ER

Computer-Aided Civil and Infrastructure Engineering 33 (2018) 602-613

INDUSTRIAL APPLICATION

Sewer Discharge Estimation by Stereoscopic Imaging
and Synchronized Frame Processing

Ekaterina Sirazitdinova, Igor Pesic, Patrick Schwehn & Hyuk Song

Department of Medical Informatics, Uniklinik RWTH Aachen, Aachen, Germany

Matthias Satzger & Marcus Sattler

Seba Hydrometrie, Kaufbeuren, Germany

Dorothea Weingartner

Research Institute for Water and Waste Management, RWTH Aachen University, Aachen, Germany

&

Thomas M. Deserno*

Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig, Braunschweig, Germany

Abstract: A system for fully automatic contact-less
image-based measurement of volumetric flow rate in ur-
ban drainage structures is presented. The hardware in-
cludes two original equipment manufacturer cameras
and a single-board computer on which our custom image
processing software is running. The value of water dis-
charge depends on the surface velocity, water level and
channel’s geometry. The level of the flow is estimated
as the difference between distances from the camera to
the water surface and from the camera to the channel’s
bottom. Camera-to-water distance is recovered automat-
ically using large-scale stereo-matching, whereas the dis-
tance to the channel’s bottom is measured upon installa-
tion. Surface velocity is calculated using cross-correlation
template matching: individual natural particles in the
flow are detected and tracked throughout the sequence
of images recorded over a fixed time interval. The rel-
ative discharge computation error is lower than 1.34%
of the theoretical maximal discharge for a given loca-
tion, which makes our system competitive to commercial
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components such as ultrasonic flow meters, while using
cheaper technologies.

1 INTRODUCTION

Blockages or breakages of sewer lines, inflows of ex-
cessive storm water, malfunction of pumping stations
or electrical power failures may lead to sewer over-
flows (SOs). Upon the occurrence of such events, waste
water is discharged from a sewer into nearby streams,
rivers, or other water bodies prior to reaching treat-
ment facilities. SOs pose a huge risk to the environ-
ment, as they contain industrial waste, toxic materials,
and debris. Reaching water bodies, pollutants threaten
public health, endanger aquatic life, and impair the use
and enjoyment of waterways (Wilkinson et al., 2002;
Burkhardt et al., 2007; Rodriguez et al., 2012). To avoid
this problem, constant monitoring and quantitative and
qualitative measurements of water flow in sewers is
required.

Besides prevention of SOs, discharge monitoring is
used to control pump stations and service pits. To
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reduce the cost of transporting wastewater from the
user to the treatment plant, such pump stations are built
to lift the wastewater to a higher level. Then, gravity
is used to enable a natural flow of wastewater towards
the treatment plant. Thus, by knowing the sewage level,
the operating efficiency of the sewage system can be en-
hanced.

Monitoring of sewer flows is challenging. Most of the
state-of-the-art systems for volumetric flow measure-
ment, such as the positive displacement flow meter re-
quire intrusion into the flow (Spitzer, 2005). Taking into
account the demolishing nature of waste water, such
systems are usually short-lived in a real sewer environ-
ment and require regular maintenance. Moreover, such
equipment usually is expensive, and, thus, its usage is
limited.

There are also noninvasive methods. One of them is
ultrasonic flow meter (Lynnworth, 1989). It measures
the level in a channel by transmitting a pulse of sound
from the sensor to the flow surface and estimating the
time for the echo to return. However, this method is
not robust against presence of foam, turbulence, float-
ing debris, oil, or grease. Furthermore, it is not recom-
mended to use this method on wide channels due to
beam spread.

In two complementary works, Nguyen et al. (2009)
and Jeanbourquin et al. (2011) proposed an alternative
nonintrusive solution. The authors of both papers have
jointly developed a system tracking volumetric flows in
sewers using video cameras. According to the authors,
the video camera setup is robust against instrumental
loss and does not require frequent maintenance. Volu-
metric flow rate is measured by combining image-based
approaches of water-level measurement and surface
velocity estimation. Despite relatively high accuracy of
water-level estimation claimed by the authors (the root
mean square [RMS] error varied between 1.33 and 4.61
cm compared to the ground truth for different observa-
tions), there is a major inconvenience in the proposed
technique relying on the detection of water borderline
in the images: the described scenario requires calibra-
tion relative to the real-world coordinates. For that,
special rulers are placed into the scene, and experts
manually choose correspondences. This complicates
the initial setup in the field and originates additional
sources of error. Furthermore, no evaluation was done
in terms of real-world velocities and no result of pure
image-based volumetric flow estimation was presented.

Aiming at providing an automatic, robust, and non-
contact flow measurement in urban drainage structures,
we came up with an original idea of a vision-based
system. Introducing a second camera to the setup
(Miiller and Deserno, 2015), we exploit stereo-vision
techniques to recover water level in sewers and to

achieve automatic calibration to the real-world coor-
dinates. Accompanied with a velocity estimation mod-
ule, our system is able to provide accurate mea-
surements of water discharge in sewers of known
geometry.

2 OVERVIEW

2.1 Determination of water discharge

In sewers, discharge is computed using a simplified form
of the continuity equation. According to this method,
flow discharge Q, [Q] = m?/s, is determined by the re-
lationship between average flow velocity v, [v] = m/s,
and the cross-sectional area A(l), [A(l)] = m?, of the
channel perpendicular to the predominant flow direc-
tion (Herschy, 1998)

0=7A(0)

In the sewer with a uniform geometry (constant slope
and profile), the value of A(I) depends on the cur-
rent water level /, [/] =m, and the geometry of the
channel. In the system for discharge assessment, all
parameters necessary for the computation of A ex-
cept for / can be given upon installation (Section 3).
Thus, the basic milestones of the automatic volumetric
flow computation are finding the water level / and the
velocity v.

2.2 Water-level estimation

The most common image-based method estimating the
water level in sewers and other water bodies (e.g.,
rivers, open channels) is the optical interpretation of
special rulers (Nguyen et al., 2009; Gilmore et al., 2013;
Bruinink et al., 2015) or detection of reference indica-
tors (Kim et al., 2007), which require a ruler or a special
pattern placed into the scene. Alternatively, we intro-
duce a second camera to the setup for automatic level
estimation, which does not require any extrinsic objects.
Reconstructing the scene in 3D, we are able to recover
the distance Ilg.ce from the camera to the water sur-
face. The water level [ is then estimated as a difference
between the distance from the camera to the channel’s
bottom ltotal and lsurface-

2.3 Velocity measurement

Image-based methods of flow measurement are often
based on detection and tracking of artificial (Weitbrecht
et al., 2003; Aleixo et al., 2011; Tauro et al., 2013) or
natural (Jeanbourquin et al., 2011) particles. Similarly
to Jeanbourquin et al. (2011), we rely on the presence
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Fig. 1. Sensors.

of natural particles in the sewers. We use template
matching (Lewis, 1995) to find displacements between
particles in sequential frames. Individual velocities v of
particles are found by division of these displacements
by the value of the known time interval between the
frames.

Furthermore, exploiting the advantage of having two
cameras, we apply triangulation (Hartley and Sturm,
1997) to recover z-coordinates, or depth values, of
individual particles. This is useful for identification
of particles on the surface and supports water-level
estimation.

3 SYSTEM DESIGN

The life cycle of our system can be divided into three
major stages: (i) manufacturing, (ii) installation at the
user’s location, and (iii) exploitation. System compo-
nents used at each of these stages are sensors, or cam-
eras, processing units, and storage hardware.

In particular, the recording hardware consists of a
lighting element and two original equipment manufac-
turer (OEM) cameras (Figure 1). Except for assembling
the hardware components during manufacturing, a cam-
era calibration (Section 4.1) shall be done for each new
system to correct for lens distortion and to determine
the relation between the camera’s natural units (pixels)
and the real-world units (mm). These calibration pa-
rameters are saved together with system settings into an
XML file and delivered together with the client software
to the final user.

Installation at user’s location includes placement of
the recording device into the sewer (Figure 2), mea-

Fig. 2. Placement of the recording hardware into an open
channel.

surement of the location-specific values such as chan-
nel’s geometry and distance from the installed camera
to the channel’s bottom, selection of preliminary re-
gion of interest (ROI) and insertion of all numerical
data into browser-based client software. Due to the fact
that sewer profiles are usually conventional, being of
a circular, ovoid, arch, walkway, or rectangular shape
with standardized measurements, this task can be re-
duced to the selection of the corresponding profile in the
user settings. Custom profiles are also supported. In that
case, all necessary parameters shall be measured and
recorded into the system. Measurement of such param-
eters and the distance from the camera to the channel’s
bottom is a crucial step, because erroneous value will
directly affect the system’s outcome. In cases with the
profile shapes different from rectangular, by distance to
the bottom we understand the length of the orthogonal
interval from the deepest channel point to the camera
plane. The selected location-specific settings are trans-
ferred to the operational web-server saving the data on
the storage device.

During exploitation, images are recorded within
scheduled intervals and temporarily stored on a single-
board computer (SBC), also known as communication
circuit board (TQMLS102xA board: http://www.tq-
group.com/), where they are being processed by a
custom image processing software implemented in
C++. The general algorithmic pipeline of discharge
computation involves two major steps: depth recon-
struction and surface velocity computation (Figure 3).
All supportive steps are described in detail in the next
section. Outcomes of the image processing are trans-
ferred to the user and stored in the storage. The session
images are moved from the SBC to the storage and can
be accessed by the user upon request.
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Fig. 3. General algorithmic pipeline.

4 IMAGE PROCESSING SOFTWARE

4.1 Camera calibration

Camera calibration is needed to obtain accurate depth
estimation and image processing results, as well as to
produce a reference value for conversion between the
image and the world coordinate systems. With a chess-
board calibration protocol, the intrinsic and extrin-
sic parameters are estimated for each camera (Zhang,
2000).

Using intrinsic parameters, we correct the original 2D
images for distortion effects caused by imperfections of
the optical system. If not treated, these effects would
certainly lower the accuracy of depth and surface ve-
locity measurements. In order to get an undistorted im-
age, each pixel in the original image is mapped to its
correct position using the Brown—Conrady distortion
model, which adds a tangential component to the radial
distortion (Brown, 1966).

The extrinsic parameters define the position of the
camera center and the camera’s orientation in world co-
ordinates. Using extrinsic parameters, we can estimate
the distance between two cameras in real-world units,
which is used for conversion from image coordinates to
real-world units (Section 4.2).

4.2 Water-level estimation

4.2.1 General water level. The water level [ is estimated
as a difference between distances from the camera
setup to the water surface and to the channel’s bottom.
The latter is measured once upon installation. The dis-
tance to the water surface is computed using large-scale
stereo-matching (Geiger et al., 2011). This method com-
putes disparity maps from rectified grayscale stereo-
pairs by performing a triangulation on a set of support
points that can be robustly matched. This method does
not require global optimization, and, therefore, is fast.
The process runs as follows: (i) the images are undis-
torted and rectified (Section 4.1); (ii) image contrast
is equalized by applying contrast limited adaptive his-
togram equalization (CLAHE) (Zuiderveld, 1994); (iii)
a dense disparity map is calculated for the given im-
age pair, where one image pair represents two images
recorded simultaneously with the right and the left cam-
eras (Geiger et al., 2011); (iv) using intrinsic camera pa-
rameters, the disparity map is reprojected to a point
cloud with 3D coordinates (X, Y, Z) in the world co-
ordinate space; (v) the points within the ROI that be-
long to the channel’s walls and surrounding areas are
removed from the model—the remaining points either
belong to the water surface, or can be classified as
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Fig. 4. Water surface detected in the reconstructed point cloud shown from different perspectives. The point cloud scene
including water surface and channel walls is depicted in black. The gray square is a parametric plane fitted into the water surface.
The coordinate system is placed to origin; camera direction corresponds to the z-axis.

outliers caused by water reflections or resulting from the
reprojection error; and (vi) the parametric water sur-
face plane D = K X+ L Y + M Z is approximated us-
ing the maximum likelihood estimation sample consen-
sus (MLESAC) algorithm (Torr and Zisserman, 2000).
The approximated plane should be parallel to the image
plane with allowed offset of 5° (Figure 4).

For robust estimation of the distance to the water sur-
face, we compute disparity maps for several left-right
pairs of images. We set the number of pairs to 20, but it
may vary depending on the allowed computational time:
the more pairs are taken, the more robust is the result.
After running all these steps for each image pair, we cal-
culate the trim mean of the water surface plane as an
average of values between 20th and 80th quantiles of all
values of plane models resulting in a single plane equa-
tion D' =K' X+ L'Y + M’ Z. The distance [y face from
the camera to the water surface is then computed as

|K'Xo+ L' Yo+ M'Zy+ D|
VK2+L2+M?2

lsurtace =
where (Xo, Yo, Zo) are the coordinates of the origin.

4.2.2 Z-coordinate estimation. Computing individual z-
coordinates of particles is beneficial for velocity estima-
tion (particles which lie below the surface can be re-
moved) and for the robustness of depth estimation (the
estimated depth value I[gyce shall be approximately
the same as the z-value of the majority of particles in
the flow).

To compute individual z-coordinates, images from
both cameras are exploited. Correspondences between
particles in a left-right pair are established using fast
normalized cross-correlation (Lewis, 1995), similarly to
the particle tracking. The disparities of the matched par-
ticles are computed using linear least-squares triangula-
tion (Hartley and Sturm, 1997). Conveniently, this not
only allows detection of z-coordinates, but also the com-

putation of x- and y-coordinates of a particle in the real-
world coordinate system.

If enough natural particles can be robustly detected
in the flow (at least two particles per frame visible by
both of the cameras), the final depth value can be de-
rived from individual z-values as a statistical mode of
the whole set of values in the image sequence. For the
scenes lacking natural particles, general depth level can
be still computed using large-scale stereo-matching.

4.3 Velocity measurement

The velocity of the flow is estimated by tracking par-
ticles of interest in the sequential frames. These can
be small pieces of floating waste highly distinguishable
from the background water. The processing pipeline is
composed of (i) image preparation, (ii) detection of nat-
ural particles, (iii) tracking of detected particles in se-
quential frames, (iv) removal of outliers, and (v) estima-
tion of velocity values using displacement vectors and
timestamps.

4.3.1 Image preparation. Images coming directly from
the cameras often feature some undesired artifacts such
as wavy light reflections, traces of rain or condensate,
and shadows. When untreated, they undermine parti-
cle tracking by creating false matches or outliers, or
leaving some important particles undetected. We apply
a simple image processing pipeline: (i) the images are
cropped to the selected ROI for a more robust particle
tracking; (i) CLAHE is applied for image equalization
(Figure 5a); (iii) gradient edge detection is applied to
transform the image into an edge image; (iv) the de-
tected edges are emphasized by grayscale dilation with
a circle-shaped kernel (Figure 5b); (v) the image is bi-
narized with a simple threshold: we set up the thresh-
old value to 4% of maximum intensity in the image
(Figure 5c); (vi) all remaining objects in the scene are
presented as connected components; (vii) the connected
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(b)

(d)

Fig. 5. Image preprocessing for particle detection: (a) original image cropped to the ROI equalized with CLAHE filter; (b)
dilated edge image; (c) binarized image (inverted for a better visibility); and (d) remaining particles after reflection removal.

components are then classified as reflections and other
objects based on their length: reflections, normally
having a larger size (we set the threshold to 40 pixels,
which is equivalent to 1.2 cm?), are eliminated (Figure
5d); and (viii) morphological erosion is applied to the
remaining objects to set their size back to the original.

4.3.2 Particles detection. In the binarized images, parti-
cles are located using simple blob detection based on the
connected-component labeling (Suzuki and Abe, 1985).
We label a detected blob as a particle if it has more than
three pixels. Large objects are represented as groups of
particles.

4.3.3 Particles tracking. In order to find the correspon-
dences between the particles in sequential images, tem-
plate matching is used: a function slides through the
image and compares the overlapped windows of size
w x h (w — window’s width, & — window’s height)
against the input image using fast normalized cross-
correlation (Lewis, 1995). For more effective computa-
tions the searched area is narrowed down to a certain
size (we take an area limited by a circle with a radius
of 40 pixels, which is 8.3% of image height, with a cen-
ter in the particle coordinates). Probabilities of differ-
ent possible matches are estimated, the window with
higher matching probability is localized and the particle
correspondences are established. Matches of probabil-
ity lower than 30% are discarded. The parameter values
were derived empirically as a trade-off for minimizing
outliers while maintaining a sufficient number of found
matches.

The detection of particle correspondences is a crucial
step for discharge computation. The method still works
even if there are just few correspondences, however, in
such a situation, the final result might be affected by
outliers, and, therefore, the system is considered to be
more robust in the scenarios when a bigger number of
particles and particle correspondences can be detected.

Because only few correspondences between particles
are normally detected in pairs of sequential images
(Figure 6a), we benefit from processing the whole image
sequence and combining all detected correspondences
together in a vector field, which is shown to be sufficient
for a robust velocity computation (Figure 6b).

4.3.4 Removal of outliers. Because template matching
may identify false correspondences between particles,
an outlier removal algorithm was developed. Consider-
ing drag forces and presence of turbulence, surface ve-
locities are usually inconsistent and angles of movement
may vary depending on the particle position. Therefore,
we split the ROI into a grid of cells and detect local
outliers in each cell.

The cells containing a small number of vectors are ig-
nored. If the vector field contains m vectors in n cells,
the threshold for a sufficient number of vectors in a
cell will be 0.1%. The local outliers are identified us-
ing the iterative random sample consensus (RANSAC)
algorithm (Fischler and Bolles, 1981): at each iteration
(the total number is 50), one vector from the cell ij is
selected as a reference vector and compared with each
other vector i7]\'/ in the same cell. The score 7 of the ref-
erence vector is

v=Y [l =1 <021ijI]

vi'j

The reference vector with the highest score is selected
as representative for the cell velocity, and all others
highly deviating from this vector are classified as out-
liers and removed.

4.3.5 From displacements to surface velocities. So far,
particle displacements are considered in terms of image
coordinates (pixels). To translate the calculated values
into the real-world units (mm), the pixel-to-millimeter
ratio r is computed for each displacement vector indi-
vidually by division of the distance in pixels between
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(b)

Fig. 6. Particle tracking: (a) found correspondences between
the particles in two sequential images and (b) the vector field
over the whole sequence of images.

two original points (i.e., those on the image plane) by
the real distance between the corresponding particles.
We propose two methods for estimation of the real
distances. The first method relies on particle triangu-
lation. For each displacement vector with known real-
world coordinates of its starting point, we apply trian-
gulation to find the real-world coordinates of its ending
point. The real-world distance is then estimated as a Eu-
clidean norm of the displacement vector in real-world
coordinates. Assuming that the scaling factor in the rec-
tified image shall be the same for each displacement
vector, we derive a general ratio as a statistical mode

of all individual ratios in the image sequence. This gen-
eral ratio is applied to each displacement vector includ-
ing those for which estimation of real-world coordinates
was not possible.

The second approach is designed for the image se-
quences lacking natural particles. It employs the ap-
proximated water surface plane. We select two points
(starting and ending points of displacement vector) in
the image and project them on the water surface plane
extending the ray from the principal point of the camera
through the point on the image plane all the way to the
water surface. The reprojected points are used for the
estimation of the distance in real-world units.

To calculate the velocity, we are using individual
timestamps indicating exactly when each image pair was
recorded. Thus, the time interval is measured for each
image pair individually, and the velocity v of each vec-
tor is derived by dividing the displacement value in mm
by the value of time shift in seconds.

4.4 Extra functionality

4.4.1 Automatic ROI detection. To resolve the ambigu-
ity of water surface detection for water-level estimation
(Section 4.2) and to minimize the chances of false points
being classified as particles of interest for tracking
(Section 4.3), it is necessary to localize the ROI enclos-
ing the flow surface only.

In most of the usage scenarios, the camera is placed
perpendicularly to the channel so that two borders of
the channel are present in the scene. In this case, ROI
is detected automatically as an area limited by the left
and right channel borders, which are detected using the
generalized Hough transform (Ballard, 1987). Alterna-
tively, the ROI can be selected manually by the user
upon installation.

4.4.2 Extraneous object detection. A frequent reason of
sewer malfunction is a presence of extraneous objects
or clogs in the channel. Our algorithm supports detec-
tion of such objects. For that, we have extended our
pipeline (Section 4.3): we compare the values of rep-
resentative displacements in each grid cell with each
other. The cells with a representative vector consider-
ably different from the common flow are labeled as sus-
pected to contain extraneous objects or clogs. Common
flow vector is also computed using RANSAC, and the
deviation from the common flow is indicated by com-
parison ||z] l] I > 08||z]||, where, 1n this case, z] is
used for the common flow vector and i/ ] "for each repre-
sentative vector in a cell. Of course, this can work only if
an undesired object is located within the viewing range
of the cameras.
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Fig. 7. Z-coordinate experimental setup. The board with
artificial particles is placed at a certain angle to the bottom,
which provides that all particles lie at different distances from
the camera setup.

5 EXPERIMENTS AND RESULTS

5.1 Z-coordinate experiment

In order to assess the quality of estimation of individ-
ual z-coordinates of particles, an artificial setup was
prepared.

5.1.1 Data set. We placed 16 artificial particles (white
circles) of different sizes on a black mat board. The
board was installed so that one of its edges was touch-
ing the bottom and the other one was fixed so that the
board’s lateral projection would form an angle o with
the bottom (Figure 7). The camera setup was placed
parallel to the bottom over the board and a single
stereo-image pair was recorded. Then we changed the
angle o and rotated the camera setup by 90°. Another
image pair was recorded.

For each of the two installations, we measured the
angle « (37° and 18°), the distance A from the cam-
eras’ plane to the upper edge of the border (69.3 cm and
84.8 cm), and the distance S from the cameras’ plane to
the bottom (101.3 cm in both cases). Additionally, for
each of the artificial particles, the distance C from the
particle to the border’s upper edge was measured.

5.1.2 Method. Automatic z-coordinate detection was
applied on both pairs of images, and, for each artificial
particle, the distances B’ to the cameras’ plane were re-
covered. The absolute error of our method was assessed
computing the difference between distance B’ and the
corresponding theoretical distance B from the cameras’
plane to the particle

B=A+C sinna
o 180

27.87:
_890.}86_9 7870

958 02

o 18.111

[EC—
—e) 08.64 8

Fig. 8. Automatically generated z-test results’ close-ups of
two experiments: images are rectified and overlaid and the
correspondences between matched particles are shown
together with the recovered z-values.

The relative error was estimated as a ratio of RMS
error computed on absolute errors and the measuring
range (the distance S).

5.1.3 Result. In the first image pair (Figure 8, top), we
were able to estimate z-coordinates of seven artificial
particles. The RMS error was 0.51 cm, which is 0.51% of
the measuring range. In the second image pair (Figure 8,
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bottom), depth value of 11 particles was recovered, and
the RMS error was 0.55 cm, or 0.54% of the measuring
range.

5.2 In situ validation

The preliminary evaluation in real conditions (Siraz-
itdinova et al., 2017) has shown that our system per-
forms similarly to the one of Nguyen et al. (2009) and
Jeanbourquin et al. (2011), which to our knowledge was
the only development in the field so far. However, due
to the experimental design, the acquired result was only
arough estimate, which could be used as a proof of con-
cept only. In order to assess the real performance of our
system, a new experiment was designed and performed.

5.2.1 Data set. Two data sets were recorded in two
different sewage treatment plants. Both of them have
open segments of rectangular shape where we installed
our recording device (Figure 2). In both locations, we
recorded several image sequences: each 8§ seconds long
with a varying frame rate (20-30 fps). Depending on the
frame rate, each sequence consists of 160-240 stereo-
image pairs. In the beginning of each session, a refer-
ence depth value /s was measured with a rigid ruler
and the reference value of volumetric flow Q. was
recorded.

The Stolberg data set consists of 13 image sequences.
The channel in the spot of measurement is relatively
wide (140 cm), the discharge on the day of measure-
ment was moderate (176-236 1/s). The reference value
of discharge was measured with a combination of a ven-
turi and an ultrasonic flow meter. The distance from the
camera to the channel’s bottom was 210.5 cm.

The PIA data set consists of 12 sequences. Comparing
to the first location, the channel here is rather narrow
(25 cm), with the rather stable discharge of 3.6-4.06 /s.
We covered the open segment to model low-light envi-
ronment. The HydroRanger ultrasonic-level controller
(Siemens, Germany) was used to record the reference
values.

5.2.2 Method. For each image sequence, the following
values were computed automatically using the devel-
oped image processing software:

e Average velocity v,
e Distance from the sensor to the water surface /gy face.

In the rectangular profile, knowing the width of the
channel wenanner and the total distance from the sensor
to the channel’s bottom /i1, and having automatically
estimated the velocity v and the distance from the sen-

sor to the water surface [y face, the volumetric flow Q
was estimated as

Q =v Wchannel (ltotal - lsurfacc)

Reference values for surface velocity were not avail-
able. However, it was possible to compute theoretical
surface velocity vineor from the reference volumetric
flow Q.ef and depth /¢

Qref

Vtheor = ——————
Wchannel lref

The absolute water-level error §; was computed as a
difference between the estimated depth (liora1 — Lsurface)
and reference value /..;. The absolute surface velocity
error § was computed as a difference between viheor and
v. The absolute discharge error §, was calculated as a
difference between Q and Q..

The relative water-level error values g were com-
puted as ratios of absolute error values §; and the values
of the measuring ranges (which is in that case the dis-
tances from the camera to the channel’s bottom /i, ).
The relative surface velocity errors ¢, were computed
as ratios of absolute error values §, and the theoretical
surface velocity maximum vp,y for given locations. In
order to calculate vy,x, we divided the theoretical max-
imal discharge Qmax computed using the Colebrook—
White equation (Colebrook, 1939) by the value of max-
imal possible sewer cross-section area Ap,x computed
using known sewer width and height (in case of rect-
angular profile). The relative discharge errors ¢, were
calculated as ratios of §y and Qmax.

5.2.3 Result. In both cases, the experimentally deter-
mined values of water level, surface velocity and dis-
charge resulted close by the reference values obtained
from ultrasonic flow meters. For the two data sets, the
RMS errors of water-level estimation were 1.1 cm and
0.8 cm (0.52% and 0.67%) in case of z-based estimation,
and 6.5 cm and 3.1 cm (3.08% and 2.55%) for stereo-
measurement based on the large-scale stereo-matching
without particles (Tables 1 and 2). The RMS errors of
surface velocity estimation were 3.2 cm/s and 0.8 cm/s
(2.15% and 0.67%). The RMS errors of discharge com-
putation were 12.2 /s and 1.34 1/s (0.29% and 1.34%).
Comparing the relative RMS error values, we observe
that the water-level estimation based on z-coordinates
is rather precise. The deviation of surface velocities is
slightly incremented.

6 DISCUSSION

Comprehensive evaluation included depth measure-
ment in an artificial setting, a series of preliminary
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Table 1
Absolute errors §;, 8,, and §p

Stolberg data set

PIA data set

Water level 5, Water level 5,  Velocity — Discharge Water level §;  Water level 5,  Velocity Discharge

(z-based), cm  (stereo), cm  §,, cm/s 8o, Us (z-based), cm  (stereo), cm  §,, cm/s 8o, Us
Min error 0.1 0.3 0.1 0.04 0.3 0.08 0.1 0.04
Max error 1.9 16.2 8.7 27.93 1.6 6.1 5.9 1.41
Average error 0.9 5.1 23 8.41 0.7 23 23 0.57
RMS error 1.1 6.5 32 12.2 0.8 3.1 2.7 0.67

Table 2
Relative errors ¢/, €,, and €¢ in %
Stolberg data set PIA data set

Water level Water level Velocity Discharge  Water level e, Water level — Velocity Discharge

& (z-based) & (stereo) & €0 (z-based) & (stereo) & g0
Min error 0.05 0.14 0.04 0.0 0.25 0.07 0.16 0.08
Max error 0.9 7.7 5.82 0.67 1.33 5.13 11.62 2.79
Average error 0.43 2.44 1.54 0.2 0.6 1.93 4.48 1.14
RMS error 0.52 3.08 2.15 0.29 0.67 2.55 5.38 1.34

experiments in real conditions, and two final record-
ing sessions in different locations. Considering both
experiments, in artificial and real environments, we
achieved an accurate water-level estimation with a
slightly enlarged error of surface velocity estimation,
which is explained by the fact, that velocity estimation
depends on depth estimation, and, thus, the error gets
accumulated. However, the discharge measure is not
affected notably and plausable results are still obtained.

The depth measurement based on z-coordinate esti-
mation using triangulation is more accurate than based
on large-scale stereo-matching. However, with RMS er-
rors of 3.1-6.5 cm (2.55-3.08% ), which is still a good es-
timate, it can be used as a backup solution for tempo-
rary situations, where natural particles are unavailable.
In particular, it improves the approaches of Nguyen
et al. (2009) and Jeanbourquin et al. (2011), resulting
in smaller RMS errors (0.52-1.1 cm vs. 1.33-4.61 cm for
depth estimation in real conditions) and provides im-
proved functionality (fully automatic calibration with-
out the need of additional rulers and the possibility of
measurements, even if the water—wall borderline is not
in the scene). Our system is also competitive with state-
of-the-art solutions (ultrasonic flow meters), using at the
same time cheaper technologies and yielding discharge
estimation errors about 1.34% with the respect to
the theoretical maximal discharge for a given loca-

tion. The total cost of our prototype is approximately
US$7,300, but its mass production (20 units and more)
would allow a market price of about US$3,000.

The processing time varied between 30 and 150 sec-
onds depending on the number of images and the num-
ber of detected particles in a single image: the more
particles the longer the computation but the more ro-
bust the results. Some operations can be computed in
parallel but the current hardware does not support par-
allel computing. Currently, the processing time is suffi-
cient for frequent measures. As the framerate does not
impact the accuracy, the computational load can be re-
duced if required.

Our experiments have shown that the system oper-
ates with different weather conditions in open as well
as closed environments, but not with strong rain or
stormy winds in open environments. When the water
surface turns rough, neither the particle detection nor
the parametric surface fitting is accomplished success-
fully. In previous works (Sirazitdinova et al., 2017) we
recorded data in open environment with moderate rain-
drops, and the system has been proven to be sufficiently
robust. If the system is mounted within a manhole
(closed environment), only condensate may occasion-
ally drop down to the water surface. The artificial light
source proved to be sufficient for particle detection and
tracking. Nevertheless, strong rain indeed has an impact
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to our system: in combined sewers, the flow intensity is
changed when rain mixes with wastewater. On the other
hand, more natural particles are available in the flow,
and the particle tracking becomes even more robust.

In the next iteration, we are planning a series of ex-
periments to evaluate the impact of several parame-
ters on the system’s performance, such as the mini-
mal required number of detected particles, frame rate,
and recording length. The current setting of parameters
yields sufficient performance. Reducing the frame rate
or recording time will enable faster and, hence, more
frequent computations. Further evaluation will also in-
clude different light and weather conditions, in different
times of a day and also in locations with different sewer
cross-sections. We believe that adaptive parameters will
support the different use case scenarios.

Additionally, our future tasks include hardware re-
liability and usability tests with prospective end users.
We plan to investigate how often hardware mainte-
nance (cleaning of the protective glass and battery re-
placement) will be required. For that, a prototype will
be placed into a chosen location and its long-term per-
formance will be observed. Another option would be
shifting computational load from the circuit board to
the server, which would allow parallel computations and
processing of larger data. However, that would also re-
quire reliable transport of big amounts of data from
the sensors to the server. Often, network connections in
sewer environments are unstable. Therefore, data pro-
cessing in place (as it is done now) might be the better
option. We aim at investigating this issue in the future,
too.

7 CONCLUSION

In this work, a novel vision-based solution for auto-
matic contact-less measurement of water discharge has
been proposed. Our system automatically computes dis-
charge in sewers and open channels with low light con-
ditions. The proposed method does not require artificial
tracking markers, fully relying on the presence of nat-
ural particles in waste water. Furthermore, the water-
level measurement is possible without any particle.

The described system is a fully functioning prototype.
Besides the image processing software, the tool for man-
ufacturing and the client module are also implemented.
The manufacturing tool is used for the initial camera
calibration. In the client software, location-specific set-
tings can be chosen and the measured values can be re-
ceived and displayed to the user.

We believe that due to its compactness, usage of rel-
atively cheap technologies, maintainability and porta-
bility, our system has a big potential in waste water

monitoring and SOs prevention. Furthermore, we also
believe that such a vision-based monitoring system,
with some adaptation, might be useful for prediction of
floods in natural water bodies, or as a survey mechanism
for industrial discharge monitoring to provide plant op-
erators with control information.
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