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Summary
Objectives: The number of articles published annually in the fields of
biomedical signal and image acquisition and processing is increasing.
Based on selected examples, this survey aims at comprehensively
demonstrating the recent trends and developments.
Methods: Four articles are selected for biomedical data acquisition
covering topics such as dose saving in CT, C-arm X-ray imaging
systems for volume imaging, and the replacement of dose-intensive CT-
based diagnostic with harmonic ultrasound imaging. Regarding
biomedical signal analysis (BSA), the four selected articles discuss the
equivalence of different time-frequency approaches for signal analysis,
an application to Cochlea implants, where time-frequency analysis is
applied for controlling the replacement system, recent trends for fusion of
different modalities, and the role of BSA as part of a brain machine
interfaces. To cover the broad spectrum of publications in the field of
biomedical image processing, six papers are focused. Important topics
are content-based image retrieval in medical applications, automatic
classification of tongue photographs from traditional Chinese medicine,
brain perfusion analysis in single photon emission computed
tomography (SPECT), model-based visualization of vascular trees, and
virtual surgery, where enhanced visualization and haptic feedback
techniques are combined with a sphere-filled model of the organ.
Results: The selected papers emphasize the five fields forming the chain
of biomedical data processing: (1) data acquisition, (2) data
reconstruction and pre-processing, (3) data handling, (4) data
analysis, and (5) data visualization. Fields 1 and 2 form the sensor
informatics, while fields 2 to 5 form signal or image informatics with
respect to the nature of the data considered.
Conclusions:Biomedical data acquisition and pre-processing, as well
as data handling, analysis and visualization aims at providing reliable
tools for decision support that improve the quality of health care.
Comprehensive evaluation of the processing methods and their reliable
integration in routine applications are future challenges in the field of
sensor, signal and image informatics.
Haux R, Kulikowski C, editors. IMIA Yearbook of Medical Informatics
2006. Methods Inf Med 2006; 45 Suppl 1: S57-67.
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1   Introduction
The past, present and future of biomedi-
cal imaging informatics were analyzed
in a recent review [1]. Reflecting on
the paradigms of quality management
where structure, process and result qual-
ity are analyzed separately, it was found
that most infrastructure- and process-
ing-pipeline-related problems have
already been resolved. Therefore, the
future of biomedical data processing
was seen to be linked to the results ob-
tained from the methods applied in
medical informatics. Since these results
are measured as the direct outcome for
the patient, biomedical sensor, signal
and image informatics is worthless
unless it is capable of being applied
routinely and to signif icantly improve
the patient’s healthcare.
Figure 1 sketches the chain of biomedi-
cal data processing. Induced by the
physicians or the patients themselves,
the data is acquired and preprocessed,
which results in the biomedical signal
or image. This part of the chain is re-
ferred to as sensor informatics. Data
management (e.g., storage, retrieval
and communication), data visualization
(e.g. transforms and appropriate dis-
playing for qualitative inspection by
human observers), and data analysis
(e.g. quantitative measurements that are
automatically determined by comput-
ers) are termed signal or image infor-
matics with respect to the technical
nature and dimensions of the acquired

data. Processing a set or map of one-
dimensional (1D) electrical signals
captured continuously over time is
called biomedical signal informatics,
while the processing of two-dimension-
al (2D) spatial data, volumes (three-
dimensional, 3D), or image and
volume sequences (f our-dimensional,
4D) is referred to as image informat-
ics. Both aim to support decision
making and improve the patient’s
healthcare. Furthermore, the develop-
ment and integration of robust applica-
tions was identif ied as the next major
challenge to face [1]. Without claim-
ing completeness, this paper ex-
emplarily surveys recent developments
towards this goal in the f ields of
sensor, signal and image informatics.
(References to these papers are typeset
in bold face.)

1.1   Sensor Informatics
The acquisition process is the first part
and thus a key issue in the chain of
medical imaging. The performance of
the image acquisition process in today’s
systems often depends on a sophisti-
cated interaction between the sensors
themselves and the subsequent signal-
and image processing components
(Fig. 1). These processing components
comprise algorithms to compensate for
various known, and often calibrated,
sensor imperfections, such as varying
offset and sensitivity of pixels of a flat
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solid-state x-ray detector, or inter-
polating across inactive pixel sites. On
the next higher level, these components
include algorithms to convert measured
data into images, e.g. homographic
reconstruction, hybrid tuned-aperture
computed tomography (TACT®) [2],
limited angle 3D digital subtraction
angiography (DSA) [3], formation of
ultrasound brightness (B)-scans from
the envelope backscatter signals of a
transducer, or novel methods such as
cardiac activation time imaging [4].
Finally, the image acquisition process
may be controlled adaptively depend-
ing on the data recorded, for instance
to reduce x-ray dose in  CT imaging as
described below. We focus on the prob-
ably most widely used basis for medi-
cal imaging, viz. x-radiation, with its
well-known trade-off between image
quality and potentially harmful effects
to patients and medical staff. In the
following, we therefore discuss ap-
proaches to reduce the x-ray dose in
x-ray volume imaging, or even to re-
place this with other imaging methods
such as ultrasound.

1.2   Signal Informatics
The techniques for biomedical signal
analysis (BSA) have evolved from
time-invariant to time-variant processing
[5], from univariate to multivariate [6,
7], from frequency to time-frequen cy
[8], and from linear to non-linear anal-
ysis [9, 10]. Time-variant, multivariate
linear and nonlinear analysis methods
are currently in use and their applica-
tion can be shown. Additionally, the
trends from off-line to on-line analysis
and from processing one modality (sig-
nals) to different modalities (signals and
images) can be observed [11]. Further-
more, signals have been analyzed to
characterize physiological systems that
generate them. Therefore, system iden-
tif ication can be seen as one major
objective of BSA [12].

The fundamental driving forces behind
these changes have been developments
in sensor technology and the necessity
for improved signal interpretation [13].
All recent progress in BSA are due to
technological developments which
themselves have been powered by the

user’s or customer’s options. As men-
tioned before, the goal of biomedical
signal analysis and its interpretation is
to assist clinicians in their decision
making. Medical practitioners, clini-
cians and biomedical researchers use
BSA such that the patients ultimately
benefit from improved prevention, di-
agnosis, therapy and rehabilitation (Fig.
1). For these purposes, improvements
in all steps of BSA are necessary:
1 . preprocessing and providing data

validity (e.g. calibration, f iltering,
trend removal and artefact detection
[14]) as well as combining different
data modalities (e.g. fusion of elec-
troencephalography (EEG) and func-
tional magnetic resonance imaging
(fMRI) data [11]);

2 . data management (e.g. compression
[15] or fusion [16]);

3 . parameter extraction, data reduction
and visualization (e.g. [17]);

4 . data analysis such as system identi-
f ication and modeling (e.g. source
modeling on the basis of EEG,
magnetoencephalography (MEG) or
electrocardiography (ECG) data,
model-based processing of cardio-
vascular data), classif ication and
pattern recognition aiming at predic-
tion or knowledge-based decision
making (e.g. fused data analysis [18],
fusion of knowledge and combination
of processing results [19, 20]).

These steps have been developed
differently in each BSA strategy and
the contribution of each step to the
complete processing chain is weighted
differently. The challenge of BSA is
the automation of biosignal interpre-
tation by the enhanced  combination of
signal processing (up to the step of pa-
rameter extraction), pattern recognition
and knowledge-based decision making
(artif icial intelligence [20]) as well as
the statistically founded evaluation of
such systems [21].
The most pressing motivation for auto-
mating biosignal interpretation arises

Fig. 1   Sensor, signal, and image informatics embedded in clinical applications
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due to human factors such as problems
of data overload, necessity of an imme-
diate reaction time by imminent dan-
ger, varying expertise and human er-
ror. Automated biosignal interpretation
can assist clinicians in the task of
interpretation itself to aid in avoiding
errors in diagnosis and the selection of
treatment. In biomedical research, an
appropriate signal interpretation en-
hances the understanding of fundamen-
tal observations and measurements.

1.3   Imaging Informatics
In the early years, information logis-
tics was the primary aim of any medi-
cal information system [22]. In particu-
lar, the paradigm was postulated that
the right information has to be deliv-
ered at the right time and in the right
place [23]. In picture archiving and
communication systems (PACS), this
medical information is the patient’s
image data or its derivatives. Today’s
PACS are based on the digital imaging
and communications in medicine
(DICOM) standard that allows the con-
nection of imaging devices, computers
for data analysis, viewing stations, and
huge image archives with the radiologi-
cal information system (RIS) hosting
the corresponding patient records. Fast
networks support the rapid transfer of
image data within the hospital to (even
portable) high-quality display devices,
and the Internet is used to interconnect
between healthcare providers. The
emerging number of digital imaging
modalities with steadily increased reso-
lutions has transformed PACS archives
from a simple library of images into a
medical knowledge repository that can
considerably benefit research, teaching,
and diagnostics. Data handling, visu-
alization and analysis are therefore the
major f ields for computer applications
in image informatics (Fig. 1).

2   Sensor Informatics
X-ray volume imaging and transcranial
ultrasound are two modalities where
visible technical developments and im-
provements were recently achieved.

2.1   X-Ray Volume Imaging

Dose Reduction by Tube Current Modulation
The traditional method of x-ray vol-
ume imaging is fan beam computed
tomography (CT) [24, 25]. With the
advent of the multi-detector CT [26],
new time-resolved CT imaging has be-
come possible, for instance CT angiog-
raphy and cardiac CT imaging.
A critical issue, however, is the still
relatively high patient radiation dose
associated with CT imaging [27]. In
quantum-limited x-ray imaging, both
the variance of the detected noise and
the signal-to-noise ratio (SNR) decrease
linearly with decreasing impinging
quantum flux [28]. Areas in the projec-
tion images corresponding to high at-
tenuation thus exhibit low SNR, an obs-
ervation which also holds after
nonlinear conversion by taking the loga-
rithm to obtain the line integrals. With
respect to CT imaging, this implies that
projections taken under angles for
which most x-rays travel a relatively
long way through the patient (e.g., lat-
eral projections) exhibit lower SNR
than those projections where the travel
paths are short (e.g., anteroposterior
(AP) projections). Therefore, one ap-
proach towards reduction of patient
dose without compromising the image
quality is to vary the applied dose
depending on the total patient attenu-
ation for each angle [29], with a consid-
erable dose reduction for AP-projec-
tions. Based on modeling the patient’s
body by an ellipse, this dose variation
may be carried out by a sinusoidal

modulation of the tube current over pro-
jection angle, with the modulation am-
plitude being determined off-line by a
priori lateral and AP localizer projec-
tions [30].
Today, rather than using a parametric
function of dose vs. angle, with the
parameters being determined off-line,
the dose may be adapted on-line to the
patient’s attenuation for each projection
angle. For multi-slice CT imaging, the
clinical study described in [31] reports
dose savings of about 30%, without
compromising diagnostic image quali-
ty: While noise increased only statisti-
cally insignif icantly, artefacts such as
streaking can even be reduced by a slight
increase of tube current for lateral pro-
jections, and a corresponding consider-
able decrease for AP projections.

Projection Interpolation for Cone-beam CT
The availability of fast reconstruction
algorithms for cone beam CT [32, 33]
has made it possible that x-ray volume
imaging can today also be performed
by interventional C-arm-based systems,
which are predominantly used for inter-
ventional x-ray imaging such as fluoros-
copy and cine-angiography. Equipped
with image-intensif ier and camera de-
tection front ends [28, 34, 35], inter-
ventional x-ray systems were f irst ap-
plied in the reconstruction of vessels
filled with a radio opaque contrast agent
(”rotational angio”) [36]. The projec-
tions are acquired by rotating the C-
arm gantry around the patient, and re-
cording the 2D attenuation images. The
acquisition of 2D projection images
instead of single-slice or multi-slice 1D
projections as in conventional CT ex-
tends the fan beam towards a cone beam,
and necessitates a corresponding exten-
sion of reconstruction algorithms. With
the newer generation of solid state flat-
panel radiography detectors [37] pos-
sessing a larger dynamic range than
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image intensifier-based front ends, vol-
ume reconstruction was considerably
improved, allowing the imaging of ob-
jects with less contrast [38, 39, 40].
Mechanical and frame rate limitations
may, however, lead to an only relatively
low number of angular cone beam pro-
jections being recorded. Volume data
reconstructed from such sparsely sam-
pled angular projections exhibit arte-
facts such as streaking and noise.
To reduce or even eliminate these arte-
facts, in [41] an approach is described
to increase the number of projections
by interpolating between the available
ones. To avoid blurring, the developed
interpolation scheme is specif ically
geared towards 3D sinograms. The ba-
sic idea is to adapt interpolation to the
local information content based on de-
tecting and estimating oriented struc-
tures, and to weight the interpolation
such that information from the detected
orientation, if any, has a stronger in-
fluence. Orientation is detected and es-
timated by an eigensystem analysis of
an extended version of the tensor devel-
oped in [42, 43], with the eigenvalues
indicating whether or not a uniquely
identif iable orientation is present, and
the eigenvectors providing information
about the orientation itself. Results ob-
tained for simulated sinogram data of
an anthropomorphic head phantom
show that the nonlinear directional inter-
polation method indeed reduces streak-
ing artefacts and noise, and outperforms
other interpolation methods such as lin-
ear, cubic spline-based and regularized
interpolation [44, 45].

Scatter Compensation for Cone-beam CT
The quality of volume data from C-
arm-based cone-beam CT is not only
influenced by the dynamic range of the
detectors used and angular sampling
density, but also by scattering [46].
Artefacts from scatter in cone-beam CT

include streaking, noise, an inhomo-
geneity-like effect of low spatial fre-
quency content termed ”cupping”, and
limitations on soft tissue contrast resolu-
tion. Compared to fan-beam CT, the ef-
fects of scattering are much more severe
due to the larger volume irradiated by
the cone beam, which causes a higher
amount of photons to be scattered.
The use of anti-scatter grids does not
achieve the desired effect of decreas-
ing the scatter-to-primary radiation ra-
tio, since for the geometry of C-arm-
based cone-beam CT, the scatter
attenuation is outweighed by unavoid-
able absorption of primary radiation
[47, 48]. Computer-based a posteriori
scatter correction schemes, which esti-
mate and compensate scattered radia-
tion, are therefore needed.
One such technique, which is based on
a 3D model approximating the imaged
part of the human body, is developed
and evaluated in [49]. The approach
takes into account single and multiple
scattering events as well as the poly-
energetic nature of x-radiation. To circ-
umvent the exponentially increasing
computational expense for the estima-
tion of multiple scattering, only single
scattering is calculated accurately,
whereas multiple scatter background is
obtained by a parametric model from
the estimated single scatter. For single
scatter estimation, the 3D anatomical
model is sampled to a voxelized repre-
sentation, and the total scatter contribut-
ed to each detector pixel is computed
by adding the individual contributions
from each primary ray. These individ-
ual contributions, in turn, are calculated
from the scattering probability at each
voxel and the probability that the scat-
tered photon leaves the scattering site
under a certain angle. The performance
of the model-based scatter estimation
approach is shown for a 3D water-filled
ellipsoid serving as an approximation

of a human head. Ground truth data is
generated by computationally very ex-
pensive Monte Carlo simulations. High-
ly accurate estimates of the scattered
radiation were achieved. Compared to
reconstruction from uncompensated
projections, artefacts could be consid-
erably attenuated. For instance, the
amplitude of the above-mentioned cup-
ping artefacts was reduced more than
ten-fold from 250 Hounsf ield units
(HU) to about 20 HU [49]. The compu-
tational costs of this approach are suffi-
ciently low such that the approach is
suitable for scatter compensation in
practice.

2.2   Stroke Diagnostics by Trans-
cranial Ultrasound Harmonic
Imaging
The therapeutic success of treatment of
patients with acute ischemic stroke re-
quires an early and reliable diagnosis
of brain areas with critically reduced
perfusion. Towards this end, visualiz-
ing cerebral micro-perfusion is crucial.
Because of its high diagnostic image
quality, cranial CT (CCT) is, besides
magnetic resonance tomography and
nuclear imaging techniques, one of the
diagnostic methods used in routine pro-
tocols for stroke patients. However,
apart from the above mentioned expo-
sure of the patient to relatively high
radiation doses when using CCT, it also
has the drawback of being time-con-
suming and expensive, and not being
well suited for restless or critically ill
patients who have to be transported to
the imaging system.
In contrast to this, ultrasound imaging
is a comparably inexpensive, fast and
well tolerated bedside imaging method.
However, since the assessment of brain
perfusion implies insonation through
the skull with its high acoustic imped-
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ance, conventional transcranial color-
coded sonography requires a suff icient
acoustic bone window [50]. An alter-
native is so-called harmonic imaging
using an ultrasound contrast agent, such
as SonoVue, which is a sulfurhexa-
fluoride-containing aqueous suspension
of phospholipid microbubbles. Such
contrast agents are highly resonant at
diagnostic ultrasound frequencies and,
more importantly, generate harmonics
of the insonation frequency, which
make the response distinguishable from
tissue response [51, 52]. The contrast
between perfused and non-perfused ar-
eas is thus enhanced.
The studies in [50, 53] describe an ap-
proach towards tracking a bolus injec-
tion of ultrasound contrast agent (bo-
lus harmonic imaging, BHI) and
visualizing its kinetics qualitatively. Its
clinical signif icance is also reported.
The analysis of the flow kinetics is based
on four parameter images, depicting (i)
pixel-wise peak intensity, (ii) time to
peak, (iii) area under curve and (iv)
average slope. For each of 23 patients,
the investigation was carried out within
an axial midthalamic plane of the symp-
tomatic brain hemisphere def ined by
the third ventricle, the thalamus, and
the anterior horn of the ipsilateral ven-
tricle. Insonation and readout were per-
formed using a 1.8/3.6MHz sector
transducer. It could be shown that the
area of signif icant amplitude decrease
detected in the early phase of ischemic
stroke exhibits signif icant correlation
with the def inite area of infarction
shown in follow-up CCT and with pa-
tient outcome after four months. The
study thus demonstrates the clinical
relevance of BHI, showing that it in-
creases the diagnostic relevance of
neurosonology by providing additional
information obtained at the patient’s
bedside in the early phase of ischemic
stroke.

3   Signal Informatics
The device-related applications of BSA
for patients and handicapped persons
need, firstly, a profound understanding
of fundamental biomedical functions
and, secondly, a comprehensive and
appropriate integration strategy for all
technical components, i.e. from the sen-
sors to decision making or actuators (in-
clusive stimulation, robot control etc.).
Major applications of BSA within this
framework are:
• Automatic triggering and control of

medical devices (e.g. event-related
triggering of MRI [54], automated
infusion control [55], adaptive con-
trol of artificial heart pace-makers);

• Monitoring and support of patient’s
treatment as well as rehabilitation
(e.g. intensive care monitoring,
signal-assisted biofeedback strate-
gies, and functional electrical
stimulation [56]);

• Substitution as well as replacement
systems (e.g. sensory substitution
systems [57, 58], brain computer, or
brain machine interfaces [59, 60]).

The following studies were chosen to
demonstrate these kinds of develop-
ments in BSA technology and poten-
tial applications.

3.1   From Frequency to Time-
frequency BSA – The Equivalence of
Methods
The developments of BSA itself towards
time-variant (time-frequency), multi-
variate analysis methods have resulted
in a number of different approaches.
Time-frequency approaches commonly
used are:
1 . Time-frequency distributions (e.g.

short-time Fourier transform,
Wigner-Ville spectrum);

2 . Wavelet transform;
3 . Hilbert transform;

4 . Time-frequency representations
based on time-variant parametric
models.

With these methods (and other meth-
ods, too) the possibility of expanding
to a bivariate time-frequency analysis
exists, i.e. cross-spectral, cross-phase
and coherence analysis. Multivariate,
time-variant parametric models enable
multivariate approaches. Bruns  [61]
demonstrated that Fourier-, Hilbert-
and wavelet-based signal approaches are
equivalent if a certain window function
(Fourier-), a certain f ilter (Hilbert-),
and a certain kernel envelope (wave-
let-transform) are used. Unfortunately,
a common flaw of previous compara-
tive studies has been that the approaches
have not been matched regarding time-
frequency resolution. The paper begins
with the definition of spectral param-
eters and derived measures which are
frequently used in time-frequency anal-
ysis of neurophysiologic signals, i.e.
time evolution of amplitude (envelope),
phase and coupling measures (bivari-
ate). A formal (mathematical) and an
empirical (using spectral parameters)
comparison of the approaches show that
it is of minor importance which ap-
proach is used. Important is to use those
approaches which have the optimiza-
tion capability to permit an optimal
detection of defined signal properties
which are expected in biosignals. Simu-
lations of expected properties are help-
ful to optimize the parameters of the
analysis method.

3.2   Time-frequency Analysis for
Controlling Replacement Systems -
Cochlear Implants
Nie et al. [62] demonstrate a particular
approach of time-frequency analysis,
which is comparable to a f ilter-based
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Hilbert transform using this algorithm
to control a cochlear implant. Sensory
substitution devices allow a remaining
sense to take over the functions lost as
the result of the sensory impairment.
Sensory correction and replacement are
alternatives to sensory substitution.
Cochlear implants replace much of the
function of the cochlea with direct elec-
trical stimulation of the hearing nerve.
Persons who become deaf usually lose
only the peripheral structures relating
to sound transduction (the cochlea). The
implants differ in the way that they
process sound and how they present
electricity to the hearing nerve. Cochlear
implants can be distinguished by their
way of encoding sound information (ana-
log and digital coding) and by their use
of single vs. multiple channels, the
number of electrodes, and their use of
either mono-polar or bipolar stimula-
tion. Additionally, there are many dif-
ferent ways of processing the auditory
signal for presentation at the level of
the cochlear ganglia. But a common
property of all methods is the use of
different numbers of band-pass f ilters
and information content. For example,
the continuous interleaving sampled
(CIS) system uses 4-22 frequency
bands. The processing and condition-
ing of the speech signal is carried out
by a speech processor, i.e. a special-
ized digital signal processor.
Narrow band-pass-f iltered signals can
be described as a simultaneously ampli-
tude and frequency (phase) modulated
signal. Therefore, demodulation tech-
niques, e.g. using the Hilbert trans-
form, are frequently applied to signals
with narrow band characteristics. The
instantaneous amplitude (envelope),
frequency and phase can be computed
and lead to special time-frequency
representations in contrast to spectro-
gram-like time-frequency plots. Nie et
al. [62] use a new frequency-amplitude-

modulation-encoding algorithm to im-
prove cochlear implant performance in
realistic listening situations, i.e. in a
noisy environment. Cochlear implants
use speech processing strategies that
focus on extracting (analysis) and repre-
senting the amplitude modulation cue.
They evaluated the values of amplitude
and frequency modulation of band pass
f iltered speech sound signals, where
amplitude modulation properties are
frequently used for the conditioning of
stimulation (see above CIS). The au-
thors use a phase vocoder (name de-
rived from voice decoder) technology
designed by Flanagan [63]. The results
demonstrate the complementary contri-
bution of amplitude and frequency
modulation to speech perception. Am-
plitude demodulation from several fre-
quency bands is suff icient to support
speech recognition in quietness, and the
frequency demodulation properties are
needed for speech recognition in noise,
in particular, when the noise is a com-
peting voice reflecting more realistic
listening situations [62].

3.3   The Compensation of Lost Voice
by BSA - Fusion and Analysis of
Different Data Modalities
The replacement of the sound-generat-
ing function of an excised larynx by a
natural substitute (mucosal tissue at the
upper part of the esophagus) allows a
compensation of the lost voice with a
high quality. Substitute voice quality
needs further research. Lohscheller et
al. [18] introduced an analysis strategy
to quantitatively analyze the vibration
pattern of the substitute and to investi-
gate its relation to the emitted acoustic
signal. They simultaneously recorded
the acoustic signal with a microphone
and the vibration patterns of the substi-
tute with a digital high-speed camera

(placed into the oropharynx). The com-
bination of image processing of high-
speed image sequence analysis and the
analysis of the acoustic signal is one
key feature of the evaluation algorithm.
The detection of region of interest (ROI)
uses three image features to determine
the contribution to the sound generat-
ing process and these three criteria are
merged to a normalized ROI. The first
criterion is based on the computation
of the maximum of the normalized
cross-correlation between the image
intensity at each pixel position and the
acoustic signal. A region-growing al-
gorithm was used for the segmentation
of the ROI. After initial determination
of the ROI’s contour line, a contour
tracking follows to derive binary edge
maps which contain the ROI evolution
in time, i.e. the algorithm consists of
an initialization and an object tracking
part. In this way, the ROI’s area inte-
gral can be computed and quantitatively
analyzed as a function of time a(t) for
each high-speed sequence, i.e. signal
analysis algorithm can be applied. The
a(t) signal for each of the three image
sequences and the acoustic signal were
analyzed by spectral analysis (ampli-
tude spectra via Fourier transform).
This study is an outstanding example
of the fusion and analysis of different
data modalities by means of BSA.

3.4   BSA as a Part of a Brain
Machine Interface - Brain Activity
Controls a Robot
Patients may employ EEG feedback
training to influence their own brain ac-
tivity (self-regulation). Such “learned”
EEG patterns can be used to control an
endogenous brain computer interface
(BCI) or a brain machine interface
(BMI). It was shown that a paralyzed
patient learned to “produce” distinct
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EEG patterns by mental imagery and
to use this skill for BCI-controlled
spelling. But the training period re-
quired several months. Such self-regu-
lation of EEG rhythms (or potentials,
patterns, properties) can be learned
through operant conditioning (accord-
ing to Skinner’s concept that “the behav-
ior is followed by a consequence, and
the nature of the consequence modifies
the organism’s tendency to repeat the
behavior in the future.”). The known
EEG activities which can be self-regu-
lated are: event-related potentials (ERPs),
slow cortical potentials (SCPs), and spe-
cial EEG frequency components.
Within this framework, del R. Millan
et al. [59] demonstrated that a continu-
ous control of a miniature robot in an
indoor environment is possible by the
recognition of special mental imageries
of a subject via 8-channel EEG analy-
sis (time-invariant spectrum analysis),
parameter extraction (12 frequency
components), and a subsequent classifi-
cation (statistical classif ier). The sub-
jects trained for the following mental
tasks: “relax”, imagination of “left” and
“right” hand movements, “cube rota-
tion”, “subtraction” and “word associa-
tion”. After an EEG feedback training
period, subjects learned to mentally
control the robot. The robot itself had
6 perceptual states (open space, obstacle
to left, obstacle to right, wall to left,
wall to right, wall in front). The pre-
condition for a control scheme is the
mutual connection of mental states of
the subject with the perceptual states
of the robot, i.e. the robot’s interpre-
tation of the mental imaginary must be
dependent on the perceptual state of the
robot. To fulfill this aim, a finite state
automaton was used. Another problem
arises. Other sources with influence on
the control process must be excluded.
Therefore, the influence of eye move-
ments (electrooculogram, EOG) and

facial electromyographic activity (elec-
tromyogram, EMG) must be rejected.
Additionally, it can be expected that
subjects may use EOG and EMG ac-
tivity as the control signal (one man’s
artefact is another’s signal). The authors
ruled out the influence by the use of
frequency ranges 8-30 Hz (EOG oc-
curs in the range < 4 Hz) and electrodes
(EMG artefacts are more prominent in
anterior electrodes). These results dem-
onstrate the strong feasibility and sig-
nificant potential benefit offered by the
concept of controlling robots or pros-
thetic devises by mental imaginary with
the help of BSA.

4   Image Informatics
For each of the major fields within the
chain of data processing (Fig. 1), we
have selected an exemplary remarkable
approach that has been developed and
recently published.

4.1   Data Handling
Clinical decision support techniques
such as case-based reasoning or evi-
dence-based medicine require access to
images and corresponding medical
records from more than one patient or
from different studies. In today’s PACS,
these needs are insufficiently supported
since access to all image data is based
on textual (i.e. alphanumerical) de-
scriptions only. Content-based image
retrieval (CBIR) is a f ield of research
and applications that attempts to aug-
ment text-based search by the incor-
poration of visual information analy-
sis. For instance, the integration of
content-based methods into a PACS al-
lows automatic comparison of the im-
age to be diagnosed with all earlier cases
stored in the archive. For that, a sample

image or image region is presented to
the system, which answers this query
by returning all similar matches. This
concept is referred to as query by ex-
ample (QBE). It was introduced in the
early 1990s by Niblack et al. presenting
IBM’s query by image content (QBIC)
system [64, 65]. Since color was found
to be the most discriminating visual
feature, CBIR was not used in the medi-
cal domain. However, almost ten years
ago, Tagare et al. have foreseen that
integrating CBIR into clinical routine
will signif icantly improve the quality
of patient care if local regions and their
spatial or temporal relationships are
analyzed [66].
Müller et al. have recently reviewed
CBIR systems in medical applications
regarding their clinical benef its and
future directions [67]. Still, the major
problem is to close the semantic gap
between image similarity def ined by
humans on a high-level concept of se-
mantics such as local object identi-
fication and scene analysis, and image
similarity computed automatically us-
ing the low-level pixel information
[68]. Therefore, existing systems are
usually restricted to a certain imaging
modality and body region, and they are
usable only in a well def ined context
of medicine. Radiology, pathology, and
dermatology are the most frequent
f ields of applications.
Müller et al. particularly referred to the
image retrieval in medical applications
(IRMA) approach [69] as one of the rare
medical CBIR approaches for general
use. In order to close the semantic gap,
levels of information abstraction are de-
f ined in IRMA and computed sequen-
tially. In the first stage of feature extrac-
tion, global texture descriptions are
computed from the QBE pattern and used
to determine the body region (A-
natomy) and biomedical system (B-
iology) imaged, the imaging modality
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and technique (C-reation), and the rela-
tive orientation between the patient and
the imaging device (D-irection) [70].
These preprocessing steps allow to au-
tomatically adapt subsequent local im-
age analysis to the medical context,
which is unknown before the user has
formulated the query.
In [71], an approach for automatic cat-
egorization of medical images is intro-
duced and thoroughly evaluated. Here,
categorization means selecting the ap-
propriate class for a given image out
of a set of pre-defined categories. In
total, 81 categories were pre-def ined
using the mono-hierarchical multi-axial
nomenclature of the IRMA ABCD-code
[70]. A set of 6,231 images was selected
arbitrarily from clinical routine, and
each image was annotated by experi-
enced radiologists with its correspond-
ing unambiguous IRMA code. This test-
bed was used to determine the correctness
of automatic categorization by num er-
ous leaving-one-out experiments. The
visual properties were assessed combin-
ing textural and correlation-based fea-
tures. The textural features are based
on the fundamental work of Haralick
et al. [72]. Tamura et al. suggested
coarseness, contrast and directionality
to describe an image’s texture proper-
ties [73], which are formed into a hi s-
togram of 384 bins [74]. These features
were combined with the image distor-
tion model (IDM). IDM is a correlation-
based measure that additionally allows
local displacements for each pair of
corresponding pixels [75]. This is es-
pecially useful for medical images due
to their individual anatomical or patho-
logical properties. The IDM measure is
computed based on vectors of identical
size h x h, h ∈ {8, 16, 24, 32}, to which
the images were scaled ignoring their
original aspect ratio. In other words, only
64 to 1,024 numbers were used to  rep-
resent the entire medical image.

The best correctness of 85.5% is ob-
tained for h = 32. However, for the
CBIR-related task of retrieving the cor-
rect class within the ten best matches,
the best rate of 97.72% is obtained for
h = 24. Here, an image is reduced to a
combined feature vector formed from
less than 1,000 bins. Regarding the dif-
f iculty of the categorization tasks,
which is caused by high intra-class vari-
ability and high inter-class similarity
as well as the large differences of the
sample sizes in the reference catego-
ries, these results are absolutely remark-
able. Furthermore, similarities of ana-
tomical regions (e.g. elbow vs. knee),
biomedical systems (e.g. in radiographs
of the abdomen), imaging modalities
(e.g. the use of collimation f ields and
shutters), as well as imaging directions
(e.g. craniocaudal vs. oblique views in
mammography) may be assessed by
subsequent classif iers that are espe-
cially designed for each of the tasks
(e.g. [76]).

4.2   Data Analysis
If trained for a certain imaging modal-
ity, image similarity measures can also
be used for computer-assisted diagno-
sis. For instance, Pang et al. have pre-
sented a system for computerized
tongue diagnosis [77]. In traditional
Chinese medicine, tongue diagnosis is
concerned with the identif ication of
syndromes rather than with the connec-
tion between tongue abnormal appear-
ances and diseases [78, 79, 80]. In con-
trast, the novel method that is based on
texture and chrominance measures ob-
tained from different parts of the
tongue is dedicated to the classification
of 14 diagnostic categories (13 com-
mon diseases and healthy). In total, 455
patients were analyzed. Using a Bayes-
ian network classifier, a prediction accu-
racy of 75.8% is reported.

Likewise in this example, automatic
image analysis in general aims at pro-
viding quantitative measures to support
decision making. According to [1], reg-
istration (e.g., [81]) and segmentation
(e.g., [82, 83, 84]) currently are active
f ields of research. However, such al-
gorithms must be thoroughly evaluated
using a suff iciently large number of
images. Frequently, images with a-
priori known ground truth are unavail-
able and consequently, such a comput-
erized method lacking statistically
founded evaluation is not used in clini-
cal routine.
Imabayashi et al.  [85] have presented
an evaluation of computerized brain
perfusion in single photon emission
computed tomography (SPECT) analy-
sis that is capable of establishing the
method in clinical routine. In Alz-
heimer’s disease (AD), regional cere-
bral blood flow (rCBF) in the poste-
rior cingulated gyri and precunei has
been reported to decrease even at a very
early stage. Visual inspection of SPECT
images is compared to automatic analy-
sis of atlas-registered images, where the
volume data is projected on 3D stereo-
tactic surfaces [86, 87]. In total, 38
patients with probable AD were imaged
at a very early stage and after a mean
interval of 15 months. The data is com-
pared to that of 76 age-mapped healthy
volunteers. The subjects were randomly
divided into two groups. The first group
was used to identify areas of decreased
rCBF in the 3D surface projections. The
second group was used to evaluate the
automatic method with visual inspec-
tion. Six trained physicians graded the
rCBF decrease on SPECT images for
receiver operating characteristic (ROC)
curves. Each observer inspected the
images twice at an interval of at least
two weeks.
Visual inspection showed fair-to-excel-
lent intra- and inter-observer reliabili-
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ties. Automatic analysis of surface pro-
jections demonstrated an accuracy of
86.2%. In contrast, the accu.racy of vi-
sual inspection was below 74%.

4.3   Data Visualization
According to Figure 1, data visuali-
zation is an important step in medical
signal and image analysis. Consequent-
ly, numerous papers on the visualiza-
tion of medical data and related fields
are still appearing. In particular, the per-
formance of 3D visualization is continu-
ously enhanced with respect to both
speed and quality.
For instance, it had been shown that
vessel trees, which have been segmented
from individual CT or MRI data, can
be visualized more realistically if the
segmented volume data is not rendered
directly, but the visualization is based
on model data extracted from the seg-
mented voxels [88]. Advantageously,
segmentation errors immediately be-
come obvious. Assuming circular vas-
culature, vessel trees can be described
by their skeleton and represented as a
directed graph attributed with the local
diameter, which is determined by image
analysis [89]. Photo-realistic rendering
is obtained if this implicit modeling is
smoothed and combined with so called
convolution surfaces [90]. Based on con-
volution surfaces, Oeltze and Preim take
special care at branchings to weight the
incident branches [91]. The improved
visualization quality is demonstrated
qualitatively, and evaluated both quali-
tatively by 11 observers as well as quanti-
tatively by means of simulated data.
Beyond the photo-realistic visualization
of existing structures, simulation tack-
les the visualization of altered struc-
tures. Frequently, methods of virtual
reality are applied and haptic feedback
is used to complete an immersive im-
pression. For instance in the paper by

Suzuki et al., a virtual surgery system
is presented that is capable of simulat-
ing surgical maneuvers on elastic or-
gans [92]. While f inite element meth-
ods (FEM) have been applied so far,
which are capable of performing (i)
realistic, (ii) real time, and (iii) quan-
titative deformations, the novel ap-
proach of Suzuki et al. is additionally
capable of (iv) representing internal
structures of organs, (v) simulating vari-
ous forms of manipulations such as
movement, deformation under pressure,
incision and partial re-movement, and
(vi) enabling the easy computation of
force feedback.
The basic idea is to fill the triangulated
surface by elementary spheres, and cal-
culate the movement of the spheres with
respect to a model of gravity. Inher-
ently, the volume of the deformed or
altered soft tissue organ is kept con-
stant because rigid spheres are modeled.
Furthermore, the authors have equipped
their model with a sense of touch and a
sense of force by connecting it to a force
feedback device. Suzuki et al. have
applied their model to simulate a life
liver donation procedure, where the
resection of the donator’s liver tissue is
about to be implanted into the receiver.
In particular, the force feedback that
can model f ive f ingers of each hand
was evaluated in vitro using a slice of
organ and a compression device. Ac-
cording to the authors, the simulation
was confirmed by an experienced sur-
geon. Using a radius of 8 mm for the
spheres, a frame rate of 25-30 fps is
obtained on an Octane 2 graphic work-
station (Silicon Graphics Inc).
Based on the sphere-filled model of or-
gans, other surgical techniques such as
resection and grasping should be able to
be performed. Although the system is
designed to simulate the homogeneous
properties of organs, it is also capable
of coping with inhomogeneous prop-

erties if the internal motion of the el-
ementary spheres is modif ied. This
should allow, for instance, to realisti-
cally simulate tumor-indicated proce-
dures.

5   Conclusion
Sensor, signal and image informatics
are emerging fields of computer sci-
ence in medicine. Based on recently
published selected examples, we have
shown how a carefully designed inter-
play between the imaging sensors, their
control and subsequent processing leads
to improved or even new diagnostic
methods for the benef it of the patient.
The survey also includes recent trends
in biomedical signal and image analy-
sis, and the discussed applications
demonstrate that new methods are in-
tegral parts of the biomedical data pro-
cessing and analysis chain in medicine
(Fig. 1). Additionally, it can be shown
that the adaptation of methods to spe-
cial signal properties and biomedical
application requirements is an indis-
pensable step of the design of process-
ing procedures. However, the underly-
ing aim is still that the patients
ultimately benef it through improved
methods in diagnosis, therapy and re-
habilitation.
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