
thickness, or dye concentration. In an attempt to compensate such problems, we introduce a
local adaptive thresholding technique estimating thresholds and window sizes from local
graylevel distributions (Section 2.1). Since the size and shape of cells may di�er, a
morphological multiscale approach is used to separate connected cells [18,19]. Initially, the
image is decomposed into size-speci®c scales of distinct morphological markers, each of which
indicate the presence of one cell without dealing with its shape. The converse synthesis of scales
reconstructs the cells and prevents merging of already separated objects (Section 2.2). This
process results in scale-independent separations, because di�erently sized cells are treated
within their proper scale. The subsequent extraction of characteristic features of cells such as
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size, perimeter, and compactness, provides quantitative parameters of their distributions
(Section 2.3). These parameters for cytotoxicity were found to be signi®cant for the di�erent
toxicity levels of a standard cell line (mouse ®broblasts) subjected to de®ned concentrations of
several toxic reference substances (Section 3).

2. Automatic shape analysis

2.1. Segmentation of micrographs

Segmentation means partitioning an image into non-overlapping regions corresponding to
the interpretation of human observers [20]. With respect to a population of ®broblasts,
segmentation is supposed to yield two regions: cells and image background.
Typically, graylevels occurring within objects di�er signi®cantly from those in the

background. This results in a bimodal histogram function, which can be split into two parts by
a global threshold. If all objects were of equal graylevel characteristics (i.e. the cells are of the
same type), a histogram thresholding technique may be applied as long as the background
appears homogeneous.
Unfortunately, on light micrographs of cytological samples, illumination and dye

concentration may vary signi®cantly (Fig. 1, upper left ). Moreover, in many cases the thickness
of the specimen, and hence its translucence, cannot be assumed to be constant. This leads to
poor segmentation results by global thresholding (Fig. 1, upper right ).
Unlike other approaches that primarily aim to remove the low-frequency illumination

component from the images [21,22], we use a local thresholding technique that is directly
applied to the image. However, if the distribution of objects in the image is not homogeneous,

Fig. 1. The cytological sample (upper left ) shows connected and inhomogeneously distributed cells. Global
histogram thresholding (upper right ) and local thresholds of constant window size (lower right ) do not lead to
acceptable results. Results are improved by local adaptive threshold windows (lower left ).
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local thresholding with constant window sizes also causes problems (Fig. 1, lower left ). The
rectangular artifacts result from a too small window size. Increasing the window size, however,
would produce similar binarization errors as provoked with global thresholds.
For optimal thresholding results, window sizes need to be adapted to local graylevel

distributions in the image. Large graylevel variances require small window sizes and vice versa.
The local window size is determined iteratively. Starting with a small window surrounding the
point of interest, the variance of graylevels is compared to the entire image's variance. As long
as the local variance stays below the global one, the window size increases. Strictly speaking, a
local window is determined as the smallest window with a variance that indicates the presence
of di�erent regions. In principle, any kind of thresholding technique may be applied within the
local adaptive window to group the window's center pixel to the object or to the background.
For the segmentation of ®broblast populations the histogram thresholding technique proposed
by Otsu was chosen [23]. This threshold maximizes inter-class and minimizes intra-class
variance, respectively (Fig. 1, lower right ).

2.2. Object separation by mathematical morphology

Below, we describe the algorithms used to separate connected cells under noisy conditions. A
brief introduction to morphological reconstruction is given; for further details, see [5,24].

2.2.1. Morphological reconstruction ®lters
Reconstruction ®lters are based on the elementary dual ®lters n-fold erosion En

s�B� and n-
fold dilation Dn

s�B�, which represent the local minima and maxima of the binary image B in a
region, respectively. The region is determined by a circular binary structuring element speci®ed
by its radius s. The n-fold masked erosion En

s�B, M � and dilation Dn
s�B, M � additionally

require a binary masking image M, which marks the manipulable pixels of B. Masked
operators lead to white-reconstruction D1s �B, M � and black-reconstruction E1s �B, M � by
iteratively performing a masked morphological operation until B reaches a steady state
(denoted by 1). M is reconstructed by expanding the initially smaller objects of B.
The dual operators white-skiz Dskiz

s �B, M � (skeleton-by-in¯uence-zone) and black-skiz
Eskiz
s �B, M � di�er from the above reconstruction operators by prohibiting the merge of

separated markers [8]. This results in a one-pixel gap between those objects in B that are
already covered by the same object in M. Therefore, the number of objects in Dskiz

s �B, M �
equals those in B. Basically, the white-skiz is the skeleton of the background and can be
regarded as a binary analogon of the watershed transform for graylevel images [25].
The (n-fold) opening On

s�B�: � Dn
s�En

s�B�� and closing Cn
s�B�: � En

s�Dn
s�B�� are compositions

of erosion and dilation. The reconstructive opening/closing [24]

n-opening by reconstruction: O�n, 1�s �B,M �: � D1s �En
s�B�,M � �1�

n-closing by reconstruction: C�n, 1�s �B,M �: � E1s �Dn
s�B�,M � �2�

reconstructs M from B after noise ®ltering by the corresponding dual ®lter. For M=B, these
®lters perform a nonlinear noise reduction preserving object boundaries by removing
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compartments smaller than the n times iterated operator s. In contrast to non-reconstructive n-
fold opening and closing, object boundaries are not smoothed. Complementary e�ects of both
®lters can be combined by their successive application. For example, the

n-double reconstruction filter: C�n,1�s �B�: � C�n,1�s �O�n,1�s �B,B�,B� �3�
removes both white and black compartments from B.

2.2.2. Noise ®ltering
Binarized samples are always noisy because of detection errors, cell particles, or other

artifacts. Digitization and quantization introduce additional noise, which must be removed
while the information to be quanti®ed must be preserved.
Classi®cation of binary segments into cells and noise is done with respect to the absolute size

of these segments. The digital images (in 100 times microscopical magni®cation) display an
area of 422.4 � 607.3 mm covering in total 0.256 mm2. Filtering is performed by a double
reconstruction ®lter of size s=3 [Eq. (3)], which is approximately 2.4 mm. This ®lter removes
circular objects of area 24.5 mm2 or ellipsoidal objects, with at least one axis smaller than 4 mm.
These values are well below the expected minimal area of totally damaged and rounded
®broblasts.

2.2.3. Multiscale separation
The working hypothesis for binary object separation is that connected cells can be best

separated to yield distinct markers within their size-speci®c scale. The cells can be progressively
segmented by reconstructing them from previously found markers [8]. The reconstruction
algorithm proposed here has two stages. The analysis stage decomposes an image into marker
scales Bi obtained by enhanced erosion. This yields a distinct marker for each cell. The
subsequent synthesis stage reconstructs the original shapes B0, from the multiscale
representation Bi using enhanced dilation, while preventing already separated markers from
merging again (Fig. 2).

2.2.3.1. Analysis by enhanced erosion. The binary image Bi represents the markers at scale 0 R i
< I $ N, where I is the total number of scales. The complete scale±space is generated by a cas-
cade of I successive enhanced erosions (Fig. 3)

Bi�1 � Dm
s �B 00i , B 0i � with B 0i � E1

s�Bi � and B 00i � En
s�Bi � �4�

where Dm
s and En

s denote m-fold dilation and n-fold erosion, respectively. D(B, M ) denotes the
masked dilation (Section 2.2.1). At scale i, the n-eroded image Bi is m-dilated and masked by
the 1-eroded Bi, resulting in the next scale image Bi�1: Each of these scale images introduces
separations of those cells belonging to that speci®c scale.
The parameters n and m are derived from the estimation described in Section 2.2.2. Likewise

initial n-double reconstruction, the n-fold erosion ®lters false markers and for this n = 3 is
appropriate for all scales. Eq. (4) actually represents an opening. Hence m > n is an initial
constraint for the m-fold dilation. For m=n the number of false markers is too large. The
(m=n+1)-dilation turned out to be a good compromise between the generation of false
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Fig. 2. Scheme of the two-stage multiscale separation procedure. The analysis extracts separated markers for the
cells by enhanced erosion. During converse synthesis the enhanced dilation operator reconstructs the original cell
shapes preventing the merge of separate markers.

Fig. 3. Enhanced erosion is basically an opening operation consisting of n-erosion and masked m-dilation. Since the
constraint m=n+ 1 proved useful, the operator is controlled by n, which exclusively depends on the minimum cell
size [Eq. (4)].
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markers and the correct separations of di�erent cells. The total number of scales is a rather
uncritical parameter, as long as it is above a certain threshold depending on the maximum size
of the cells. For the separation of ®broblasts at magni®cation 100, a scale±space of I = 12 is
su�cient. The values of the control parameters n and I depend exclusively on the size of cells
and hence can be determined automatically prior to separation.

2.2.3.2. Synthesis by enhanced dilation. The synthesis of marker scales Bi reconstructs the orig-
inal cell shapes of B0. At each scale i a reconstructed image B rec

i is calculated, which incorpor-
ates the marker information of all scales j r i and hence preserves their separations. These
markers are reconstructed to the object size of scale i by combining B rec

i�1 and Bi such that Bi �
B rec

i�1: Therefore, the resulting image B�i consists of all markers of B rec
i�1 plus those occurring in

Bi, but not in B rec
i�1:

B�i � B rec
i�1 [ fBi%B rec

i�1g: �5�
This procedure ensures that no separation is lost during synthesis. The various inclusion re-
lations between intermediate steps in multiscale deagglomeration are illustrated in Fig. 4.
Finally, a white-skiz reconstruction is applied to extend the shapes of B�i to those of Bi preser-
ving their separations (Section 2.2.1). This yields B rec

i , i.e. the reconstructed markers of scale i:

B rec
i � Dskiz

s �B�i , Bi �: �6�
We compared the algorithm with two common separation techniques considering both syn-
thetic and natural images (Fig. 5). The separations shown in the second column of Fig. 5 were
obtained by Serra's algorithm, which considers each ultimate eroded point of a binary set as

Fig. 4. The various intermediate marker images, which are generated during multiscale separation are related by
inclusion. From a set-theoretic point of view, these images form a partial ordering.
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the center of an individual object [10]. The separation lines between the objects are determined
to have maximal distance from all adjacent ultimate eroded points. Two disadvantages are
obvious: (i) all objects have to be of similar size; and (ii) all objects must exhibit regular shapes.
Compact objects of di�erent size (Fig. 5, upper row ) cannot be separated correctly because the
marker generation depends on size and scale. The number of markers, however, is correct in
most cases. Objects with irregular shapes (Fig. 5, lower row ) produce too many markers
because the geometric interpretation is drawn from one single scale. This results in oversegmen-
ted images. Fig. 5 (third column ) shows the separation results obtained by reconstructing the
maxima of the distance transform [26,27]. Although the distance transform is able to handle
di�erently sized objects, irregularly shaped cells still cause oversegmentation. Our two-stage
multiscale approach avoids these drawbacks of common separation techniques, which result
mainly from the single-scale nature of the previous algorithms. Generation of a morphological
scale±space, ®ltering of false markers, and their stepwise reconstruction is independent of the
object's size and notably improve results (Fig. 5, fourth column ).

2.3. Quanti®cation of shape descriptors

To determine exact shape descriptors from digital images, transitions from analog to digital
objects and expression of complex shape characteristics by real feature vectors must be
considered.
Using CCD cameras, di�erences between lengths of continuous and discrete contours

decrease on increasing resolution [11]. Reasonably small deviations between analog and digital
lengths are obtained by using an indirect neighborhood with diagonal lengths corrected by the
factor

���
2
p

[28].

Fig. 5. Synthetic image (upper row ) and binarized micrograph (lower row ) showing objects to be separated. Both
separations, the reconstruction of ®ltered ultimate eroded points (second column ) and the reconstruction of ®ltered

maxima of the distance transform (third column ) yield poor results. Our multiscale separation algorithm yields good
results for synthetic images and performs best for cell micrographs ( fourth column ).
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Besides color, shape is the most important feature to assess the condition of cytological
structures. Among existing similarity measures for graylevel images [29], only a few are
applicable for binary images [11]. One major requirement for a comprehensive shape parameter
is rotation and translation invariance. Furthermore, it is not su�cient to measure only the
elongation of an object (as done by the aspect ratio ). Since shape irregularities are most
valuable characteristics to quantify cytotoxicity, the compactness C of binary objects appears to
be an appropriate parameter:

C � 4p area

perimeter2
with 0RCR1: �7�

This measure estimates shape irregularities and is rotation invariant. The number of in¯ection
points of an object's contour might also be a useful parameter, but its computation is far more
expensive.

3. Application and results

The proposed method has been evaluated for ®broblast cells treated with three di�erent
toxical reference substances: ethanol, and the two toxic polymers SRMA and SRMB (standard
reference materials A and B). During all experiments, geometric analysis was performed with
external parameters set to n=3, m=4, and I=12 [Section 2.2.3, Eq. (4)].

3.1. Ethanol

Three large populations of ®broblasts (268 images each), in contact with 0, 5, and 10%
concentration of ethanol, respectively, were collected; 10% ethanol concentration causes a
complete destruction of cells. They round and shrink in size. The experimental setup is
described in [17].
Since the compactness is not normally distributed (it is limited to the range [0;1]), a

Wilcoxon two-sample test (calculated by SAS v12.6) was used to decide whether the obtained
distributions di�er signi®cantly. Altogether, 29,939 cells (m=0.465, s=0.2), 19,801 cells
(m=0.514, s=0.236), and 10,495 cells (m=0.711, s=0.259) were detected for 0, 5, and 10%,
respectively. For all pairs of ethanol concentrations (0 versus 5%, 0 versus 10%, and 5 versus
10%) the hypothesis of equal distributions can be rejected ( p < 0.0001). Therefore, the
compactness distribution of a cell population is an appropriate indicator of toxicity. This result
is emphasized by the scatter diagrams in Fig. 6, which show relation of size (x-axis) and
perimeter ( y-axis) of 500 arbitrarily chosen cells. Both size and perimeter decrease
monotonously for increasing toxicity. Also, the centers of gravity of the clusters are shifting
towards more compact objects on increasing ethanol concentration.
The inserted table gives a set of automatically determined parameters, each of which indicate

morphological changes by monotonous behavior. Despite the coverage, all parameters require
the separation of agglomerated cells. One has to discriminate between those parameters
depending on the number of cells in the population (density, coverage) and the normalized
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parameters. In this experiment, density and coverage also yield good discrimination among
di�erent toxicities, since they reduce approximately to 60 and 10% for 5 and 10% ethanol
concentration, respectively. However, more objective quanti®cations of actual shapes are given
by those parameters which are independent of the cell number, because they represent
geometrical features only.

3.2. SRMA and SRMB

SRMA and SRMB are toxic polymers with di�erent toxicity. Both standard reference
materials are made of polyurethane ®lms containing various amounts of cytotoxic compounds
[30]. All polymers, including the nontoxic control polymers (negative reference), were extracted
under standard conditions (2 cm2 polymer/ml cell culture, time 72 h, temperature 378C).
Extracts were then diluted to show dose dependent morphological changes to the ®broblasts
that are basically the same as for ethanol. For both substances a negative reference population
showing completely vital cells and a positive reference population showing completely damaged
and deformed cells exemplify the cytotoxical extremes.

Fig. 6. Results of cytotoxicity tests with ®broblasts in 0% (upper left ), 5% (upper right ), and 10% ethanol (lower
left ). These diagrams show 500 arbitrarily chosen cells with their covered area on the x-axis and perimeter on the y-
axis. The center of gravity is marked in each scatter plot. The table shows all extracted quantitative parameters for

each of the three distributions (lower right ).
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Since SMRA is more toxic than SRMB, the SRMA toxicity was tested for 10 and 20%
concentration, while SRMB was tested for concentrations of 50 and 100%. For both
substances the compactness distributions were found to di�er signi®cantly by a Wilcoxon two-
sample test.
The four SRMA distributions ``negative'' (5128 cells, m=0.587, s=0.172), 10% (3857 cells,

m=0.689, s=0.169), 20% (1901 cells, m=0.731, s=0.181), and ``positive'' (2226 cells, mrm
=0.801, s=0.165) di�er signi®cantly ( p<0.0001).
Also the four SRMB distributions ``negative'' (8155 cells, m=0.6, s=0.175), 50% (3887 cells,

m=0.678, s=0.176), 100% (4892 cells, m=0.689, s=0.167), and ``positive'' (2609 cells,
m=0.711, s=0.184) di�er signi®cantly ( p<0.0001).
Since the compactness depends on area and perimeter of the cells, the scatter plots also show

signi®cant response to the di�erent toxicity stages (Figs. 7 and 8). For visualization the

Fig. 7. Cytotoxical e�ects of SRMA. The negative control (upper left ) shows vital cells while SRMA concentrations
of 10% (upper right ) and 20% (lower left ) lead to increasingly deformed cells. The positive control (lower right )
shows totally damaged cells. The table depicts extracted parameters.
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diagrams are limited to 250 arbitrarily chosen cells. In both cases the normalized measures
(mean compactness, mean perimeter, mean area) behave monotonously for increasing
toxicities, while the unnormalized measures (cell density, coverage) do not correlate with the
toxicity e�ects (see inserted tables).

4. Discussion

Shape factors speci®cally designed for certain cytological problems have been presented [31].
Despite the fact that the representation of shape by one parameter is an enormous data
compression, there is no optimal single parameter covering all aspects of shape interpretation.

Fig. 8. Cytotoxical e�ects of SRMB. The diagrams depict the negative control (upper left ), 50% SRMB (upper
right ), 100% SRMB (lower left ), and the positive control (lower right ). Quantitative parameters are given in the

table.
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Furthermore, the discrimination between di�erent stages of morphological changes, and
subsequent evaluation of the toxicity of a biomaterial, leads to a complex classi®cation task.
For this reason we utilize only a few characteristic shape parameters, which yield a reasonable
discrimination between basic toxicity stages.
The main steps in shape analysis are summarized in Fig. 9. The cytological sample (upper

left ) is ®rst binarized to discriminate objects from background by local adaptive thresholding.
At this stage segmentations still contain noise and smaller spurious segments (upper middle ).
Morphological ®ltering yields binary objects that correspond to cells (upper right ). Such results
can only be achieved with nonlinear ®lters, because they do not smooth high-frequency object
boundaries like linear ®lters do [32]. The morphological separation yields single cells that are
prepared for subsequent quanti®cation (lower middle ).
Reference results of manual expert segmentation are given in Fig. 9 (lower right ). Note that

all manually determined separations are also found automatically. Moreover, manually
segmented cells are generally larger and have a smoother appearance, but do not necessarily
improve cell representation. The only obvious advantage of expert segmentation is the
acknowledgment of long dendrites.
From these observations we conclude that distributions of shape parameters, acquired from

automatically segmented micrographs, are as robust and useful for toxicity evaluation as are
manually segmented images. This statement is veri®ed by results enabling unique quantitative
discrimination of the cells under toxical in¯uence. The experiments demonstrate the robustness
of our method and statistical signi®cance of the normalized parameters, which are independent
of the actually used number of cells. The unnormalized parameters depend on the locations of
detected cells on the sample, since cell concentrations usually vary heavily due to adhesion
e�ects, especially for high toxicities. It is, therefore, an additional di�culty for manual expert

Fig. 9. A micrograph of a cytological sample (microscopic magni®cation �100) (upper left ) is automatically

binarized (upper middle ), ®ltered (upper right ), and ®nally separated (lower middle ). The manual expert
segmentation (lower right ) yields the same number of cells and preserves dendrites.
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segmentation to catch statistically meaningful groups of cells. This favors our computerized
method.
The experimentally obtained quantitative data correlate well with the deformation of cells

induced by toxic material. Hence, our method accounts for common verbal and qualitative
descriptions of morphological cell changes. Population-speci®c quantitative parameters can be
gathered as feature vectors representing points in a multi-dimensional space. Such
representations may be subjected to clustering methods to determine thresholds for toxicity of
biomaterials.
Since all external control parameters can be estimated from cell sizes, the presented method

may be adapted systematically to other monolayered cell populations. Our method is already
in use for extensive automatic biocompatibility tests, yielding reproducible data much faster
than the usual subjective inspection [17]. At present, we are extending the quanti®cation
module towards a multiscale shape representation by calculating the pattern spectra of the
populations [33].

5. Summary

Cytotoxicity tests are of vital importance for biocompatibility evaluations of new
biomaterials. Morphological changes of cells in contact to those materials indicate their
toxicity. In routine applications, however, information on cytotoxical e�ects is still obtained by
subjective visual inspection of microscopic samples. Such qualitative evaluations are user
dependent and, for this, limited in their usefulness.
In this paper, a novel computer-assisted method is introduced, which automatically analyses

general shape deformations in cell populations and yields reproducible toxicity data.
Quantitative shape descriptors are extracted from digitized micrographs in three stages:
segmentation, separation, and quanti®cation.
Images are segmented by a novel local adaptive thresholding technique that minimizes the

in¯uence of illumination inhomogeneities, by adapting both the window size and the threshold
within each window to local graylevel distributions. The method yields minimal windows that
contain object and background information. A threshold for each window is obtained by
maximizing inter-class variances and minimizing intra-class variances, respectively.
The subsequent scale-independent separation of connected cells cleans the binarized samples

from noisy pixels, such as cell compartments and other artifacts, by morphological
reconstruction ®ltering. The cell separation is performed by a two-stage multiscale algorithm.
During the analysis stage an image is decomposed into morphological size-speci®c scales, each
of which is carrying separated markers for all cells of that speci®c size. Since the minimal size
of the cells is known a priori, binary noise is removed from each scale by reconstructive
®ltering. Thereafter, the synthesis stage reconstructs the original cell shapes from these marker
scales without merging separated objects.
Subsequent measurement of compactness provides meaningful quanti®cation of shape

deformations. Therefore, our method yields reliable evaluations of cytotoxicity of biomaterials.
Our method was evaluated for the standard cell line of ®broblasts in contact to the toxic

reference substances ethanol, SRMA, and SMRB. Quantitative parameters obtained for
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di�erent toxic concentrations were found to be statistically signi®cant and in excellent
agreement with expert descriptions. However, our automatic method has several advantages in
comparison to subjective examination. For example, the results permit objective comparisons
in a much shorter time. Finally, the method can easily be adapted to further monolayered cell
populations via external control parameters depending exclusively on the minimal and maximal
size of cells. The method is now in use for extensive cytotoxicity tests of biomaterials.
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