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As part of a novel approach to automatic sewer inspection, this paper presents a robust algorithm for
automatic flow line detection. A large image repository is obtained from about 50,000 m sewers to represent
the high variability of real world sewer systems. Automatic image processing combines Canny edge detection,
Hough transform for straight lines and cost minimization using Dijkstra's shortest path algorithm. Assuming
that flow lines are mostly smoothly connected horizontal structures, piecewise flow line delineation is
reduced to a process of selecting adjacent line candidates. Costs are derived from the gap between adjacent
candidates and their reliability. A single parameter α enables simple control of the algorithm. The detected
flow line may precisely follow the segmented edges (α=0.0) or minimize gaps at joints (α=1.0). Both,
manual and ground truth-based analysis indicate that α=0.8 is optimal and independent of the sewer's
material. The algorithm forms an essential step to further automation of sewer inspection.
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1. Introduction

Sewer maintenance and rehabilitation strategies are developing
rapidly because many problems such as odor, blockade, and collapse
continue to occur in sewer systems all over theworld [9]. For instance,
recent studies in Germany have shown that approximately 20% of
public sewers have defects requiring short or medium term
rehabilitation [1]. It can be assumed that these figures also hold for
other countries where sewer systems have been built or extended in
the last century; in particular, in the United States and Canada,
Australia, andmost other European countries. Sewer system operators
must ensure a reliable disposal of wastewater and, therefore, develop
strategies to establish and effectively preserve proper condition of
sewer systems. Hence, closed-circuit television (CCTV) inspection
systems have been established, and manual evaluation of these
images has been standardized in order to improve quality manage-
ment, reliability, and appropriate scheduling procedures for rehabil-
itation. Nonetheless, the quality of remote inspection depends
essentially on the qualification and the momentary motivation of
the operating personnel [10,21]. More than ten years ago, Moselhi et
al. devised semi-automatic inspection systems supporting the human
operators in finding more objective results [18,19]. Using a frame
grabber and image processing software, they started with developing
software indicating defects in the sewer system.

2. Automation in sewer inspection

As of today, sewer inspection still is performed using robots that
are guided through the pipes providing optical images from the
sewer's inner wall. Most frequently, the data still is inspected by a
human observer, regardless of whether the imaging is provided as
video vs. photography vs. laser scan, analog vs. digital, or in color
vs. gray scale vs. black and white. However, novel imaging devices
support complete capturing of the sewer's inner walls and enable
full decoupling of imaging and evaluation. Automatically assessing
the state of a sewer is a multi-stage process using image processing
technologies. In the first step, regular sections are identified before
the remaining areas with unknown optical events and structures
are analyzed. In recent years, several approaches have been published
on automation in sewer inspection and damage classification. Sinha et
al. have proposed classification systems based on neuro-fuzzy algo-
rithms [25] and morphological segmentation [24], where edges in gray
scale images have been used as feature describing the cracks, and a
neural network has been used as classifier. They have focused on cracks
and performed experiments on rectangular sections cut out of the
images, showing either a crack or not. The investigation was based on
225 images [13] from various pipes. Duran et al. have proposed a
camera/laser-based profiler combined with an artificial neural network
[7]. Since laser technology captures depth information, the laser profiles
were used to separate different classes of sewer surface irregularities. In
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Table 1
Pipe inspection image material used.

Pipe diameter Material [m] Total length

[mm] Concrete Plastic Stoneworks [m]
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particular, longitudinal and radial cracks, holes, joints and other
obstacles were differentiated using a database of 140 profiles for
training and another 100 for testing.More recently, Mashford et al. have
proposed a sewer image analysis module that classifies regions of
interest (ROIs) as being one of a number of classes, such as a hole,
corrosion, pipe connection, deposit or tree root [15,16]. They describe a
pixel-based segmentation approach using support vector machines.
Although a large number of training and testing cases (i.e. pixel values)
were used they were all taken from a number of small rectangular
patches extracted from the same 393 m section of a certain sewer [17].
Morphological techniques were used for the detection of flow line, pipe
joints and adjoining defects. However, such efforts have not yet been
successful. Althougherror rates of zeropercenthavebeenpublished, the
algorithms have turned out to fail when applied to image data taken
from urban center's real life. The reasons are twofold. First of all, the
databases that have been used in previous studies are too small to
represent differences in appearance of regular and damaged pattern as
they occur in real life. In addition, the image processing and analysis
algorithms that have been developed operate rather locally, use static
thresholds and cannot adapt to a specific sewer characteristic.

3. Adaptive sewer analysis

In contrast, our approach to automatic image analysis is made
"intelligent" using a-priori knowledge that is either derived

• extrinsically from meta-information collected with the image such
as construction material, age and dimension of the sewer system, or

• intrinsically from image pre-analysis such as contrast calibration,
positioning of joints or flow line detection.

Furthermore, our algorithm operates globally on the entire sewer
taking into account all the neighboring structures and the entire
characteristics of illumination and texture of the sewer wall. Fig. 1
shows the major steps of the image processing workflow. In the
first step, an unwrapped sewer image (side-view) is computed and
manholes, couplings, as well as the flow line are detected, since
flooded areas and manholes as well as coupling regions need special
adapted filters for further analysis [20]. In this paper, we present an
automatic and robust algorithm for flow line detection based on
side-views of a sewer. Recent work into flow line detection [17] is
suggesting mathematical morphology to solve the problem of delinea-
tion. This approach, however, assumes the typical appearance of flow
lines as solid dark areas on a brighter sewer wall background, which
may be valid only in stonework or concrete sewers that were cleaned
and dried appropriately before CCTV inspection, avoiding any water
surface reflections. Hence, our approach is rather edge- than intensity-
based, using local contrast as feature for segmentation, and applies
image transforms on larger neighborhoods that may cover up an entire
pipe. Obtaining piecewise candidates for flow line sections, we optimize
theflow line –which is assumeda-priori to be rather continuous–using
a global optimization scheme that covers the entire sewer.

4. Real-life inspection data

Data from real-world sewer inspections is characterized by its high
variance. Different materials, illumination, degrees of abrasion and
obstacles such as dirt or roots are only few of the numerous factors
influencing the color, texture, and intensity of the obtained images. In
order to cope with this variance, a broad compilation of sewer
coupling
detection

unwrapped
sewer image

manhole
detection

further
processing

flow line
detection

Fig. 1. Workflow of automatic pipe inspection system.
inspection data has been collected and used for developing and
evaluating the image processing algorithms (Table 1). All data has
been acquired using the Panoramo© system (IBAK Helmut Hunger,
Kiel, Germany). A side-view color image is composed of all Joint
Photographic Experts Group (JPEG) files from the Audio Video
Interleave (AVI) container of the Panoramo system. Usually, one -
meter of side-view is coded with about 500×500 pixels. Hence, the
source images may have a dimension of 500×60,000 pixels
representing a sewer 120 m in length.

Fig. 2 emphasizes the difficulties one has to face when aiming at
designing a robust algorithm for automatic delineation of flow lines.
In each panel, a piece approximately two meters in length has been
cut out from a sewer showing its inner surface in an unwrapped side-
view. The left column (Panels a, f, k) displays concrete pipes at
different contrast levels. Although the flow line appears darker than
the sewer wall, it may not be delineated correctly if the gray scale
intensity is used as feature for segmentation (Panel a). Columns two
to five show examples from stonework sewers. The rightmost column
(Panels e, j, o) displays artifacts from flashlight, where bright reflexes
are obtained within the flow line. Here, intensity-based approaches
will surely fail since brightness within the flow line and the sewer's
wall is inverted. But also in the other examples, intensity-based
segmentation clearly is inappropriate. Furthermore, Panels d, i, and n
(fourth column) suggest that edge-based techniques may fail either, if
the flow line is considered locally within a short part of the entire
sewer. Hence, successful approaches will need to consider edges and
flow lines from neighboring parts, assuming a rather constant flow of
waste water.
5. Robust flow line detection

To identify the flow line, an approach that simulates the behavior
of a human observer is proposed: horizontally oriented structures that
differ in intensity level to surrounding areas are observed automat-
ically. The borders of these structures, which are defined by a strong
local gradient, are considered as borders of the flow line. In the
following, we refer to sewer, pipe, and segment, when describing the
entire water line, the physical piece between adjacent couplings and
equidistant virtual parts within a pipe, respectively. Therefore, our
approach intrinsically copes with inlets and outlets, as they may
change the water level within a pipe.

In terms of image processing, we refer to edge detection when
finding the maximum local gradient perpendicular to the flow
direction [2]. However, edge detection delivers a binary edge map
that is not necessarily composed of straight connections between the
beginning and ending of a segment. Applying the Hough transform
[12,6] to the edge maps provides straight line candidates as well as
their probability. To determine an appropriate sequence of candi-
dates, Dijkstra's shortest path algorithm [5] is applied after converting
the problem to a graph representation. The entire image processing
pipeline (Fig. 3) is described in detail in the following subsections.
≤250 671 234 22,597 23,502
251–350 4294 841 7403 12,538
351–450 683 172 1837 2692
451–550 997 285 1282
551–650 1060 656 1716
N650 3777 37 3814
Total length [m] 11,482 1247 32,815 45,544



Fig. 2. Variety of flow line appearances.
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Fig. 3. Workflow of flow line detection.
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5.1. Pre-processing

In the first step, the images are converted from red, gree, blue
(RGB) color space into gray scale. This conversion was made adaptive
to the pipe material, which is known from meta-information.
Stoneware sewers, which are mainly red colored, tend to have the
most significant information in the R-channel. For concrete and
polyethylene sewers, all channels are included into gray scale
conversion. To reduce the noise, anisotropic Gaussian smoothing is
applied. Here, the horizontal dimension is set sixty times larger than
the filter kernel's height maintaining horizontal structures (Fig. 4b).

5.2. Dynamic edge detection

Extracting meaningful edges from a variety of sewers (cf. Fig. 2)
requires an adaptive algorithm that is based on Canny edge detection
[2] according to an implementation by Deriche [3]. The Canny
algorithm derives a local gradient and suppresses non-maxima
following a hysteresis: the higher threshold must be exceeded before
a new edge is generated, but a gradient exceeding the lower threshold
is sufficient to follow an already existing edge line. As a result, a binary
edge map is obtained, where the thickness of edges in an eight-
connected neighborhood is exactly one.

According to the sewer dimension, we assume a minimal number
of edge pixels and automatically adapt the hysteresis such that the
resulting edge map contains a pre-defined number of edge pixels
(Fig. 4c). Finally, the edgemap is cleaned from short edge segments or
those having an inappropriate aspect ratio and, therefore, do not
contribute to the flow line, which is always oriented horizontally
(Fig. 4d).

5.3. Image splitting

Constructing a continuous border line within a sewer based on
partly horizontally overlapping edges is a complex problem that is
simplified by splitting the sewer into its left and right parts. This
corresponds to a cut through the center of the flow line in the side-
view. Since pipe joints (couplings) have already been detected in an
earlier step of the workflow (Fig. 1), where vertically oriented edges
are extracted from the side-views in a similar way [20], each sewer is
decomposed into its pipes. Furthermore, pipes are sub-divided into
equally sized segments.

image of Fig.�3


Fig. 4. Pre-processing steps. a) original, b) smoothed, c) dynamic edge detected, d) edges filtered, e) Hough transformed.

27S. Kirstein et al. / Automation in Construction 21 (2012) 24–31
5.4. Hough transform

As a result of the edge detection and image splitting, several curved
line segments are received in each segment, which are considered
possible candidates of the flow line edge. To cope with gaps in the edge
map, and to obtain straight line segments, a Hough transform is applied
[6]. Within each segment, straight lines connecting the segment's left
and right border are determined. All line candidates are described by
their position and slope. For each candidate, the number of supporting
edge pixels is stored and used to describe the candidate's reliability. Line
candidates outside a reasonable range of slope or below a certain
reliability are disregarded from further processing. All candidates now
have the same length, which indicates the segment width. For instance
in Fig. 4e, each pipe is modeled with four equally-sized segments.
5.5. Graph representation

At this stage, determining the flow line is modeled as finding an
optimal path that is composed of appropriate line candidates from
each of the segments. To solve this problem, we introduce a formal
model. Fig. 5 shows the introduced functions in the context of the
sewer image with three segments. For each segment, Canny edges
(curved lines) and three lines candidates are shown. The relative
reliability is derived from the number of supporting edge pixels. Gaps
between line candidates are measured as vertical distance at the joint.
SegmeSegment 1

d(L ) = 42%2
3

2
2d(L )d(L ) = 70%2

1L1
1

L1
2

L1
3

Fig. 5. Intensity and offse
5.5.1. Mathematical notation
Let Lis denote the i-th line candidate in segment s. Then, the relative

reliability d(Lis) is given by

d Lsi
� �

=
H Lsi
� �

W sð Þ ð1Þ

where H(Lis) represents the number of matched Hough pixels of line i
in segment s, whereas W(s) denotes the width of segment s in pixels.
Hence, a perfect line candidate represented in an eight-neighborhood
pixel connectivity model yields d=1.

The offset O(Lis, Lj
s+1) between line candidates from adjacent

segments is derived from the gap in vertical direction. Let YB(L) and YE
(L) denote the y-position of the first and the last pixel of a line
candidate L, respectively. This yields

O Lsi ; L
s + 1
j

� �
= jYE Lsi

� �
−YB Ls + 1

j

� �
j: ð2Þ

For further calculations, the offset O(Lis, Ljs+1) is normalized by the
maximal offset found in the entire sewer

Omax = max
s = 1:: S−1ð Þ
i = 1::N sð Þ
j = 1::N s+1ð Þ

O Lsi ; L
s + 1
j

� �� �
ð3Þ
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where S represents the total number of segments and N(s) is
the number of line candidates in segment s. The normalized offset
o(Lis, Ljs+1) is given by

o Lsi ; L
s + 1
j

� �
=

O Lsi ; L
s + 1
j

� �
Omax

ð4Þ

5.5.2. Optimization problem
To retrieve a piecewise linear but smooth representation of the

actual flow line, we assign a cost function to a sequence of line
candidates.

For each line segment and connection point, the costs incorporate
the reliability from Hough transform d(Lis) as well as the normalized
offset o(Lis, Ljs+1), respectively. To adapt the balance between the cost
components, we introduce a weighting factor α. The costs between
two line candidate Li

s and Lj
s+1 in two adjacent segments s and s+1

are now defined as

c Lsi ; L
s + 1
j

� �
= α ⋅o Lsi ; L

s + 1
j

� �
+ 1−αð Þ ⋅d Ls + 1

j

� �
ð5Þ

For the sake of symmetry, we define a virtual segment s=0 with

N 0ð Þ : = N 1ð Þ

YE L0i
� �

: = YB L1i
� �

∀i = 1…N 1ð Þ

resulting in o(Li0, Li
1)=0∀ i=1…N(1). In other words, only the

reliability d of the first segment is taken into account for the overall
costs, as the offset is zero for all connecting line candidates. Using
c(Lis, Ljs+1), the best flow line, is given now by the minimization
problem

min
r0 ;…;rSð Þ∈R

∑
S−1

s=0
c Lsrs ; L

s + 1
rs + 1

� � !
ð6Þ

where R is the set of all possible line combinations over all
segments. This minimization problem, however, turns out to be ill-
posed and brute-force methods are incapable of solving it due to
the high number of line candidate combinations in a long sewer.
Assuming ten candidates in each of the five segments per pipe and
twenty pipes per sewer yields 10010=1020 possible combinations.

5.5.3. Filling gaps
Although edge detection is processed dynamically, gaps between

segments may occur if parts of the edge maps do not yield sufficient
pixels. This can lead to segments which contain no line candidates
after applying the Hough transform. As the minimization problem is
only defined when the cost function c delivers a result for every
transition between segments, it is necessary to fill these gaps. This can
be achieved introducing virtual line candidates, each of which is
connecting the endpoint of a line candidate in a segment s-1 with a
starting point in segment s+1. Such virtual candidates are placed for
every end–start combination. The intensity of virtual lines is defined
as d≡0.

5.5.4. Problem transformation
To find a solution in reasonable time, the minimization problem is

transformed into that of finding the shortest path through a weighted
graph. Each line candidate Li

s∀ i=1..N(s) in all segments s=1…S is
transformed into a node in the graph. Edges are defined between each
node representing a line candidate Li

s and all nodes representing line
candidates in an adjacent segment Lj

s+1∀ j=1..N(s+1). The costs
assigned to the edges are given by the cost function c(Lis, Ljs+1). To
define the starting point of the graph, a node B is added and connected
to each node Li
1∀ i=1..N(1) representing a line candidate in the first

segment. The edges are weighted by the (1−α)⋅d(Li1). As the
endpoint of the graph, a node E is added, which is connected to all
nodes LiS∀ i=1..N(S). The edge costs are defined as c=0 (Fig. 6).

Mathematically, let

M sð Þ : = Ls1;…; Lsn sð Þ
n o

ð7Þ

denote the set of all possible line candidates in segment s. A node n in
the graph can then be seen as

n∈ B∪ ∪
s=1…S

M sð Þ∪E ð8Þ

The set P of all possible paths from the beginning B to the end E can
then be defined as

P : = B × M 1ð Þ × M 2ð Þ × … × M Sð Þ × E ð9Þ

so that one possible path p is given by

P∋p = B; L1i1 ; L
2
i2
…LSiS ; E

n o
ð10Þ

Hence, the cost for a path p yields

C pð Þ = 1−αð Þ ⋅d L1i1

� �
+ ∑

s=1::S−1
c Lsis ; L

s + 1
is + 1

� �
ð11Þ

5.5.5. Handling of outliers
Outliers may occur in some of the segments. In such cases, only

line candidates are returned from the Hough transform that are far
away from the flow line marking scratches or abrasions. For instance
in Fig. 2 d, e, n, prominent edges in horizontal orientation are seen at a
distance from the flow line. If the optimization algorithm has to
choose from such outliers only, the result turns suboptimal. To handle
outliers, artificial lines are introduced similar to the virtual lines, as
described already in Section 5.5.3. Adding all the direct connections
allows the optimizer to select a smooth path. As the artificial line
candidates are direct connections, their offset o(Lis, Lj

s+1) to the
candidates in the next segment is zero. However, to make them less
attractive, we use the offset o(Lis−1, Ljs+1) instead when calculating
the cost for these candidates.

5.6. Dijkstra algorithm

According to the problem definition in (6), the optimal flow line is
now given by the path p in the graph from B to Ewith the lowest costs
minp∈P{C(p)}. Lowest costs in this case is equivalent to the shortest
path p from B to E. In 1959, Edsger W. Dijkstra proposed an optimal
algorithm to find the shortest path between two nodes in a graphwith
non-negative edge costs [5], which is being used in this article.

6. Results

Line candidates are extracted by pre-processing, dynamic edge
detection, and Hough transform. In (5), the costs function c combines
the strength d with the offset o to the adjacent segment, and the
weighting factor α controls the ratio between these two values. In Fig. 7
fromtop to bottom, the results of gradually increasingα are emphasized.
Cyan colored lines refer to real lines detected by the Hough transform
whereas red (darker) lines are virtually or artificially added. Each pipe
has been divided into four segments. In Fig. 7a,α=0,whichmeans only
the line intensity d is taken into account when choosing the line
candidates. The resulting flow line tends to be very patchy as a close
connection to adjacent lines is not taken care of. Increasing α levels the
flow line. At α=0.8, a smooth flow line is obtained resembling closely
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the original line. Higher values tend to over flatten the results, putting
too much stress on the artificially introduced lines.

To determine the optimal alpha systematically, ten sewers of
different material have been arbitrarily selected from the database,
and the actual flow line (ground truth) was annotated manually. To
cope with inter-observer variabilities, ground truth labeling was
performed by experienced engineers (KM, TD) as well as computer
scientists (SK, MW) individually localizing as many supporting points
on the flow line as assumed subjectively appropriate. In total, a sewer
length of 474 m was annotated with its left and right flow lines. This
reference data was compared to the flow lines computed automat-
ically using 0.0≤ α≤ 1.0, and the Dice coefficient [4] was determined
(Fig. 9, left scale). Surprisingly, α = 0.8 performs best for all users
labeling the ground truth. This is due to the clear minimum of the
standard deviation of the distance between ground truth and detected
line (Fig. 9, right scale).

As already demonstrated in Fig. 2, flow lines appear differently.
Fig. 8a, for example, shows adiscontinuousflow line thatwasdelineated
precisely. Although insufficient edge information is present in several
segments, our algorithm correctly approximates the missing data. In
Fig. 8b, obstacles and reflections are shown: Again, the algorithm
precisely is following the actual flow line. The sewer in Fig. 8c contains
many residues resulting in long horizontal structures parallel to the
actual flow line. Due to the continuous criteria, outlying structures are
disregarded. In Fig. 8d, a sewer built of concrete is shown. Both, inner
and outer parts from the flow line are represented with low intensity.
Here, the inner flow line was selected as it more closely resembles
Fig. 7. Influence of smoothing factor α. a) α=0.0
straight and smooth lines. The algorithm is also robust against high
variations in brightness within a sewer, e.g., as obtained from pipe to
pipe (Fig. 8d). Again, the delineated flow line matches exactly.

7. Discussion

In this article, an approach to flow line detection using Hough
transform and optimization by Dijkstra's shortest path algorithm has
been presented. Although Dijkstra's algorithm was proposed over
50 years ago, it is still applied frequently in image processing and
pattern recognition. Gunkel et al. [11], for example, recently have
presented an application of crack detection in plastic pipes. Based on
the paths closed with Dijkstra, the authors statistically analyzed the
crack behavior. Yu et al. [26] use a similar technique for crack analysis
in concrete tunnels. Interestingly, the field of application here is very
close to ours. However, there are many other fields of application in
computer vision [8]. For example, Rebelo et al. [22] optimize the
detection of staff lines in scanned handwritten musical scores. The
excellent results obtained in our work determining the best-fitting
flow line in long sewers composed of several pipes with a wide range
of materials and diameters is another example emphasizing the
potential of Dijkstra's algorithm.

Beside the flow line detection algorithm, we presented a large
collection of real world data to cope with the varieties in sewer wall
appearance. In fact, the database is annotated completely with position
information of joints, events and damages. For flow lines however, an
objective definition of the ground truth is crucial. In fact, flow lines of
, b) α=0.4, c) α=0.8, d) α=0.9, e) α=1.0.



Fig. 8. Detected flow line on different materials, age and diameters. a) stoneware (1965) 200 mm, b) stoneware (1982) 250 mm, c) stoneware (1970) 200 mm, d) concrete (1978)
250 mm, e) stoneware (1976) 200 mm.
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different flooding levels may be seen, they may be covered by scratches
or other artifacts, or they may not be determined sharply. Hence, any
manual ground truth labeling is observer dependent. Such an “inter-
observer variability” is a well known effect in medical research [14]. In
our study, it is emphasized by the different Dice curves plotted in Fig. 9.
Unexpectedly, the optimal choice of α is not affected by the observer
labeling the ground truth. This may be due to the fact that both, human
observer andhighαvalues tend to smooth theflow line. Anyway,we see
it advantageous that alphamust neither be adapted to the type, size nor
material of the sewer. This eases further image processing.

The importance of large reference databases was already acknowl-
edged by Schindler and Stamm [23,27]. Here, the authors used sewer
images of 10,000 m in length for developing an image-based detection
of inlets. Such an inlet detection forms the next step in automation in
sewer analysis. Having the joints and flow lines delineated, inlet
detection can be restricted to the remaining areas, according to the
general processing chain (Fig. 1). Then, it may be advantageous to differ
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Fig. 9. Quality of detection as a function of α and the user determining the ground truth.
regular from irregular sewer wall sections, and apply further algorithms
for segmentation and classification to the irregular structures. However,
there is still a long way to go before automatic CCTV-based sewer
inspection can be applied in practice.

Nonetheless, flow line detection also supports manual inspection.
Since separation of regular from irregular areas is based on a robust
flow line detection, the inspector might now focus on those parts of a
sewer, where irregularities have been detected but not yet classified
automatically. Therefore, our robust algorithm already contributes to
further automation in urban drainage construction and maintenance.
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